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Energy dissipation associated with flux-line cutting (intersection and cross-joining of ad-

jacent nonparallel vortices) is considered theoretically. The flux-line-cutting contribution to
the dissipation per unit volume, arising from mutual annihilation of transverse magnetic
flux, is identified as Jll Ell where Jll nd Ell are the components of the current density and
the electric field parallel to the magnetic induction. The dynamical behavior of the mag-
netic structure at the flux-line-cutting threshold is shown to be governed by a special
critical-state model similar to that proposed by previous authors. The resulting flux-line-

cutting critical-state model, characterized in planar geometry by a parallel critical current
density J,ll

or a critical angle gradient k„ is used to calculate predicted hysteretic ac flux-
line-cutting losses in type-II superconductors in which the flux pinning is weak. The rela-
tion of the theory to previous experiments is discussed.

I. INTRODUCTION

The response of a vortex array subjected to a
parallel transport current in a type-II superconduc-
tor is still not clearly understood. Recent experi-
mental and theoretical investigations' indicate
that, at a sufficiently high current density, instabili-
ties occur which somehow produce a macroscopic
electric field E with a component parallel to the
macroscopic magnetic induction B. This electric
field is difficult to understand, because it is incon-
sistent with the expression ' E=B)(v, which is
known to apply to flux flow with velocity v when

the current density J is perpendicular to B. Vari-
ous authors have suggested "' ' ' ' ' ' ' that
a spatially inhomogeneous magnetic structure
might explain why E can be parallel to B on the
average, but so far there exists no theory capable of
yielding quantitative predictions, e.g., for ac losses.
Other authors have suggested ' that flux-line cut-
ting (intersection and cross-joining of adjacent non-
parallel vortices) is responsible for the electric field.
In this paper I shall explore the latter possibility
and shall show how a macroscopic theory incor-
porating flux-line cutting can be formulated. In
particular, I shall assume that flux-line cutting is
the mechanism of primary physical importance to
explain the most significant experimentally ob-
served phenomena; I shall assume that spatial and
temporal inhomogeneities, "' ' ' ' ' although
they ultimately will need to be accounted for to ex-

plain several sample-dependent effects, are mechan-
isms of secondary physical importance.

An important conclusion of this paper is that the

dynamical behavior of vortex arrays at the flux-
line-cutting threshold is naturally described by a
special critical state model similar to that suggested

by previous authors. ' ' ' Various empirical
critical state models characterized by a parallel crit-
ical current density' ' or a critical angle gra-
dient ' have been introduced previously, and
several authors have mentioned the possible rela-

tionship of these models to flux-line cut-
ting. ' '8' ' ' ' In this paper, however, I stress the
intimacy of this relationship, and I show in detail
how the parallel critical current density, the critical
angle gradient, and the parallel component of the
electric field are understood physically in terms of
flux-line cutting.

In Sec. II I discuss energy dissipation, giving spe-
cial attention to the flux-line-cutting contribution.
I introduce in Sec. III a fiux-line-cutting critical
state model for planar geometry and apply it in Sec.
IV to calculate ac flux-line-cutting losses. In Sec. V
I summarize the most important results, relate the
theory to previous experiments, and point out some
unresolved questions.

II. ENERGY DISSIPATION

The rate of energy dissipation in a type-II super-
conductor is J-E, where J =V&(H is the macro-
scopic, coarse-grained current density, and E is the
electric field. If the magnetic induction is written
as 8=Ba, the current density can be expressed as

J = J))+ Jg ——J()a+JjP,

26 2463 1982 The American Physical Society



JOHN R. CLEM 26

where a and P are unit vectors parallel and perpen-
dicular to B.

We identify J i E as the flux-flow contribution to
the dissipation. When J ~~=0, the electric field can
be written as ' E=B&(v, where v is the common
flux-flow velocity of moving vortices. Then
Ji.K=F1 .v is the rate at which the Lorentz force
per unit volume, Fl. ——J )(8, does work on the vor-
tex array. When J ~~+0 and flux-line cutting oc-
curs, however, we have ' ' E=E~~+Ez, where E~~

is the component along B arising from flux-line cut-

ting, and Ez ——8)& v is the component perpendicular
to B arising from flux flow. During flux-line cut-
ting, the vortices do not all move locally with the
same velocity but instead undergo complicated
countermotion and intersection to generate E~~.

' '
With v defined as the average velocity of vortex
line elements within a small volume V around the
observation point r, the expression Ej ——8)( v

remains valid and J&.Ej ——FL v is still the rate at
which the Lorentz force does work by moving the
array as a whole.

We identify J
~~ E~~ as the flux-line-cutting contri-

bution to the dissipation. Two conditions must be
met for such dissipation to occur. First, the current
density must have a component parallel to B, and
second, this component must be large enough to
exceed the threshold for flux-line cutting. '

To go into further detail, let us use planar
geometry. Consider a high-~, type-II superconduc-
tor filling the half-space x &0. A time-dependent
external magnetic induction B,(t) =poH, (t), applied
parallel to the surface, induces fields in the super-
conductor 8, J, and E, which are parallel to the yz
plane and which depend only upon the coordinate x
and the time t. We assume that 8 is sufficiently
large (B»poH, i) that B=@~ to good approxi-
mation. We further assume that the length scale
for spatial variation of B, J, and E is much larger
than the weak-field penetration depth A,. We ex-
press the magnetic induction as B=Ba, where
B= (B( and

a=y sina+z cosa .

With the definition

p=a Xx =y cosa —z sina, (2)

we obtain from Ampere's law, J = V )&H, the result
J =J~~a+JiP, where

Ey ——Pov, , (6)

where v, is the net rate at which positive-z flux
quanta (i.e., in the direction of z ) are carried in the
positive-x direction (and/or negative-z flux quanta
are carried in the negative-x direction) across unit
length in they direction. ' Similarly,

(7)

where v„ is the net rate at which positive-y flux
quanta (i.e., in the direction of y ) are carried in the
positive-x direction (and/or negative-y flux quanta
are carried in the negative-x direction) across unit
length in the z direction. '

Expressions similar to (6) and (7) can be derived
for the longitudinal and transverse components of
the electric field, E=E~~a +EARP. We have

where v~~ is the net rate at which longitudinal flux
quanta (i.e., in the direction of a) are carried in the
x direction across unit length in the transverse (P)
direction. Similarly,

E[[= —Po&i

where vi is the net rate at which transverse flux
quanta (i.e., in the direction of P) are carried in the
x direction across unit length in the longitudinal (a)
direction. The longitudinal component E~~ is non-
vanishing only when fiux-line cutting occurs, i.e.,
when nonparallel vortices moving in opposite direc-
tions intersect. Briefly speaking, the transverse
electric field is produced by transport of longitudi-
nal flux and the longitudinal electric field by trans-
port of transverse flux.

The flux-line cutting dissipation J~~ E~~
——J~~Et~

can be interpreted as arising from the mutual an-
nihilation of transverse flux. Consider two adjacent
slabs of magnetic flux in which B has the same
magnitude but different directions before flux-line
cutting. If the vortices in the slabs undergo flux-
line cutting, the longitudinal flux (in the direction

Faraday's law, V XE=—BB/Bt, yields

BE &Ba M
Bx dt dt

Equation (5) must be supplemented with the con-
dition, derived from fluxoid conservation, that E=O
in any portion of the superconductor in which there
is no vortex motion. We define the density of y and
z flux quanta as n~ =8~/lflo and n, =8, /po, where

po ——h/2e =2.07X10 " Vs. By the Josephson
condition ' 2e V =h v, we then can express
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of the average B) is conserved, but the transverse
flux density of the two slabs is mutually annihilat-
ed. Flux-line cutting thus dissipates the field ener-

gy initially associated with the transverse com-
ponents of the magnetic flux.

To demonstrate this, let the two slabs each be of
thickness M/2 and lie on either side of the plane
x=xp. In the slab centered on x=xp+dor/4,
the initial magnetic induction is

B=Bp[+y sin(ha/2) +z cos(ha/2)]

where b.a«1. Before flux-line cutting, the field
energy density in the region ~x —xp~ &M/2 is
Bp/2pp. During flux-line cutting, the vortices from
the region xp &x &xp+du/2 intersect the vortices
from the region xp —M/2 &x &xp, and the trans-
verse (y-directed) magnetic flux is mutually annihi-
lated. Because the longitudinal flux is conserved,
the final magnetic induction is Bpz c os(h a/2), and
the final field energy density in the region

~
x —xp

~
& du/2 is (Bp/2pp)cos (ha/2). The

average energy per unit volume dissipated in the re-
gion

~
x —xp

~
& M/2 is the difference between the

final and initial field energies,

W„=Bp(ha) /Spp . (10)

(Recall that ha « 1.)
The average parallel current density in the region

(
x —xp

~
& bx /2 is, from (3),

J, =Bpxa/itpW .

A positive-z component of the electric field arises
because during flux-line cutting positive-y flux
quanta move in the negative-x direction and
negative-y flux quanta move in the positive-x direc-
tion. The time integral of E, over the flux-line cut-
ting process is, from (7},

I dt E,=Bpsin(ba/2)(M/2 —
~

x —xp
~

) .
(12)

Averaged over the region ~x —xp
~

&M/2, this
yields (b,a «1)

I dt E,=BpbaM/8 . (13)

Combining (11) and (13), we obtain the total dissi-
pation averaged over the thickness M,

I dt J,E,=Bp(ha) /Spp,

in agreement with (10).
The above discussion of flux-line-cutting dissipa-

tion employs only macroscopic electrodynamics. A
deeper understanding of this dissipation would re-
quire microscopic electrodynamics. Here one would

consider time-dependent deformations of a vortex
array, the complicated trajectories of individual vor-
tex line elements, and the local balance of driving
and viscous forces on these line elements. The rate
of dissipation per unit length of a line element dl of
vortexi moving with velocity v;(I, t) is ' i}u;(l,t),
where rt is the viscous drag coefficient per unit
length. If all the v;(l, t) were known, the macro-
scopic rate of dissipation per unit volume at r and t,
correspondin~ to J ~~.E~~, could be calculated by in-

tegrating gu;(l, t) over the lengths of all vortices
contained within a small volume V centered at r
and dividing the result by V.

III. FLUX-LINE-CUTTING
CRITICAL STATE MODEL

Consider a nearly reversible, high-a, semi-infinite
type-II superconductor in the space x&0,, which
has been cooled in field in an applied magnetic in-

duction Bpz (ppH, i«Bp&ppff, 2}. Suppose now

that the applied magnetic induction in the space
x &0 is rotated through an angle a, but held fixed
in magnitude, such that at the surface (x =0) the fi-
nal magnetic induction is B,=Boa„where

a, =y sina, +z cosa, . (15}

What is the resulting distribution of 8 and J in the
superconductor?

The Lorentz force per unit volume in the x direc-
tion is FL JiB,——where Ji is given by (4). In the
presence of pinning, the usual critical state model
requires that Ft» be balanced by a pinning force
density Fz J,iB, such th——at

~
Ji

~

=J,i(B,T), where

J,j is the transverse critical current density. Here,
however, we consider a superconductor in which
flux pinning is very weak. Thus, in equilibrium the
flux distribution inside the superconductor must be
essentially force-free: FL„-O, J&-0, and from (4)
B= ~5~ =B,.

We next address the question of how

B(x)=Bpa(x) varies with x. We assume that
B(0)=B, and a(0) =a„i.e., that the surface cannot
carry a surface current. We also assume that deep
within the superconductor 8=80z. How then does
the field angle a(x) vary from its value a, at the
surface to its value 0 deep inside? Note from (3)
that wherever a varies with x,

Ba(x)
Jii(x)=pp Bp

Bx

By analogy with the flux-pinning critical state
model, there is a characteristic parallel crit''cal
current density J,~~(B,T}, which cannot be exceeded
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in metastable equilibrium, There is also a corre-
sponding critical angle gradient k, (B,T), defined via
(16) or

kg (8$T)=p p Jg
) )
(8 T)/8 (17)

which cannot be exceeded in metastable equilibri-
um. In this model, flux configurations produced in

the superconductor are governed by the equivalent
equations

Jii(x) =+J,ii(8, T),

=+k, (B,T),

(18)

(19)

where H, is the bulk thermodynamic critical field
and b =8/8, 2. In Ref. 57 it is argued that essen-

tially-the same expression holds for T=O K. It is
also shown in Ref. 57 that in the limit as b~O the
depairing current density remains proportional to
8, /A, , with the constant of proportionality given by
0.60 as T~O K and 0.54 as T~T, . It is shown in
Ref. 15, however, that a single straight vortex sub-

jected to a sufficiently large parallel applied current
density is unstable: If the applied current density
points, for example, in the same direction as the
vortex's magnetic field, a left-handed helical distor-
tion of the vortex becomes unstable and grows in

the upper or lower signs being chosen according to
the particular history of B,(t)=Bpa, (t). Vortex
configurations described by (18) and (19) are at the
flux line cut-ting -threshold. ' Current densities and

angle gradients whose magnitudes are in excess of
J,

~~
and k, produce flux-line cutting, an electric

field, and magnetic flux redistribution.
The dynamical behavior of vortices at the flux-

line-cutting threshold thus is naturally described in
terms of Eqs. (18) and (19), which can be regarded
as a special critical state model for a vortex array
subjected to parallel supercurrents. Previous au-

thors have introduced similar empirical critical
state models with quantities analogous to the paral-
lel critical current density' ' or the critical angle

gradient, ' and have used such models to
understand a considerable amount of experimental
data.

A number of theoretical calculations that relate
to J,

~~
have been carried out. An upper limit to J,

~~

for T=T, and 8~8,2 p~, z is pro——vided by the
Ginzburg-Landau theory for the depairing critical
current density flowing parallel to a rigid lattice of
straight vortices or to locally parallel helical vor-

tices with equal pitch,

Jd,p
——0.470(H, /A, )(1 b)ii /(1 —

2
a )—, (20)

amplitude. The resulting increase in line energy is
more than compensated by the energy gained from
the source of the applied current, and the overall
Gibbs free energy is reduced. The longitudinal crit-
ical current density at the onset of the helical ex-
pansion instability recently has been calculated
from the London theory for an array of parallel
vortices near the surface or in the bulk, including
the influence of flux pinning. All the expres-
sions for the longitudinal critical current density
apparently yield values less than the depairing criti-
cal current density.

A numerical calculation of J,
~~

vs b was presented
in Ref. 18 for an array of nonparallel vortices un-

dergoing a different kind of instability. For several
reasons, however, this calculation again provides
only an upper limit to J,~~. Some other kind of in-

stability, such as the helical expansion instability, "
may break up the vortex structure and lead to flux-
line cutting at values of J,

~~
well below those found

for the instability considered in Ref. 18. Moreover,
it was assumed in Ref. 18 that all vortices remain
straight at the onset of the instability. Recent cal-
culations have revealed that bending of vortices at
crossover points greatly reduces the repulsive forces
between adjacent nonparallel vortices. This indi-
cates that calculations allowing for vortex bending
would produce much smaller values of J,

I~
than in

Ref. 18. Finally, inclusion of depairing effects, not
considered in Ref. 18, also would yield smaller
values of J,~).

Thus, despite the existing calculations, the longi-
tudinal critical current density J,

~~

at the flux-line-
cutting threshold is not well determined theoretical-
ly. Neither the dependences upon B and T nor the
numerical values of J,

~~
are known beyond question.

The calculations of Refs. 5 —7 and 18, however, do
suggest that, for b «1, J,

I~
is a monotonically in-

creasing, sometimes even linear, function of
b =8/8, 2 b« that, as b 1, J,

~~
va»shes as some

still unknown power n of (1 b). If J,
~~

appro—aches

Jd,p as b~1, the exponent n ultimately cannot
exceed —,, if Eq. (20) is to be satisfied. The 8
dependence thus is not expected to be the same as
that of the transverse, depinning critical current
density J,z, which normally is a monotonically de-
creasing function of B. Indeed, the results of Boyer
et a/. , when reinterpreted in terms of J,

I~
and J,J,

indicate that at T =4.2 K the field dependences of
J,

~~
and J,i for the V and VTi samples they studied

are related to good approximation via J,
~~

——kBJ,J,
where k is a material-dependent constant. In the
absence of a well-established general theory for J,

~~

valid for arbitrary materials, however, it is ap-
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propriate to regard J, I~(B,T) as an experimentally
measurable quantity, as is usually done for the case
of the flux-pinning critical current density J,i(B,T). ao- x)

IV. AC FLUX-LINE-CUTTING LOSSES

a,„(x)=ap —k,x,
a;„(x)=—ap+k, x .

(21)

(22)

The maximum depth of penetration of the critical
state profiles is

x, =apk, . (23)

For x & x„a(x,t) =0.
Starting from the profile a;„(x)when a, =—ap,

we consider the profile a, (x, t) as a, increases. 6p

The altered portion of the profile for 0 &x &x, (t) is

In this section we use the critical state model of
Sec. III to calculate the ac losses near the surface of
a nearly reversible, high-z, semi-infinite type-II su-
perconductor in the region x&0. To focus on
flux-line-cutting losses, we assume that the speci-
men has a negligible amount of bulk pinning and
essentially no surface barrier to vortex entry or exit.
The losses arise in response to a time-varying exter-
nal magnetic induction applied parallel to the sur-
face, B,(t }=8pa, (t) [see Eq. (15)]. The field angle
a, (t} sweeps periodically back and forth between
the values —ap and +ap, where ap & ~. At the end
of this section we discuss the predicted behavior
when ap & m. We assume that the sweep rate is suf-
ficiently slow that eddy-current losses are negligible.
The losses are then entirely hysteretic, and the dissi-
pated energy per cycle is independent of the fre-
quency. Moreover, provided a, varies monotonical-
ly between the extremal values +ao, the loss per cy-
cle is independent of the waveform of a, (t}; e.g.,
sinusoidal, triangular, or trapezoidal waveforms all

yield the same loss per cycle.
To calculate the flux-line-cutting losses, our

method is to: (a) determine the field angle profiles
a(x, t) vs x using the critical state model of Sec. III,
(b} obtain B(x,t)=Bpa(x, t) using Eq. (1), (c) find
E(0,t) with the help of Faraday's law, and (d) calcu-
late the losses using Poynting's theorem. In several
respects, our approach parallels the calculation for
pinning losses, as outlined in Ref. 59.

The required field angle profiles [a(x,t) vs x] are
sketched in Fig. 1. The two extremal profiles,a,„(x) and a;„(x), correspond to the cases when

a, =ap and a, = —ap, respectively. From Eq. (19)
we obtain for 0 &x &x„

as

DECRF ASIN G

OPE

kc

c X

aS
INCREASING

I } ~S%

LOPE
kc

-ao- I
I

Xt

FIG. 1. Sketch of the extremal field angle profiles,
a,„and a;„, and the a, -increasing and a, -decreasing
profiles, a, and a„vs x, calculated from the flux-line-

cutting critical state model, Ba/Bx =+k, . Here, ao & m.

a, (x, t) =a, (t) k,x, —

where

ap+a, (t)
x, (t)=

C

(24)

(25)

For x, (t) &x &x„a,(x,t)=a;„(x) At x =x,.(t),
a, (t) ap-

a,(x„t)=a„(t)=
2

(26)

Similarly, the profile a,(x, t) for the a, -

decreasing case is given in the region 0&x &x,(t)
by

a, (x, t) =a, (t)+k,x,
where

ap a,(t)—
x, (t)=

C

(27)

(28)

For x,(t) &x &x„a,(x,t) =a,„(x). At x =x, (t),

a,(x„t}=a„(t)=

where a, =da, /dt Note that .by Eqs. (6)—(9}

a, (t)+ap
(29)

Consider now the fields E,(x,t) and B,(x, t) for
the a, -increasing case. From (5}we obtain

E,(x,t) =a,B,(x,t), (30)
Bx
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E,(x,t)=0 for x &x,(t), because there is no flux
motion or flux-line cutting in this region at time t.
Thus, integration of (30) from x =0 to x =x, (t),
where E&

——0, yields

where bo~=Bpslnap Soap is the maximum trans-
verse component of the oscillating magnetic induc-
tion at the surface. Equation (37) bears a remark-
able resemblance to

x (t)

E,(O, t) =—a,.Bp I dx[y sina, (x, t)

+z cosa, (x,t)] . (31)
2&0[j

Wbp
——

3ppJ, i(Bp, T)

S,„(O,t) =x E,(O, t) XB,(t)/pp
2'

Boas
1 —cos

Poke

ao+as
2

(33)

Integrating this over half a period, we obtain the en-

ergy dissipated per unit area during the a, -

increasing half-cycle,

2Bo
W~, = (ap —sinap) .

Poke
(34)

Calculations similar to those leading to Eqs.
(30)—(34) yield, for the rate of energy dissipation

per unit area for a, decreasing,

2B,a, a,—a,
S,„(O,t) = — 1 —cos

poke 2
(35)

The total energy dissipated per unit area during the
a, -decreasing half-cycle is the same as (34), such
that the total flux-line-cutting energy loss per unit
area per cycle is

4Bp
W,

' =
2 (ap —sinap) .

p,p J,)((Bp, T}

For ap && 1, we obtain to good approximation

2bo3

3pp J.()(Bp,T)

(36)

(37)

Changing variables from x to a, we obtain with the

help of (24) and (26),
r

asBo
E,(O, t}= [y(cosa, —cosa«)

k,

—z(sina, —sina, „)] . (32)

Because
~ B,(x, t)

~
=Bp, Poynting's theorem ' here

states that the rate at which energy is dissipated per
unit area is equal to the rate at which the source of
the externally applied field does work per unit area
of the specimen:

the flux-pinning critical state result (bulk pinning,
no surface barrier, and B»p&p, pH„) in a parallel

applied dc magnetic induction Bp and an applied ac
magnetic induction of amplitude bp~~ parallel to
Bo. In nearly reversible superconductors, howev-

er, we expect that J,z (&J,~~,
such that for the same

ac amplitude bp, the flux-line-cutting losses given in

(37) should be much smaller than the flux-pinning
losses given in (38).

Recent experiments by Boyer et al. , on strong-

pinning V and VTi specimens have been interpreted
in terms of a critical state model similar to that of
Eqs. (17)—(19). The analysis reveals that, al-

though J,
~~

and J,i have different B dependences,

J,
~~

is about an order of magnitude larger than J,i
over most of the magnetic field region investigated.
If indeed the condition J,

~~
&&J,i is obeyed for near-

ly all fields in both weak-pinning and strong-

pinning type-II superconductors, one can easily
understand why the losses generated in response to
an ac magnetic field of amplitude ddIi parallel to
the surface can be reduced by an order of magni-
tude or more by applying a sufficiently large mag-
netic field H~~ also parallel to the surface but per-
pendicular to the ac field. ' ' The ex-

planation is simply that in the absence of H~~ the
losses are the usual flux-pinning losses, character-
ized by J,i as in Eq. (38). When a sufficiently large

H~~ is applied, however, the net field applied at the
surface remains close in magnitude to HI~ but varies

its angle with amphtude ap hHi/H~~ &&1. F——or
such conditions the dominant losses are flux-line-

cutting losses, characterized by J,
~~

as in Eq. (37}.
When J,

~ ~

&&J,i, the resulting flux-line-cutting
losses are thus much less than the' flux-pinning
losses.

I.et us now examine in more detail the electric
field E,(x, t) generated during the a, -increasing
half-cycle. By a method similar to that leading to
(32), we obtain for x &x, (t),

E,(x,t) =(a,Bp/k, ) Iy [cosa,(x,t) —cosa«(t}]—z [sina, (x, t) —sina»(t)]] . (39)

Both E,~ and E„vanish at x =x„, where a,(x„)=a„. (See Fig. 1.) The longitudinal and transverse com-
ponents of E, are, for x &x, (t),
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E,~~(x, t) =E,(x, t) a, (x,t) =—(a,Bp/k, )sin[a, (x, t) —a«(t)],

Eu(x t) =E~(x t)'Pg(x t)=(a&Bp/k )I 1 —cos[ay(x t}—any(t}]]

(40)

(41)

Here

a,(x, t) =y sina, (x,t)+z cosa, (x, t),

P,(x, t) =y"cosa, (x, t) —z sina, (x, t)

(42)

(43)

I

0&x &&c~

hN'»(x) =fdt v„(x,t) =0,
KNI&(x)= fdt v,z( xt)

(49)

are the unit vectors parallel and perpendicular to
B,tx, t}. Note that both E,

~~
and E,j vanish at

X =X).
During the a, -increasing half-cycle, the rate of

energy dissipation per unit volume in the region
0&x &x,(t) is J, E,. However, because J,z

——0,
we have J,=J,~a„where, from (3),—1

J~[[= —pp Bpk, . The transverse component of E„
i.e., Eu, therefore does not contribute to the dissi-
pation. The rate of energy dissipation per unit
volume is then

2no
[1—cosa,„(x}].

k,
(50)

+
~ JBx (51)

The above results provide a specific example of
the more general phenomenon that flux line -cutting
consumes 8. For slab geometry in which
B(x,t) =B(x,t)a(x, t), Faraday's law and Eqs.
(1)—(4) can be used to derive

x, t) = &sBo
sin[a, (x, t) —a f f(t)] .

Po

where

Jgx BUx EJ. (52)

(44)

v„(x,t) = asno
[cosa,(x, t) cosa «(t)]-,

C

(45}

asno
v,„(x,t) = [sina, (x,t) —sina»(t)],

k,

(46)

a,no
v, ~t(x, t) = t 1 —cos[a, (x,t) —a»(t)] I,

k,

(47)

v, z(x, t) = asno
sin[a, (x,t) —a f f(t)],

C

(4g)

where np Bp/Pp All ——these ra.tes are zero for
x & x, (t) The time in.tegrals of v „(x,t) and

v,~( t)xover the a, -increasing half-cycle are, for

The integral of (44) from x =0 to x=x, (t) is
S,(0,t), given by (33).

From Eqs. (6)—(9) and (39)—(41) we obtain the
net rates at which flux quanta are transported in the
x direction by flux-line-cutting processes. During
the a, -increasing half-cycle, we obtain for
0&x &x,(t),

is the B-current density. In the absence of flux-line

cutting, E~~, and thus the right-hand side of Eq.
(51), vanish. The resulting equation is a continuity
equation describing conservation of B: A local in-

crease of B within a volume increment of the super-
conductor occurs only via the divergence of j s, i.e.,
via net transport of B in through the walls of the
volume increment. On the other hand, in the pres-
ence of fiux-line cutting, for which the correspond-

ing dissipation is J~~E~~ &0, the right-hand side of
Eq. (51) is negative, indicating that a region of
space in which flux-line cutting is occurring serves

as a sink for'B.
In experiments with slowly rotating disks of

type-II superconductors, ' ' rotation has been
found to lower the value of B inside the supercon-
ductor. This phenomenon was interpreted as evi-

dence that vortices could somehow be expelled from
the specimen against an inwardly directed Lorentz
force. ' ' s Flux-line cutting, on the other hand,
provides a more natural explanation: Rotation in-

duces flux-line cutting, which in turn lowers the lo-
cal value of B. During continuous rotation, a
steady state can be reached, in which BB/Bt =0 and

the local rate of decrease of B via flux-line cutting
is exactly compensated by Aux transport in the
same direction as the Lorentz force.

Returning to the situation considered in this pa-

per, we again have a case in which the local con-
sumption of B via fIux-line cutting is balanced via
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flux transport. Here B(x, r) =Bo, such that
'dB/dr=0. During the a, -increasing half-cycle, for
example, Eq. (51) yields

E,.(x, t)=-a Vo Jc(~Ef(((x,r)

Bx 0
(53)

which easily can be verified using Eqs. (40) and (41)
and J,

~~

= Bok—/po.
So far the above discussion has been restricted to

angle amplitudes ao obeying ao&7T'. When +0~A,
our flux-line-cutting model predicts a diverging en-

ergy dissipation for a semi-infinite superconductor
as J,&~0. The physics of this phenomenon can be
understood by considering the behavior as a, is
slowly increased from zero, starting from an initial
angle distribution a(x, O) =0. The profiles of a(x, t)
are then as sketched in Fig. 2. When a, &n., we
have a(x, t)=a, —k, x in the region 0&x &a, /k„
as in Fig. 2(a). A calculation similar to that leading
to Eq. (40) yields

E(((x,t)=— a,8p
sina(x, t) .

C

(54)

Because J~~
= —J,

~~

= —Bok, /po, the corresponding
dissipation JI IEI I

is positive in the region
0&x &a, /k, when a, &nWhen a.., =~, however,

JIIEII becomes equal to zero at the surface, and

a(x, t) is as sketched in Fig. 2(b). Equation (54)
cannot remain valid for a, pn, because it would
yield positive values of EII and negative values of
the dissipation JIIEII.

Instead, for a, slightly greater than n, time-.
dependent profiles of a(x, t) as sketched in Figs. 2(c)
and 2(d) must occur. For Fig. 2(c), for example,
a=O for x &x&, a=k, (x& —x) for x2 &x &x„and
a=a. for x &x2, where k, (x~ —x2)=m. Flux-line
cutting occurs only within the zone xz &x &x&,
where

E~~ (x, t) = —Box
&
sina(x, t), (55)

Xp Xi

FIG. 2. Sketch of profiles of a(x, t) vs x predicted by
the flux-line-cutting model when J,&

——0 for various
values of a, =a(0, t): (a) a, &m, (b) a, =n., (c) and (d)

a, &m, for which the flux-line-cutting zone (x2 &x &xl)
moves spontaneously and irreversibly into the specimen
{arrow).

EJ (x t) —Box 1 [ 1 cosA(x t)l (56)

V. SUMMARY AND DISCUSSION

The theory of the electrodynamic properties of
type-II superconductors in longitudinalyeometry,
where J has a component parallel to B, is in a
primitive state by comparison with the theory for
transverse geometry, where I is always perpendicu-
lar to B. Although flux-line cutting has been
suspected to play an important role in the longitudi-
nal case, it so far has not been incorporated into a
complete electrodynamic theory of type-II super-
conductors. In this paper I have attempted to ex-
plore some of the consequences of flux-line cutting
and to construct at least a partial quantitative
theory with some predictive power. As discussed in
the previous sections, flux-line cutting leads to the
following behavior:

(a) Flux-line cutting generates a component, E~~,
of the electric field parallel to the macroscopic mag-
netic induction B.

(b) This longitudinal electric field component is
produced by net transport of transverse flux quanta,
such transport being accomplished by the intersec-
tion of locally countermoving vortices.

(c) The total rate J E of dissipation per unit
volume has two contributions: Jj.E&, which arises
from flux flow and is already well understood in
transverse geometry, and J

II EII, which arises from
flux-line cutting.

and x~ ——dx&/dt. In the zone 0&x &x2 there oc-
curs only flux transport and no flux-line cutting,
such that Ej =2Box ] and E~

~

=0. The flux-line-

cutting zone moves spontaneously and irreversibly
into the specimen's interior. Behind this advancing
zone, vortices with angle a=m are transported in
the x direction with speed v =2x&, twice that of the
zone. These vortices move into the flux-line-cutting
zone, where they are consumed. The net effect of
the zone motion is to annihilate vortices with a=o
and to replace them with vortices with u=a. The
rate at which the source of the applied magnetic
field does work per unit surface area of the super-
conductor is Sz ——E&Bo/po ——2Bo x&/p, o. For non-

vanishing J,&, the zone penetrates only to a depth
x ] xo =Bo/po J&y. The energy loss per unit sur-

face area that occurs during the spontaneous
penetration of the flux-line-cutting zone is thus of
order Bo/po J,q, which diverges as J,&~0. Further
details of this effect and related phenomena will be
described in a subsequent publication.
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(d) The fiux-line-cutting contribution J
~~ E~~ can

be interpreted at the macroscopic level as arising
from the mutual annihilation of transverse magnet-
ic flux. At the microscopic level, this contribution
comes from viscous losses, as vortex line segments
locally execute complicated flux-line-cutting trajec-
tories.

(e) Flux-line cutting implies nonconseruation of
B. A region of space in which flux-line cutting is
occurring serves as a sink for 8.

(f) A flux line -cutti-ng critical state model,
parametrized by a parallel (J ~~B) critical current
density J,~(B,T), as suggested by previous au-

thors, ' ' ' can be constructed. There are
strong mathematical similarities to the flux-pinning
critical state model, which is parametrized by a per-
pendicular ( I lB) critical current density J,~(B,T).

(g) The flux-line-cutting critical state model easi-

ly can be applied to calculate the ac losses in nearly
reversible type-II superconductors when only flux-
line cutting produces dissipation. The result is
given by Eq. (36).

Cave et al. ' used an ac technique to measure
magnetic flux penetration into a nearly reversible
type-II superconducting wire (Pb —54 at. % In) in a
parallel applied field. They observed hysteretic
waveforms similar to those of the flux-pinning criti-
cal state model. The measured flux penetration,
though completely inconsistent with the motion of
unbroken helical vortices, could be understood qual-
itatively in terms of flux-line-cutting processes. '

Interpretation of the results of Ref. 12 in terms of
the flux-line-cutting critical state model of Sec. III
yields a parallel critical current density J,

~~
of order

10 A/cm2, which is at least an order of magnitude
larger than the measured transverse critical current
density. Although all the results of Ref. 12 appear
to be understandable in terms of a flux-line-cutting
critical state model, the theory needs to be extended
to cylindrical geometry before a detailed compar-
ison can be made.

In the desired extension of the present theory to
cylindrical and more complex geometry, it is likely
that the concept of a parallel critical current density

J,
~~

(at the threshold of flux-line cutting) will
remain useful. On the other hand, the equations
governing the spatial variation of 8 and the field
angle a will be somewhat more complex than Eqs.
(3) and (4). Preliminary work suggests that at the
critical dc current for the onset of the flux-line-
cutting electric field, the longitudinal and azimuthal
components of the magnetic induction in a nearly
reversible type-II superconducting cylinder are well

described by the familiar Bessel function solutions,

8,(p) =8,(0)Jp(k,p),

Bp(p) =8,(0)J)(k,p),

(57)

(58)

260J

3PpJ )((Bp 2 )
1—J,j(Bp,T) bpg

2J~II(Bp~T) Bp

(59)

for the energy loss per cycle per unit area corre-
sponding to Eq. (37), provided b pj «Bp and
bpy & (J ~~/J J)Bp. The second term inside the large
parentheses then represents only a small correction
to Eq. (37), especially when J,

~~
is an order of mag-

nitude or so larger than J,j.
An important unresolved question is the extent to

which flux-line cutting and flux pinning influence
each other: Does flux pinning increase or decrease
J,~~? One can argue either that pinning locally sta-
bilizes the vortex lattice, such that J,

~~
is in-

creased, or that pinning sites facilitate flux-line cut-
ting, such that J,

~~
is decreased. ' ' ' Similarly,

does flux-line cutting increase or decrease J,q? Here
one might argue that, because adjacent vortices
move in opposite directions during flux-line cutting,
the sense of directionality of the pinning force is
largely destroyed, such that J,j is reduced. Recent

but with the parameter k, determined by J,
~~

via
k, =ppJ, ~~/B. Here, p is the radial coordinate.
Equations (57) and (58) should hold to good approx-
imation provided 8 and k, (8) are nearly constant
over the entire cross section, i.e., provided k,a &1,
where a is the specimen radius. Application of
these results to Walmsley's experiments on a
Pb —40 at. % Tl alloy yields J,

~~
typically of order

10 A/cm .
An extension of the theoretical framework of this

paper to superconductors subject to flux pinning
also is desirable, because this is the area in which
most of the experimental data exists. In this case a
combined flux-line-cutting and flux-pinning critical
state model can be constructed, in which for planar
geometry the spatial variation of u is governed by
(3) with

( J~~ (
=J,

~~
and the spatial »riation of 8 is

governed by (4) w&th
~
Jz

~

=J,z. The sign of J~
must be chosen such that the volume pinning force
Fz, which balances the Lorentz force FL = J XB
(i.e., Fz ———FL), is oppositely directed to the aver-

age vortex line element velocity,

v =EyXB/8 =ppS/8

It will be shown in a subsequent publication that in-
clusion of flux pinning as suggested above leads, for
example, to the expression
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experiments, however, suggest that J,z is essential-

ly unaffected by flux-line cutting.
Also deserving theoretical attentiori are the spa-

tial and temporal fluctuations in the longitudinal
electric field observed during flux flow in current-
carrying type-II superconductors subjected to paral-
lel magnetic fields. "' ' ' ' ' Whether these
fluctuations result from sample inhomogeneities
and are of secondary physical importance, as as-
sumed here, or whether they result from essential
magnetic structure inhomogeneities and are thus of
primary physical importance, remains an open
question.
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