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Soliton perturbation theory is used to calculate the fluxon oscillator linewidth arising
from fluxon interaction with background radiation. Detailed calculations in the case of an
oscillator that is long compared with the Josephson length and for which the radiation field
is thermal establish lower bounds for the linewidth of a real oscillator. These lower bounds
are not in disagreement with recent, instrument-limited measurements of X-band linewidths

less than 5 kHz.

I. INTRODUCTION

In 1973 Fulton and Dynes pointed out that the
“zero-field steps” observed in the voltage-current
characteristics of long Josephson junctions could be
ascribed to oscillatory behavior of internal fluxons
(or magnetic solitons).! Subsequent observations of
microwave radiation’ led to the hope that such
structures could play a technically useful role as os-
cillators into the millimeter wave range.> Recently,
some long Josephson junctions of high quality were
fabricated and tested at the University of Salerno*
and sent to the Physikalische Technische Bunde-
sanstalt in Berlin® and the Technical University of
Denmark®’ for detailed measurements in the mi-
crowave range. Comparison of these microwave
measurements with numerical and analog computa-
tions of fluxon dynamics (based on a structurally
perturbed version of the sine-Gordon equation)®
confirms that the original idea of Fulton and Dynes
is correct.

Among other results emerging from these experi-
mental studies has been the observation of a supris-
ingly narrow oscillator linewidth: less than 5 kHz
(the instrument limit) at a fundamental oscillator
frequency of 10 GHz.” Our aim in this paper is to
present a theory of fluxon oscillator dynamics
which allows us to predict the linewidth of a long
Josephson junction oscillator.

Our approach is based upon the description of a
Josephson transmission line as the sine-Gordon
equation with structural perturbations that
represent dissipation and input of energy.”!® We
extend a recently developed soliton perturbation
theory!! to second order in a small parameter pro-
portional to the structural perturbations in order to
calculate the effect of background radiation on soli-
ton dynamics.'? This calculation allows us to de-
fine an “instantaneous frequency” which leads
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directly to an explicit formula for oscillator
linewidth as a function of the background radiation
in the junction. Such background radiation may be
generated in several ways: (i) electrical noise con-
ducted to the oscillator through bias and output
leads, (ii) radiation generated by spatial inhomo-
geneities of the junction, (iii) radiation generated
during reflection of a fluxon from the end of the
junction, and (iv) thermal noise in the cavity modes
of the junction. To obtain a lower bound on oscilla-
tor linewidth, we assume the radiation field to be
entirely thermal noise. Under this assumption, and
with some simplifications, we calculate suitably
normalized values for linewidth as a function of
temperature and average fluxon velocity. The worst
(i.e., largest) value of linewidth that we calculate
under these assumptions is less than the
instrument-limited value of 5 kHz.’

Although the work reported here is related to re-
cent studies of chaotic behavior in the sinusoidally
driven nonlinear pendulum and sine-Gordon equa-
tion,!* we emphasize that our results depend upon
the assumption that the trajectory of the fluxon os-
cillation is not trapped in a region of phase space
that contains a “strange attractor.”'* The above-
mentioned numerical studies® support this assump-
tion.

II. DESCRIPTION OF OSCILLATORS

Our analysis of fluxon oscillators is based upon a
previously developed theoretical model for the
Josephson transmission line>!® (JTL), which is
briefly recapitulated here for the convenience of the
reader. Figure 1 shows a transmission line
equivalent circuit!® for JTL in which L is series in-
ductance per unit length (pul) related to supercon-
ducting surface currents, R is series resistance pul
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FIG. 1. (a) Physical model of the JTL (not to scale).
(b) Transmission line equivalent circuit of the JTL.

related to normal surface currents, C is shunt capa-
citance pul related to electric field in the junction, G
is shunt conductance pul related to normal electron
conduction across the junction, I" is an externally
imposed bias current pul, and, (finally,
Josin(2m®/Py) is the Josephson current pul crossing
the junction. Kirchhoff’s equations for this JTL
model lead to the following partial differential
equation for transverse voltage (¥):

%¢XXT+<DXX—LC¢TT—GL¢T

=JoLsin(2rd/®o)+TL, (1)

where X and T are laboratory space and time,
®y=h /2e is the flux quantum, and

o= [var. o))

Series inductance (L) and shunt capacitance (C) are
related to junction geometry by

2A; +d
L= 3
Ho W (3)
and
w
C=¢—, 4
ed 4)

where A, is “London” penetration depth for surface
currents, W is junction width, d is thickness of the
barrier region, € is dielectric permittivity for the
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barrier, and po (=47X10~7 H/m) is the magnetic
susceptibility of free space.

For analysis it is convenient to normalize these
variables as follows:

=210/, 5
x=X/7»J y (6
t=T/TJ s (7)

where A; is the “Josephson” penetration length and
Ty E)\, J v LC . (8)

With these normalizations, velocity is measured in
units of

uo=A;/7;
=1/VLC, ©)
and (1) becomes
Gex —bu—sing =, —Bbrsi +7 » (10)
where
a=GL /1y, (11a)
B=L/R7;, (11b)
y=27LT /®\3 . (11¢)

With a, B, and y=0, (10) is recognized as the
sine-Gordon equation with the exact soliton solu-
.16
tion

¢=4tan!

x —ut
exp i(

1_u2)1/2

] , (12)

which represents the propagation of a magnetic flux
quantum or “fluxon” along the junction. To make
a fluxon oscillator, one must design a physical path
over which the fluxon can execute periodic motion.
Two examples are shown in Fig. 2. In the “line os-
cillator” [Fig. 2(a)], a fluxon approaches one end, is
reflected as an anitfluxon [change of sign in (12)],
propagates to the other end, and is reflected as a
fluxon, etc. In the “ring oscillator” [Fig. 2(b)] the
fluxon proceeds at constant velocity around the
ring. In our calculations, an important parameter is
the total path, I/, over which the fluxon travels to
complete a cycle of oscillation normalized to A;.
Thus for the line oscillator [Fig. 2(a)]

2a
== 1
A, (13)
while for the ring oscillator [Fig. 2(b)]
1=2R (14)

A
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FIG. 2. (a) Line oscillator. (b) Ring oscillator.

The effect of the term ¥ in (10) is to pump energy
into the fluxon motion while the a and 3 terms dis-
sipate energy. In the following section we use soli-
ton perturbation theory to calculate effects of these
terms on the motion.

III. OUTLINE OF PERTURBATION APPROACH

The approach to sine-Gordon soliton perturba-
tion analysis in Ref. 11 begins with a nonlinear
equation

Né=¢€f(9), (15)

where N¢=0 is a completely integrable (i.e., “soli-
ton”) equation ¢ =col(¢,¢,), where

) x
col(x,y)= y

b

and € is a small parameter. Expanding

b=do+eb1+€P+ - (16)
one finds that
Néy=0, 17

so ¢, is an exact multisoliton solution which de-
pends upon certain constant parameters p; (e.g., the

speeds and positions of the solitons). Thus
do=30o(x,5, {p;}) . (18)

If ¢, and &, are secular (i.e., grow linearly in time)
the second and third terms on the right-hand side
(RHS) of (16) are useful only for times of order ¢!
and €72, respectively. To overcome this objection
one can allow order € time variations in the pj’s of
o s0 @1 and ¢, satisfy

Lé=F(¢y), (19)
Lé,=F5($0,81) , (20)

where F, and F, acquire extra terms because of the
modulations of the p;’s, and L is a linearization of
N around ¢,. Now secular growth of ¢; and ¢, can
be avoided by requiring that

Filv Lty 1)
Pl Lt 22)

where .#7(L " is the discrete null space of the ad-
joint of L. From (21) and (22) one obtains ordinary
differential equations (ODE) for the order € and or-
der €’ variations in the p;s.

The strategy of our calculation is as follows. Or-
der € corrections obtained from (21), are used to cal-
culate the effects of a, B, and ¥ terms in (10) on the
steady motion of a JTL fluxon. The radiation field
@1 is then determined from (19). This permits us to
evaluate the orthogonality condition (22) which
gives ODE’s that determine the effects of $, (radia-
tion field) on the fluxon motion. In our picture it is
this interaction of the fluxon motion with the radia-
tion field that leads to an instantaneous frequency
and therefore to a nonzero oscillator linewidth.

Our analysis proceeds as follows (see Ref. 11 for
details). The exact single fluxon solution (12) of the
unperturbed sine-Gordon equation is modified to

¢o=4tan""[exp({)] , (23)
where .
S=y()[x—X(1)] . 24)

Thus X () specifies the trajectory of the fluxon and
¢(t) its relativistic contraction. Two elements of
N (L) are

l; . ¢0,tt

=~ 23
and

- ¢O,x

b= [ _¢Otx (26)
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The conditions F;1b, and F, 16, imply

1
Thus, for typographical convenience, we define
X=u. (28)

The time dependence of X is divided into order €
contributions, calculated from (21), and order &
contributions, calculated from (22). Thus

X=X,+X,, (29)
where
Y. — _ €(1_,23”7
X] = 4 (1 u )
X [ flgo(@sechsdg, (30

X =€—2(1—u2)3/2
L

X [ Lf($1)—34tsingo]secht dg .

(31)

IV. GENERAL CALCULATION
OF LINEWIDTH

From the results of the previous section we see
that, under steady-state oscillator conditions, the
fluxon speed is

X=u0+u,,(t) , (32)

where u, is a constant (power balance) velocity.
The time-varying component u,, arises from interac-
tion of the fluxon with the radiation field and, from
(30) and (31) obeys the ODE

ity =X, — (X3 )ay » (33)

where { ),, indicates a time average.
If u, =0, the fluxon executes a perfectly periodic
motion over a path / with frequency

ve=u./l . (34)

J

In general we can define a (time-dependent) instan-
taneous frequency as

wt)=v,+u,/l . (35)
The rms derivation of v(¢) from its mean value v, is
Av={{[V(D)—v.]*)a}'?. (36)

We take Av as a convenient measure of oscillator
linewidth. Since the radiation field in (31) is not
periodic we take the average in (36) over a long time
as
| T 172

Av= | lim — [, atvo—v. | . (37)
Equation (37), together with (35) and (31), provides
a straightforward procedure for calculating the
linewidth of a fluxon oscillator. We do this for a
particular example in the following section.

V. THERMAL LINEWIDTH
OF A SINGLE FLUXON
OSCILLATOR

We now turn to a practical question of fluxon os-
cillator design: calculation of linewidth when the
radiation field is assumed to be in thermal equilibri-
um with its environment. This calculation neglects
other sources of the radiation field (electrical noise,
radiation emitted from the fluxon, etc.) thus it
should give a lower bound for realizable linewidths
and some idea about how the linewidth depends
upon oscillator parameters and temperature. The
analysis is restricted to a single fluxon oscillation to
avoid analytical difficulties associated with the phe-
nomena of “bunching.”®

We employ (31) where, from (10),

ef(d))=a

a

b1, — L ¢1,m+fxi ] : (38)

thus a is our small parameter in the perturbation
analysis. Since we are assuming that the radiation
field arises because the linear modes of the oscilla-
tor are in thermal equilibrium, (31) takes the form

Xy=3(1—u?2 [ _:[af(n¢1)+(1——u2)('r1¢1)2tanh§ sechtJsech¢ d¢ | (39)

where a is a small parameter that measures the

structural perturbation, and 7 is a small parameter

that measures the amplitude of the radiation field.
In the following analysis we make two simplify-

T
ing assumptions:

B=0 40)

and
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I>1. 41)

The first of these is not a serious restriction if one
assumes a somewhat larger value of @ to account
for dissipation in the 3 term of (38).
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We calculate the thermal radiation field n¢; as a
sum of individual photon modes of a cavity which
contains a single fluxon moving with constant velo-
city «.!” Thus

il
A 1—u? | kn—uo . X —ut
n¢1=2,," ‘/_2"# p— n—1~u; cos(k,x —w,t)—sin(k,x —w,t)tanh il (42)
I
where Xop=,aC,cos[(k,u —w,)t+6,], (45)
ki=w?—1 (43a) "
and where
ey = 2T (43b) c _wa=uy?  knd,
1 Y T (kyu —ay,)
Since the second term in the integral (39) is an "
odd function of £ while the first term is even, the xsech f—l(l- NV
contribution of the second term is small except 2
when n~I. Then the ratio of the first to second
term is of order / and, under assumption (41), we xexp[ —mk,(1—u?)/2]| . (46)
can neglect the second term. Thus (39) takes the

form

N+ L |sechf d( .

a

v _ & 2372
Xy= (w2 [~

(44)

The term y/a in (44) merely contributes a constant
to X, which is absorbed in the power balance condi-
tion that determines u.. Thus it does not enter into
our calculation of Av. _

The component of X, that depends on the radia-
tion field is

To calculate the mode amplitudes {4, }, we assume
a mode at frequency w, to have the energy

fico
E,= -

exp

(47)

kBT_l]

Strictly speaking, the relation between E, and 4,
should be calculated for a cavity containing a flux-
on; however, from inequality (41) this relation is the
same as that for an empty cavity. Thus in normal-
ized units

172

4 8tiu ok, w, /nd}
n =
% 2eJo);
n n 2 2 (424
exp kpTr) 1 3 +Cupo, + p

From (48), (45), and (37) we obtain

ﬂ_ u2(1___u2)3/2

J . (48)

= V#
[04 2\/5(1)0] “o0
) 172
wnky |sech —;Lk,,(l—-uz)l/2 exp[ —k,m(1—u?)1"?]
1
X — (49)
?n n 2 , 5 2eloh,? s
exp kpTT) —1 —E+Cu0w,,+ Z (k,u—w,)
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Equation (49) is the main result of this paper. To
appreciate the dependence of linewidth Av upon os-
cillator parameters and temperature that it implies,
we turn to two examples of JTL that have been
thoroughly studied.'® Important parameters are
recorded in Table I. From these parameters we
have plotted in Figs. 3 and 4 /Av/a as a function of
u for several values of temperature and /. Since
these calculations are rather insensitive to / (see Fig.
5) we can assume Ava ]!, We see that Av(u) rises
to a maximum value at

u~0.8 (50

and, as we expect, falls to zero in limits ¥ —0 and
1. The main difference between N25L and NS3C is
in the value for A;, but this has a relatively small
effect upon ‘Av. We find, of course, that Av falls
with decreasing temperature, but it is interesting to
observe that the curves Av(u) show little change in
shape.

Ducholm et al.” have reported an instrument-
limited measurement that

A<S, (51)

where A is the linewidth (in units of kHz) for a line
oscillator with

a=0.01,
1=12.

From our calculation the thermal linewidth in labo-
ratory units is given by Av/7;. Assuming [ =12
[i.e., a/A;=6 in Fig. 2(a)] we find for N25L that
the maximum linewidth is equal to 260 Hz and for
N53C, the maximum linewidth is equal to 550 Hz.
These results are not inconsistent with (51).

VI. CONCLUDING DISCUSSION
The main result of this paper is (49) which gives
Av/a as a function of the oscillator parameters
where [ is the total fluxon path length for a cycle of

oscillation, measured in units of A, u is the average

TABLE I. Josephson transmission lines.

Parameter N25L NS53C Unit
a 0.0052 0.00555
ug 2.3%x 107 1.76 107 m/s
L 2.1x107° 2.5%10~° H/m
c 0.9%10~° 1.3x10~¢ F/m
Ay 1.27x 103 2.63x107* m
Jo 9.7% 102 1.9 A/m
77 0.55x10~10 1.5x 10~ s

4
10— T T T =
FN25L ]
- T=4.2K g
- 3/ -
105 !
g = 0.3
QL
N
r 0.1
108
= 0.03
o7 L /l L

o 02 04 06 08 [Ke]

FIG. 3. Normalized thermal linewidth as a function
of average fluxon velocity and absolute temperature for
JTL No. N25L.

fluxon speed normalized to uy (=A;/7;), and T is
the absolute temperature, in addition to the JTL
parameters A, 75, C, L, and J, defined in Sec. II.

From (49) the rms deviation of the oscillator
linewidth is equal to Av/r; Hz, where a measures
the shunt oscillator losses (including loading). In
deriving (49) the following assumptions have been
made:

(1) only a single fluxon is present in the cavity,

2 I>>1,

(3) the background radiation field is entirely ther-
mal, and

(4) surface losses [Bg,,, in (10)] are neglected.

Thus our calculations give a lower bound for the
linewidth to be found in a real oscillator. Addition-
al contributions to oscillator linewidth may arise

154 T T T T
F N53C
T=4.2K
105
s -
3 L
A -
d L
-
[ 0.3
IO.S_—
C
n
L o 1/\
e / | I J

(o] 0.2 0.4 06 08 Lo

FIG. 4. Same as Fig. 3 for JTL no. N53C.
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FIG. 5. [Av/a vs l for T=3 K, and u =0.8.

n
N

from excess electrical noise and radiation from the
fluxon itself.

Equation (44) shows an exact mechanism for in-
fluence of electrical noise on the fluxon motion
through stochastic behavior of the bias current y.
A line oscillator may have larger linewidth than a
corresponding ring oscillator because the kink-
antikink reflection that take place in a line oscilla-
tor generate an additional component of radiation'®
that is not present in a ring oscillator. Since we see

no special difficulties in making ring oscillators, we
suggest that they be considered experimentally.

Finally, Figs. 3 and 4 show Av rising to a max-
imum value around ¥ =0.8 Although this result is
obtained for thermal linewidth, we feel that this
behavior should be found when a more general radi-
ation field is present. An experimental check of
this suggestion should be possible with instrumental
resolution of linewidth only an order of magnitude
better than that reported in Ref. 7.
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