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The conduction-electron-spin-resonance (CESR) spectra of small metallic particles are
expected to exhibit very different behavior from those of bulk metals and are expected to
depend on particle size. In particular, Kawabata has made a comprehensive theoretical

study of the size dependence of the CESR line shape and predicts that, for very small di-

ameters, the small-particle g shift contains a contribution which adds to the bulk g shift
and which is proportional to the square of the particle diameter. In this paper we

develop a formalism which enables us to reexamine the behavior of the g shift as a func-

tion of particle size, and we compare the predictions of this formalism with existing ex-

perimental data. The formalism we use is based upon a calculation of the g shift in bulk

sodium by De Graaf and Overhauser, in which the conduction-electron wave functions

are approximated by single orthogonalized plane waves. For a model cubic particle of
sodium, we construct orthogonalized standing waves (OSW) by orthogonalizing stationary
free-electron waves to the s and p core states. For clusters containing 8, 27, and 64
atoms, using both single and multiple OSW approximations, we first study the effect on

the electronic-energy-level spectrum and charge density of altering the (arbitrary in our

model) relation between the size of the cubic box in which the conduction electrons are
confined and the number of atoms in the cluster. We then calculate in both approxima-
tions different contributions to the g shift and show that, in contrast with Kawabata's

prediction, the major size-dependent contribution to this quantity can be written

5g(L) =[1—a(a/L)] 5g( ao ), where a is the lattice constant, a is a parameter of the order
of unity, L is the length of an edge of the cubic box, and 5g( 00 ) is the bulk g shift. Fi-
nally, we show that the term in the g shift that Kawabata calculated for small clusters is

an approximation to the term in the bulk g-shift formalism which is usually denoted as
5g"'. We calculate it in the case of a cubic sodium particle and find that it is smaller

than Kawabata predicts. Our results, which are qualitatively correct for metals other
than sodium, are in good agreement with recent data obtained for small magnesium parti-
cles. On the basis of this formalism, we conclude that the major size dependence of the
CESR g shift comes from a surface effect.

I. INTRODUCTION

An important fundamental problem in the phys-
ics of condensed matter is the understanding of the
evolution of various properties of materials as the
sample size changes from the isolated atom to the
infinite bulk; a large number of researchers' have
thus studied the dependence of the properties of
small particles on their size and shape. In addition
to this fundamental interest, an increased under-

standing of the physics of small metal particles can
have important technological applications as, for
example, in the field of heterogeneous catalysis.

One usually distinguishes between two related ef-
fects which can modify the properties of small par-
ticles in comparison with bulk properties. These
are surface effects and quantum size effects. A
simple calculation shows that the ratio of the num-
ber of atoms at the surface of a small cluster to the
number of inner atoms is of the order of 4(N)
where N is the total number of atoms in the clus-
ter. Thus, for a 1000-atom particle, this ratio is
still 0.4, an indication of the importance of surface
effects for even moderately sized particles. Quan-
tum size effects are expected to become important
when the average spacing 6 between adjacent ener-
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gy eigenvalues of the Hamiltonian is comparable
with characteristic energies such as the thermal en-

ergy or the Zeeman energy. In the free-electron
picture of conduction electrons in a small metallic
particle, 5 is equal to 4E+/3N, where Ez is the
Fermi energy. For example, for sodium metal, 5
corresponds to a thermal energy k&T of SO K for a
1000-atom particle. Thus, for small metallic clus-
ters containing of the order of 1000 atoms or less,
both surface effects and quantum size effects can
be important.

It was first suggested by Frohlich and later by
Kubo and his collaborators that the electronic
properties of metallic particles, such as the specific
heat and magnetic susceptibility, should be strong-
ly modified by quantum size effects. These and
other workers ' also suggested that the behavior of
conduction-electron-spin-resonance (CESR) spectra
in small metallic particles would be very different
from their bulk behavior and could be used as a
test of the validity of the discrete energy-level pic-
ture in a small cluster. In particular, it was quali-
tatively predicted that the Elliott relaxation
mechanism would be quenched in a small enough
particle and that the CESR lines would thus be
narrow and have long relaxation times. This prob-
lem was addressed more carefully by Kawabata,
who also studied the size dependence of the g shift
in small metal particles. He predicts that, for very
small particles, the g shift contains a contribution
which adds to the bulk g shift and which is pro-
portional to L, where L is the average particle di-
ameter.

To our knowledge, the only other theoretical
treatments of the size dependence of the CESR g
shift have been done by Myles and Buttet and by
Joyes and Buttet. These workers assume a simple
linear-chain tight-binding model of a small particle
and include the effects of a "surface" by choosing
the phenomenological Coulombic integrals which
enter the calculation to be different for the end and
inner atoms of the chain. These simple model cal-
culations predict a size dependence of the g shift
which is in disagreement with Kawabata's theory
and which indicates that the absolute value of the

g shift should decrease with decreasing particle
size.

The first successful experimental work on the
CESR of very small particles was done by Tau-
pin, ' who observed narrow resonance lines in
small platelets of Li in LiF. Since that time, dif-
ferent groups (see Table III) have studied CESR in
small clusters of Li, Na, K, Mg, Al, Ag, Au, and
Pt and have tried, with mixed success, to interpret

their results on the basis of Kawabata's theoretical
predictions.

It is the purpose of the present paper to reexam-
ine the evolution of the CESR g shift as a function
of particle size. The formalism we use is an adap-
tation to small sodium particles of a calculation of
the g shift in bulk sodium metal which was done
by De Graaf and Overhauser" (referred to hence-
forth as DGO) using single orthogonalized plane
waves (OPW) for the conduction-electron wave
functions. The choice of sodium is a convenient
one since it is an almost free-electron metal and
since the theoretical bulk g shift, which has been
extensively studied, is in good agreement with the
experimental data. Furthermore, the single OPW
calculation done by DGO is simple and easy to in-
trepret physically. While the explicit calculations
presented here are for cubic sodium particles, we
expect that the results should be valid for other
metal particles with nearly free conduction elec-
trons and arbitrary shape.

The remainder of this paper is organized as fol-
lows. In Sec. II we first briefly describe the single
OPW wave functions used by DGO to calculate
the bulk sodium g shift. We then discuss similar
wave functions which we build by constructing a
single orthogonalized standing wave (OSW) for a
model cubic particle of sodium. Such a single
OSW approximation to the conduction-electron
wave functions is, however, questionable in a small
metallic particle. We therefore then introduce the
effect of the crystal potential, which mixes OSW
of different wave vectors, and calculate the cluster
wave functions in a multiple OSW approximation.
We review the formalism for the bulk g shift in
Sec. III and show how this quantity can be
separated into different contributions. We then
calculate these contributions, in both the single and
multiple OSW approximations, in the case of a cu-
bic sodium particle and show how the Kawabata g
shift is related to this analysis. A discussion of
these g-shift calculations is given in Sec. III F. In
Sec. IV we discuss some of the existing experimen-
tal results. In particular, we interpret some very
recent results on small magnesium particles using
the theory developed here. Finally, Sec. V contains
a brief discussion and conclusions. A preliminary
account of the present work was published earlier. '

II. CONDUCTION-ELECTRON WAVE
FUNCTIONS FOR A SMALL

SODIUM PARTICLE

The calculations of the electronic structure of
small metal particles is a problem in itself (see,
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e.g., Ref. 13): There are accurate self-consistent
calculations, which are unfortunately limited to a
small number of atoms, and less sophisticated cal-
culations, which can only be used in more qualita-
tive investigations, but have the advantage of being
able to describe clusters with a relatively large
number of atoms.

In the present work our main objective is to
describe qualitatively the evolution of the g shift as
a function of particle size for sizes ranging from
the free atom to the bulk metal. For this purpose
we must have wave functions that include the ef-
fect of the spin-orbit coupling for clusters with an
arbitrary number of atoms. We have found that
these requirements can be met by adopting a
theoretical picture for the electronic structure of
such clusters which is based on two simplifying as-
sumptions: (i) the validity of a simple cubic
geometry for the clusters and (ii) the validity, for a
finite sodium particle, of a non-self-consistent gen-
eralization of the single OPW treatment of the g
shift in sodium metal which was done by DGO."

It should, however, be noticed that in the DGO
calculation the main contribution to the g shift is
the so-called 5g term (see Sec. III); in this calcula-
tion the "surface term" is negligible. It has, how-

ever, been shown' to be of the same order of mag-
nitude as the 5g term. We shall not estimate here
this surface term, although it is clear that it could
also depend on size.

A. Single OP% wave functions

Since the DGO model is the starting point of
our calculation and constitutes the bulk-metal limit
of our cluster model, we give here a brief account
of this method.

DGO write the OPW wave function (continu-

ous-spectrum wave function) of a conduction elec-

tron with wave vector k and spin predominantly

up as

P, (k, r) =N„(k)
&&2

exp(ik r)
(211)'"

—QP~, (k)P~(k, r) . (1)

Here the sum is over the sodium core states, P are
the wave functions of the crystal core state derived
from the atomic core state u~(r), and P,(k } are

the orthogonalization coefficients.
It should be noted that the spin-orbit coupling

dependence of the OPW in Eq. (1) comes about
solely through the orthogonalization to the spin-
orbit split 2p core states having total angular

1 . 3
momentum j=—, and j=—,.

DGO assume a phenomenological spherical crys-
tal potential V(r), with two adjustable parameters
inside the Wigner-Seitz cell. They calculate the ex-
pectation values of the Hamiltonian with spin-orbit
coupling between the atomic wave functions u~(r ),
for which they assume certain parametrized forms
[see Eq. (10) of Ref. 11]. They then minimize
these expectation values with respect to the param-
eters describing the atomic functions u (r } for
each set of the parameters of the potential V(r)
The parameters of the core wave functions u (r )

which minimize the Hamiltonian with spin-orbit
coupling are given in Table II of Ref. 11.

B. Single OS% wave functions
for a cubic particle of sodium

Passing now to the clusters we assume, in the
spirit of the frozen core approximation, that the
core states are not appreciably modified in the
cluster from those in the infinite crystal. We can
therefore describe the core states u~(r } in the same
parametrized form and with the same values of the
parameters as DGO have done in their bulk sodi-
um calculations. However, the form of the wave
functions, Eq. (1), is no longer valid for the con-
duction electron in a cluster, owing to the presence
of the propagating plane waves. In contrast with
the bulk-metal case, a conduction electron in a
small metallic particle feels a surface potential bar-
rier that prevents it from spilling out of the parti-
cle.

The simplest possible way of simulating such an
effect is to assume an infinite potential barrier at
the surface. If we further assume that the cluster
shape is a perfect cubic box of side L, we have an
immediate and very simple finite size generaliza-
tion of the DGO model, in which the plane waves
of Eq. (1) are replaced by standing waves in a cu-
bic box, which are orthogonalized to all core states.
These wave functions are denoted as orthogonal-
ized standing waves.

A single OSW conduction-electron wave func-
tion is then written as

(2)
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where s(y, r) is a free-electron standing wave normalized to one in the volume V=L of the cubic box. It
is given by

'
1 /2

s(y, r)=
V

L I.
sin y„x+— sin y„y+— L

sin pg z+

Px Py Ps=

The coefficients p~, (R~, y) in Eq. (2) are equal to

P, (R, , y)= I u (r —RJ)s(y, r)
O

d r

(4)

The sum over lattice sites j in Eq. (2) goes over the
finite number of atoms in the cluster and A, (y) is
a normalization coefficient approximately equal to
one. We shall neglect it in what follows since it
does not change the results significantly.

%e establish the connection between the edge
length L of the cubic box and the actual dimen-
sions of an ¹tom particle in the following way.
First, we assume that the lattice parameter does
not change as the sample size changes from the in-
finite crystal to the small cluster. ' For further
simplicity we assume that the particle has a simple
cubic (sc) structure with the same average density
as the body-centered cubic (bcc) structure found
experimentally for bulk sodium. ' This means that
the lattice parameter a„of the sc structure is relat-
ed to the lattice parameter a of the bcc structure
by a„=a/2' (we use a =7.984 a.u. in all our
calculations). The following relationship is then
assumed to hold:

L =(E„+e)a„, (S)

where X is the number of atoms along a cube
edge and e is a parameter which is & —,'. This
parameter simulates a "spill out" effect of the con-
duction electrons at the surface. Although the cal-
culations can be carried out for any value of e, in
our single OS% approximation we only report re-
sults obtained with @=1. With the more refined
multiple OS% calculation it will be shown belo~
that the assumption, Eq. (S), does not significantly
affect our results for the g shift.

The main advantage of our single OS% model is
its great simplicity; the wave functions can be writ-
ten analytically and the g factor can be easily cal-

Here the origin has been taken at the center of the
cube and y=(y„,ys, y, ) is defined by

IIp„n~„re,
L ' L ' L

culated for clusters with an arbitrary number of
atoms.

C. Multiple OS% wave functions
for a cubic particle of sodium

As it may easily be seen, the OSW of wave vec-
tor y, Eq. (2), can be regarded as a particular
linear combination of the OPW's, Eq. (1), having
wave vector k with modulus

~

k
~

equal to
~ y ~

.
This very special intraband mixing of the OP%'s
is the only effect of the surface barrier in the sin-

gle OSW model.
This is a questionable assumption, even for cubic

particles which are well described by the DGO sin-

gle OPW model in the infinite crystal limit. First
of all, it is known that an infinite potential barrier
is a very crude approximation for describing either
the surface of a metal' or the surface of a small
particle. ' In particular, in our cubic box model, it
is important to verify that the results do not de-

pend crucially on the distance that the electrons
are allowed to spill out of the finite cube of atoms.
That is, it must be verified that the choice of e in
Eq. (S) does not significantly affect the predictions
made by this theory. Second, it should be noted
that in the case of bulk metals, the crystal poten-
tial can only give rise to interband mixing of
OPW's by coupling OPW's which differ by a
reciprocal-lattice vector. These OPW's belong to
states having large single OPW energy differences.
Therefore, if the crystal potential is weak enough,
as it is in simple metals, the single OP% approxi-
mation is a reasonable one.

In the case of a small cluster, however, the
translational invariance is broken and the crystal
potential couples all single OSW's having different

y values and which may thus be very close in ener-

gy. This corresponds to a large number of both in-
terband and intraband mixings in the OPW pic-
ture. Therefore, the equivalent of a single OPW
approximation in bulk metal is, for our model for
a cluster, a multiple OPW calculation in which at
least all of the possible couplings between the sin-
gle OPW's belonging to the first conduction band
are taken into account. This corresponds in the
OS% language to a multiple OSW calculation in
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which all of the single OSW's having energies up
to the top of the first conduction single OPW band
are taken into account.

In such a multiple OSW calculation, one must
solve the secular equation

(@-„I
m E

I

—@-,., ) I I
=0 (6)

where 4 is the crystal Hamiltonian and /-,
denotes a single OSW of pseudo-wave-vector y and

spin s (s = & or l). Owing to the close relationship
between the OSW's and the OPW's, the matrix ele-

ments entering Eq. (6) can be written following the
standard OPW formalism (see, e.g., Ref. 18).

For this calculation, we use a one-electron crys-
tal Hamiltonian without spin-orbit coupling, which
can thus only mix OSW's having up spin with oth-
er OSW's having up spin, and similarly for the
down-spin case. Strictly speaking, the spin-orbit

coupling term should also be included; however,
since the spin-orbit interaction is mostly localized
near the nuclei, it is a reasonable approximation to
neglect it in solving Eq. (6). We assume, as in the
single OSW model, that the main spin-orbit effect
on the conduction-electron wave functions comes
through the orthogonalization of the OSW to the

2p core states.
It should be noticed that once the correct cluster

potential is determined, the multiple OSW ap-
proach can give essentially "exact" results for a
given cluster. This is only true, however, if a suf-
ficient number of OSW's is included in the sum
and if the outermost nodes of the OSW's are suffi-
ciently far away from the outermost atoms in the
cluster.

Unfortunately, the determination of the correct
cluster potential V(r) is not an easy task. It is
well known that in the infinite crystal case the
sodium potential can be decomposed into a sum of
spherical potentials v(r). ' The Fourier com-
ponents of V, and therefore also those of u, are
available in the literature. In a small cluster, a
significant fraction of the atoms are at the particle
surface and these surface atoms may have poten-
tials which are significantly different from those in
the interior of the cluster. One thus expects that
the decomposition into a sum of identical spherical
potentials is no longer valid for a cluster. The po-
tential V(r) should, in fact, be determined via a
self-consistent field approach, which would add
considerable complication to our multiple OSW
calculation. For simplicity we have thus taken the
spherical potential u to be the same as that for
bulk sodium. Even with this simplifying assump-

tion, we find that our multiple OSW calculation
gives a considerably more realistic surface potential
barrier than the infinite one.

Since we want to use the same core eigenfunc-
tions and eigenenergies as those found in the DGO
paper, in our actual calculations we have chosen a
potential U(r) slightly modified from that given in
Ref. 20. In writing down the matrix elements of
the secular equation (6) it is very important that
the core states be accurate representations of the
true eigenstates of the crystal Hamiltonian. To
this end we have used the DGO potential, in the
region (internal to the Wigner-Seitz cell) where it
closely resembles the potential given in Ref. 20,
and we have used a form that smoothly extrapo-
lates from the DGO potential to the potential of
Ref. 20 for larger r values. In reciprocal space this
consists of using the Fourier transform of the
DGO potential for q &q, with q=0.68 a.u. , and in
using U(q) =A+Bq, with 3 = —0.939 a.u. and
8=0.929 a.u. for q &q.

Unfortunately, the multiple OSW calculation
cannot be performed for clusters with an arbitrary
number of atoms. The primary reason for this is a
practical limitation on the sizes of the matrices
that can be numerically diagonalized. For this
reason, we have only studied sc clusters having 8,
27, and 64 atoms with the multiple OSW method.

D. Multiple OSW results: Energy levels
and electronic charge densities

We have performed a detailed multiple OSW
calculation for the 8-atom cluster in order to op-
timize our choice for the parameter e [Eq. (5)]. To
this end we have calculated the energies, the eigen-
functions, and the electronic charge densities for
two different L values, L =3a„and L =4a„. In
Tables I and II, we show for both cases the ener-

gies of the highest occupied molecular orbital
(denoted EF) and of the lowest orbital (denoted Eo)
as a function of the maximum energy (denoted
E,„)of the single OSW's which are included in
the calculation. There is reasonably good agree-
ment between the two calculations if we include
enough OSW's; in particular, the relative occupied
bandwidth with respect to the bulk metal,
hE/AE„, converges towards the same value,
-0.59. The electronic charge densities obtained
with the two L values are shown in Fig. 1. They
are very similar and they each tail off at distances
x smaller than the infinite potential barrier for the
smallest box, i.e., for x/a„values smaller than 1.5.



26 SIZE DEPENDENCE OF THE CONDUCTION-ELECTRON-SPIN-. . . 2419

TABLE I. Orbital energies and g-shift values for an 8-atom cluster of sodium in the mul-
tiple OSW approximation for L =3a„. E,„ is the maximum energy of the single OSW
which are mixed into the multiple OSW wave function, EF and Eo are, respectively, the
highest and lowest occupied molecular orbitals, hE/E„ is the relative bandwidth, and 5gq
and 5g~~ are the calculated diagonal and off-diagonal components of the g-shift contribution
QgP

Emax

(eV)

3.24
5.84
7.32
8.44
9.18

11.40
14.37

EF
(eV)

—3.477
—3.833
—4.748
—4.766
—4.766
—4.972
—4.986

(eV)

—5.996
—6.729
—6.816
—6.816
—6.816
—6.957
—6.980

hE/E„

0.74
0.85
0.61
0.60
0.60
0.58
0.59

(X 10-')

—0.777
—0.932
—1.01
—1.02
—1.02
—1.06
—1.07

&g~~

(X 10-4)

—0.000
—0.444
—0.136
—0.147
—0.147
—0.426
—0.482

Qg
Jp

( X 10-4)

—0.777
—1.38
—1.15
—1.17
—1.17
—1.49
—1.55

On the same graph we also show the electronic
charge density (dot-dashed curve) obtained for the
same size cluster with a single OSW. Although
the overall shape of this curve is similar to the
multiple OSW results, there are marked differences
which show the importance of the mixing of single
OSW's by the crystal potential.

These calculations show that the choice
L =(N„+1)a„,corresponding to e= 1, is suffi-
cient to avoid a significant influence of the box
edge on the surface tail of the charge density.
Furthermore, from the results shown in Table I, it
can be seen that an E~,„value of 10 eV is neces-
sary to obtain a reasonable convergence for the en-

ergies of the occupied states. All of the subsequent
calculations on the 27- and 64-atom clusters were
done with this choice for L and E,„. The elec-
tronic charge densities at the surface of the 27- and
64-atom clusters behave essentially as they do in
the 8-atom cluster. The calculated orbital energies
for the sodium clusters studied within the multiple
OSW scheme are reported in Fig. 2. The high-
level degeneracy is due to the assumed perfect cu-
bic shape of the particles. It should also be noted

that, for the 27-atom cluster, the occupied band-
width has already reached its infinite crystal limit.
This behavior is in agreement with self-consistent
calculations done on the basis of the Xu method.
For example, Salahub and Messmer ' obtain 99%
of the experimental bandwidth for 43-atom alumi-
num clusters using this method. Finally, it should
be pointed out that the surface tails of our calcu-
lated charge densities are in qualitative agreement
with self-consistent calculations for a semi-infinite
jellium surface' and with variational calculations
for a spherical jellium model of simple metal clus-
ters.

III. CALCULATION OF THE g SHIFT

The basic theory of the g shift in bulk materials
is complicated. The main reason for this is that
even a small magnetic field has a large effect on
the conduction-electron wave functions, which ex-
tend to infinity throughout the bulk crystal. Fol-
lowing the work of earlier researchers, Yafet has
developed a detailed formalism for the calculation

TABLE II. Orbital energies and g-shift values for an 8-atom cluster in the multiple OSW
approximation for L =4a„. All symbols are defined as in Table I.

Emax

(eV)

3.24
5.12
7.42
8.04
8.88

10.75

EF
(eV)

—2.134
—3.699
—4.551
—4.950
—4.759
—4.893

Eo
(eV)

—6.131
—6.712
—6.791
—6.791
—6.791
—6.866

AE/E„

1.18
0.89
0.66
0.60
0.60
0.58

(X10-')

—0.429
—0.352
—0.416
—0.434
—0.438
—0.448

&g~~

(X10 ')

—0.267
0.375

—0.923
—0.781
—0.878
—1.01

QgP

(X 10-')

—0.70
—0.73
—1.34
—1.22
—1.32
—1.45
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FIG. 1. Electronic charge density for an 8-atom clus-
ter of sodium in the OSW approximation. The solid
curve and the dashed curve correspond to multiple OSW
calculations with, respectively, L =3a„and L =4a„.
The dot-dashed curve is the electronic charge density in
the single OSW approximation with L =3a„. E,„ is
the maximum energy of the single OSW which are
mixed into the multiple OSW wave function.

of the g shift in an infinite crystal. On the other
hand, the calculation of the g shift in molecules is

easier than that for a bulk crystal; it has been done

using perturbation theory in the spin-orbit cou-

pling. It can be proven that the difficulties asso-
ciated with gauge transformations of the vector po-
tential which are encountered in the infinite crystal
g-shift formalism can be solved in the molecular
formalism if both the first- and second-order terms
in the perturbation series in the spin-orbit coupling
are taken into account. ' There is, to our
knowledge, no general theory of the g shift which
unifies the infinite crystal and molecular g-shift
formalisms. Such a theory would be the ideal for-
malism with which to study the dependence of the

g shift on particle size for a small cluster. Since a
general theory does not exist, we shall in the
present work use the bulk crystal formalism and
we shall keep only the terms which converge to-
wards the bulk g shift as the size of the cluster in-

creases [see Eq. (19)].

A. Bulk g-shift formahsm

Here we shall use the bulk g-shift formalism
developed by De Graaf and Overhauser and later
modified by Moore. This formalism is based
upon the fact that the Zeeman splitting gp&H is
linear in the external magnetic field. Here pz is
the Bohr magneton, H is the magnetic field, and g
is the g factor of interest. Thus, in order to calcu-
late the g factor, one needs only to consider terms
in the perturbing Zeeman Hamiltonian which are
linear in the external magnetic field. Furthermore,
first-order perturbation theory is sufficient and in

FIG. 2. Orbital energies obtained for a sodium parti-
cle within the multiple OSW approximation. The max-
imum energies of the single OSW wave functions which
are mixed into the multiple OSW wave functions are,
respectively, 10.75, 14.37, 13.06, and 9.52 eV for the 8-
atom (L =4a„), 8-atom (L =3a„), 27-atom (L =4a„),
and 64-atom (L =5a„) clusters. The bandwidth of the
infinite sc crystal is equal to 3.41 eV. The lengths of
the horizontal lines are proportional to the orbital de-
generacy (equal to 1, 2, or 3) of the state represented.
The arrow indicates the highest occupied energy level.

order to obtain the g factor one calculates the
difference in the expectation value of this perturba-
tion between the conduction-electron wave func-
tions which have spin predominantly up and that
between states with spin predominantly down.
There are, however, several difficulties, one of
which is the requirement that any physical theory
be gauge invariant. The one-particle Dirac equa-
tion, which is used as a starting point for the g-
shift formalism, satisfies this requirement. It is
clear that the reduction from the Dirac equation to
the Pauli equation for the two-component spinor
must retain this gauge invariance. De Graaf and
Overhauser show that if one chooses to describe
the conduction electron by a wave packet in the
standard form

W, (k, r)= f f(k —k')P, (k', r)d k',

where the integral is over all values of k ' and
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f{k—k ') is nonzero only in a small volume of k '

space centered at k, then the Jones and Zener

gauge must be used. Moore poirits out that since
this choice of gauge produces a time-dependent
Hamiltonian an extra term must be added to the
Hamiltonian to enable the average energy to be cal-
culated in the usual way. The choice of the wave-

packet representation for the wave functions has
the advantage of solving the difficulties with the
position operator r, which is not a bounded opera-
tor in an infinite crystal. DGO and Moore (re-
ferred to collectively in what follows as DGOM}
thus calculate the g factor as

piiKg(k)= (%,(k, r) ~A s, ~
%,(k, r)}

—(%,(k, r) ~A s, ~%,(k, r)}, (8)

where A s, and A s, are the parts of the perturbing
Hamiltonian which are linear in the magnetic field
for predoininantly spin-up and spin-down states,
respectively.

DOOM have shown that the Hamiltonians P g,
and 4 g, have the form

[(x —(x }}II„—(y —(y ) )Il~]
pgH

p
2

+pgHcTg 1—
20k C

(9)

where cr, is a Pauli spin matrix, and (x } and (y }
are the expectation values of x and y with respect
to the wave packets 4,{k, r) for A s, and %,(k, r)
for A s, . The operator II in Eq. (9) is given by

II=p+ X VV,
4m'

where p is the usual free-electron momentum
operator —ih V and V is the crystal potential.

Singh et ul. have more recently calculated the

g factor for iron and nickel using- tight-binding
wave functions. They have shown that if one
chooses the symmetric gauge, one will arrive at the
same g-factor formalism as DGOM.

Beginning with Eq. (g), DGOM have shown that
the bulk g shift 5g( k )=g(k ) —g, can be written

.
I 11,I

—2(Ix I I II„I—[y }I II, I )+Sg'(k)+Sg"(k }+Sg'"(k),
J

where, for an arbitrary operator 0, we have defined

(10)

IOI= f g, (k, r}0$,(k, r)d r,

and@, (k, r } is a continuous-spectrum Bloch function normalized over all space and evaluated at a wave vec-
tor k on the Fermi surface. The first and second terms of 5g(k) come from the terms corresponding to the
angular-momentum operator r X p in the Hamiltonian A s, and A s, . The first term has the form

Sgi'(k)= —Ixp~ —yp I . (11)

The third and fourth terms in Eq. (10}come froin terms which correspond to —( r }X II. The term which
is denoted as 5g'(k) comes from the spin-orbit-dependent contribution of the operator II to the r X II term.
It thus already depends upon the spin-orbit coupling and can be evaluated with wave functions which do not
include the spin-orbit contribution. DGO have shown that it has the form

(12)

where g(k, r } is a conduction-electron wave function without the effects of the spin-orbit interaction includ-
ed and Vis the crystal potential. The term denoted as 5g"(k) in Eq. (10) is a relativistic contribution which
comes from the correction to the term p+Ko, in Eq. (9). It has the form

(13)
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For the case of an isolated atom, DGO have shown

that the g shift reduces to 5g=5g'+5g".
The term denoted as 5g"'(k) in Eq. (10) has the

ofm

5g~(kr ) = Jq(kr )Ja(kr )

(15)

2II5g"'(k)= 2f P&(k, r)(0, —1)g,(k, r)d3r

(14)

DGO have shown (see also Yafet ) that the
second, third, and fourth terms of the g shift in

Eq. (10) can be transformed into surface integrals
over the boundary of a Wigner-Seitz cell. If the
spin-orbit-dependent parts of the conduction-
electron wave functions (i.e., the core wave func-
tions in our OSW model) are vanishingly small at
the cell boundary, these terms will therefore be
very small. This is the approximation that DGO
used in their OPW g-shift calculation for sodium.
In that calculation, they have shown that the main
contribution to the g shift comes from the term
denoted as 5gr(k).

In order to make a comparison between the cal-
culated g shift and those measured in experiment,
one must average 5g(k) over all wave vectors on
the Fermi surface. Such averaging takes into ac-
count the (in a bulk metal) short scattering time of
the conduction electrons at the Fermi level. In this
regard, it is worth noting that the frequency-

dependent CESR linewidth in aluminum has been

integ)reted as due to the imperfect averaging of
5g( k ).zs

In a small particle, where the electronic energy
levels are discrete, it is expected that the conduc-
tion electrons are not easily scattered from one
state to another; the scattering time at the Fermi
surface is thus long and each particle in a sample
has a nonaveraged g value. If consideration is
given to the fact that the various particles in a
sample have different (irregular) shapes and sizes,
it is thus expected that the measured g values will

be spread in a distribution centered about an aver-

age g value. The CESR linewidth of an ensemble
of particles should thus depend linearly on the
magnetic field, if the distribution of g values is the
main source of broadening.

B. Bulk sodium g shift

As was discussed earlier, DGO" have shown
that the main contribution to the g shift in bulk
sodium is 5gr(k), given by Eq. (11). Using that
equation and their OPW wave functions, we obtain
for this quantity in bulk sodium metal

Ja(kr) = —, [Jl/2(kF) —J3/2(kt)],

in which

J~(kr)= f & (rj)i(kyar)r'«.

(16b)

Here R~(r) is the radial part of the core wave

functions u (r) and ji(kyar) is a sPherical Bessel
function. The expression for 5g~(kr), Eq. (15), is
valid to all orders in the Fermi wave vector kF, in
contrast with the results obtained by DGO, who

calculated this quantity to only second order in kF.
We have numerically evaluated this contribution to
the g shift of bulk sodium, the result of this calcu-
lation is 5g~= —2.82' 10

Using these same OPW wave functions, we have
also calculated the contribution 5g "(kr ) [Eq. (13)]
for bulk sodium to all orders in kF. Numerically,
we find 5g"= —0.50)&10 . Also using these
wave functions, DGO have calculated the contribu-
tion to the bulk sodium g shift denoted as 5g'(kz )

and given by Eq. (12). They find 5g'=0. 11
)&10 . As is discussed in subsection D below, the
contribution 5g"'(kr ), given by Eq. (14), is very
small for an infinite crystal, and makes a negligible
contribution to the bulk sodium g shift.

Taking into account the above results, we find
for the total g shift in bulk sodium 5g =5g~+5g"
+5g'= —3.21' 10 . This value is not in good
agreement with the bulk experimental g shift for
sodium, which is equal to 5g =(—8+2)
)& 10 . Moore and Liu' ' have calculated the

g shift in sodium using a spherical wave expansion
for the wave functions. They have shown that the
surface terms on the boundary of the Wigner-Seitz
cell cannot be neglected as DGO have done. In
their calculation, the sum of these terms is equal to
—2.87&10 . The term 5g~ calculated by DGO
is thus an important contribution to the g shift in
sodium, although not the only one. In the present

paper, we shall keep the DGO model and neglect
these surface terms, which would be very difficult
to evaluate in a small cluster.

where the angular brackets denote the average over
all Fermi wave vectors kF, k„F and k~F are the x
and y components of kF, and we have defined the
functions

J (kp) = —,[J&/z(kp)+2J3/i(kr)] (16a)

and
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C. Size dependence of the 5g~ term;
single and multiple OSW approximations

In a small metallic particle, one need not write
the conduction-electron wave functions as wave

packets, since the position operator r is bounded in
this case and the electron energy levels are discrete.
We shall thus calculate 5g( k) for a small particle
of sodium using in Eq. (8) the OSW wave function
corresponding to the highest occupied energy level.

The operator (r & A II in the Hamiltonian 4 s [Eq.
(9)] will be neglected here, since it is closely related
to the choice of a wave-packet description for the
conduction-electron wave functions. Furthermore
it can be shown that it gives a negligible contribu-
tion in the OS% approximation; physically this is
due to the fact that the average value of the
momentum p is very small in this approximation.

In the single OSW.approximation, we thus have

5g&(yz)= — d r f,(y~, r)(xp~ —yp„)f,(yz, r)d r —— d r g, (yz, r)(xp~ —yp )P,(yz, r)d r, (18)

where f,( y~, r ) is the single OSW wave function given by Eq. (2) and yF is the y value of the highest occu-
pied single OSW. Such a calculation assumes, however, that the wave functions are orbitally nondegenerate.
This is in general not true for cubic particles, where the orbital degeneracy of levels is high. In a real clus-

ter, whose shapes are irregular, one expects a lifting of this orbital degeneracy. We thus shall make the cal-
culation as if the levels are nondegenerate and then take an average of 5g (yp) over the different degenerate
states. Upon evaluating Sg (yz) one finds that there are three different kinds of matrix elements which
enter the calculation. We denote these as s-s, s-c, and c-c, where s-s corresponds to matrix elements of the
standing wave part of 1(„(yz,r ) with the standing wave part of p, (yz, r), s-c corresponds to matrix elements
of the standing wave part of g, ( yz, r ) with the core part of P, (yz, r), and c-c corresponds to core-core ma-
trix elements. The s-s matrix elements are zero and both the s-c and c-c elements can be decomposed into
two terms. For the case of c-c matrix elements we obtain, for example,

r

g P~, (R~, yp)P~, (Rj, y~) J u~(r —RJ)[(r —RJ)Xp]u (r —RJ)+RJ&&J u~(r —R&)pu (r —RJ)

(19)

where, in the first term, the angular-momentum
operator is centered on the corresponding core
wave function. As the cluster size decreases, the
sums of the first terms calculated for the s-c and
c-c contributions tend towards their bulk values.
We have found that, even for very large clusters,
the second terms do not go to zero and that there
is no easy way of seeing how they could cancel
with other terms or be related to known bulk con-
tributions. This is a basic difficulty which can be
traced back to the wave-packet description in the
bulk g-shift formalism, which introduces additional
terms in the g shift. We have circumvented this
difficulty by keeping only those terms which
reduce to the bulk value in the limit of large clus-
ters.

For simplicity, here we only show explicit single
OSW results for 5gi'(y~) in the special case where
the edge length L of the conduction-electron box is
equal to (N„+1)a„. Clearly, results for other
choices of the relationship between L and X„are
also easily obtained. In this case, the results of
evaluating Eq. (18) are

2a s~
~p ( ) F )~!L(rF )

&xxF+1'yF &

X
YF

48H

0

(20)

where y„~ and yzz are the x and y components of
yF, the angular brackets denote an average over
the degenerate states of the highest occupied ener-

gy level, and Jz,J~ are defined in Eq. (16). The
dominant size dependence of 5gi' lies in the factor
(1 2a„/L ); the val—ue for yz has also a size
dependence, but it does not significantly modify
the general size-dependent behavior of 5gi'. In Ref.
12 we have given explicit results for 5g~(yF) for
the case of a bcc crystal lattice with the choice of
L =(N„'+ 1)a/2, where N„' is the number of atoms
along the bcc cube edge and a is the bcc lattice
parameter. The result shown in Eq. (20) is the
same as that given in Ref. 12 if one replaces 2a„
by a. %e have found that the precise multiplica-
tive factor in front of the a„/L size-dependent
correction to 5gi'(y~) depends on the relationship
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a
5g~(yF)= 1 —a—5g (ao },L

(21)

one chooses between the length L and the number
of edge atoms N„. Given a particular choice of
this relationship, this multiplicative factor can be
obtained easily. We thus find that the priinary
size dependence of the contribution 5gi'(yF) may be
written in the single OSW approximation as

From these results we can conclude that the
trend obtained for 5g& in the single OSW approxi-
mation is not significantly modified by the intro-
duction of a multiple OSW model. Equation (21}
thus gives the correct trend for the evolution of
5g~ as a function of particle size, despite the sim-

plicity of the wave functions which were used to
calculate it.

where 5gi'{ ac ) is the value obtained for this term in
the bulk [Eq. (15)],a is a positive parameter of or-
der one which depends upon the relationship be-
tween L and N„and the size dependence of yF has
been neglected.

As discussed above, it is important to compare
the general behavior predicted by Eq. (21) with a
multiple OSW calculation. The calculation of Sgi'

in this approximation is similar to that discussed
above for the single OSW approximation. Using
the multiple OSW wave functions and beginning
with Eq. (18), we have calculated 5gi'(nz), where

n~ labels the highest occupied multiple OSW wave
function. In this case, 5gi' can be decomposed into
the sum of diagonal terms (P= y '} and off-
diagonal terms ( }rQy '). In Tables I and II we
show, for two different 8-atom clusters, corre-
sponding to L =3a and L =4a„, the dependence
of the diagonal (5') and off-diagonal (5gfq) terms
in 5g~(n~} on the maximum energy (E,„}of the
single OSW which are mixed into the multiple
OSW functions. It should be noted that, although
the diagonal and off-diagonal parts of this contri-
bution to the g shift are different for 8-atom clus-
ters with L =3a„and L =4a„, the total 5gi' con-
verges towards approximately the same value in
both cases as E,„ increases.

We show in Fig. 3 the results obtained for 5gi' as
a function of both L and N„. The triangles denote
the results obtained using the single OSW approxi-
mation [Eq. {20)],where the size dependence of yF
is also included; the circles denote the results ob-
tained using a multiple OSW approximation, and
the solid line indicates the single OSW results
given by Eq. (21},where the size dependence of yF
is neglected. Since the off-diagonal elements of
Sg& are only slowly convergent as E,„ increases
(see Table I and II), we have introduced error bars
into the multiple OSW results. The reason for the
large error bar in the case of the 64-atom clusters
is that, although 238 single OSW up to E,„=9.52
eV were used, we were at the limit of our compu-
tational capability and were not able to quite reach
convergence.

D. Size dependence of the term 5g";
the atomic g shift

In the limit of a single atom, the g shift reduces
to the sum of the two terms 5g' and 5g", defined
in Eqs. (12) and (13). The 5g' term is small for
sodium (DGO obtain 0.11X10 for bulk sodium);
thus we have not estimated its size dependence.
However, we have calculated the size dependence
of 5g" in the single OSW model. In the approxi-
mation where yF is approximated by its infinite
crystal counterpart kF, we find that 5g" may be
written in the form

(22)

where 5g"(a) is the value of 5g" obtained when
there is only one atom left in the cubic box,

5 10 15 20 25 30 35 L(Aj

1 2 3 4 5 6 7 8 9 10 Nx
0.0

-0.4

-0.8

-1.2
'0'
'o
a. —1.6Ol

sQ

-2.0

-24

FIG. 3. 5g~ for a sodium particle as a function of the
number N of atoms along a cube edge in the single (tri-
angles) and multiple (circles) OSW approximations. The
length of an edge of the conduction-electron box was
chosen equal to L =(N+1)a where a =6.334 a.u.
The solid curve represents the function
(1—2a„/L)5gr'((x)). The results obtained in the single
OSW approximation using the exact result, Eq. (20), or
the approximate one, Eq. (21), are almost indistinguish-
able on the scale of the figure for N & 5.
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5g"( oo ) is its bulk value, and we have assumed a
bcc lattice with L =(N,'+1)a/2. Numerically we

find 5g"(a)= —0.17X10 and 5g"( oo ) = —0.50
&&10 . Using the relation 5g'(a)= ——,5g"(a) es-

tabhshed in Ref. 25, and using 5g (a) =5g'(a)
+5g"(a), we obtain an atomic g shift in the single
OSW approximation which has the value

5g (a) = —0. 11X 10 . The experimental value is

equal to —0.25)& 10,not in very good agreement
with our theoretical prediction. However, this is
not too surprising since the present theory was not
intended for use in atomic g-shift problems and the
OSW wave functions are certainly not expected to
be valid for a single atom.

E. Size dependence of the 5g"' term;
the Kawabata g sbift

The term in the g shift denoted as 5g"', given by
Eq. (14), is very small in bulk metal but could be-

come larger in a small cluster. In the Appendix
we show that, if this quantity is calculated in a
second-order perturbation theory in the spin-orbit
interaction, one obtains the g-shift contribution
that Kawabata has calculated for a small metallic
particle. Since Kawabata's term has been used as
the basis for the interpretation of data in many dif-
ferent experiments (see, e.g. , Table III), it is impor-
tant to closely study this contribution on the basis
of the present model. First, however, it is
worthwhile to briefly review Kawabata's theory of
the small-particle g shift.

Kawabata chooses a semiclassical model and cal-
culates the CESR g shift and linewidth using a
linear response formalism along with second-order
perturbation theory in the spin-orbit interaction.
The conduction-electron wave functions in his

model are described by size-independent wave

packets; the size dependences he obtains for the g-
shift and spin-lattice relaxation time in CESR
come from assuming that the electrons scatter dif-

fusively at the surface of a spherical cluster and

not, as in our model, from any dependence of the
wave functions on particle size.

Kawabata introduces a "quantum limit, " de-

fined for a particle of mean diameter I. by
fuu, «5(L) and fi!r«5(L), where %co, is the Zee-
man energy, 5(L) is the average spacing between

the discrete electronic energy levels at the Fermi
surface, and r is the spin-lattice relaxation time of
the conduction electrons. In this limit he obtains a

g shift for state n at the Fermi surface of the form

5g~(L) =5g( m )—2A 5(L)
H r ~~~ emn

(23)

where the subscript EC means that the g shift is cal-
culated in Kawabata's model, e~„ is the energy
difference between the one-electron states n and m

at the Fermi energy, and Sg( oo ) is the bulk g shift.
The spin-lattice relaxation time r is defined by

(24)

where Pi „is the spin-orbit interaction, g« is the
predominately spin-up eigenfunction corresponding
to state n at the Fermi energy, gm, is the predom-
inately spin-down eigenfunction corresponding to
state m (Qn) near the Fermi energy, and the outer
angular brackets denote an average over all such
states. Kawabata then calculates the average ma-

trix elements of the spin-orbit interaction which
occur in Eq. (24) and shows that r in a small clus-

ter is still given by the Elliott relation,

1 [5g( oo ) ]
L /uF

(25)

where UF is the velocity of the conduction electrons
at the Fermi surface.

Upon replacing the r which occurs in Eq. (23)

by its definition given in Eq. (24), we obtain

mQn (e „)

(26)

In the Appendix we show that if one begins with

the exact expression, Eq. (14), for the g-shift con-
tribution 5g'", uses wave functions which (follow-

ing Kawabata) are eigenfunctions of the crystal
Hamiltonian plus the Zeeman interaction, treats
the spin-orbit interaction as a perturbation to
second order, and averages over the Fermi surface,
one obtains a result for 5g"' equal to the second
term of Eq. (26). We shall in what follows denote
it 5gq" (L), where the subscript 2 shows that the ex-

pression is valid to second order in perturbation
theory. It is also easy to show [Eq. (24) and the
Appendix] that the conditions for validity of the
perturbation theory correspond to Kawabata's
quantum-limit condition A/r «5.

The results discussed in Sec. III D show that, in

contrast with Kawabata's predictions, the size-

dependent g shift giuen by Eq. (26) does not
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TABLE III. Experimental g-shift values for atoms, bulk metals, and small metallic parti-
cles.

Metal

Li

Na

Al

Ag

Au

pt

Matrix

LiF
xenon
LiH

argon

argon
NaN3
NaN3

argon

argon
KN3
KC1

xenon
xenon
xenon
xenon

CO2 or C6H6

KC1
CO2, C6H6

C18H38

on KC1
on quartz

Average
diameter (A)

atom
bulk

3X30X30'
20~1000

-50
atom
atom
bulk

Na3
20~1000
20~1000

atom
atom
bulk

K3
(14)"

(10—20)"
bulk

12
17
22
29

bulk
10~200

atom
bulk

50~300

-20
atom
bulk
-30

20~80

g shift'

—1X10-'
( —6.1+0.2) X 10-'

&10
&10

—1X10-'
—2,6X10 —+1.0X10 '

( —8+2) X 10-4

( —1.2+1.2) X 10
bulk value
bulk value
—1X�1-'

—03X� ~—1.4X10
( —2.6+0.1)X 10-'
( —3.8+0.5)X 10
( —4.5+0.5) X 10-'
( —2.5+0.5)X 10-'

(8+2)X 10
(0+1)X 10-'

(0.7+0.3)X10-'
(1.9+0.3)X 10
(2.7+0.3)X 10-'
(3.2+0.3)X 10-'
( —5+1)X 10-'
0.1~1.3 X 10-'

—8X10-'
( —1.9+0.1)X 10
(3.2+0. 1)X 10

(5.2+7.7) X 10

1.8X10
0.1+0.01
0.26+0.02

(1+4)X 10-'

Reference

10
32
33

34
35
36

37

37
38
39

40

41

42

43

44
45

in gelatin 20 ( —4+2) X 10-' 46

'All atomic g-shift values are taken from Ref. 31 and all bulk values are taken from Ref. 29.
Platelets.

'Different sites.
Estimated from hH (questionable).

'Two different values exist in the literature.
Asymetric signal.

represent a complete picture of the size dependent g-
shift in CESR. In order to obtain a complete pic-
ture of the size-dependent g shift, one must add up
all size-dependent contributions, of which 5g2" (L) is
only one. It is nevertheless interesting to compare
the results of calculating 5g2" (L) on the basis of
both Kawabata's theory and the present model.

Owing to the translational symmetry of the lat-

tice in an infinite crystal, the spin-orbit interaction
4 „in that case has only nonzero matrix elements
between states n and m whose wave vectors differ
by a reciprocal lattice vector and whose energy
differences are thus large. Thus, for a bulk metal,
the energy denominators e „which occur in Eq.
(26) will be large and Bgz"(L) will be very small.
On the other hand, in a small particle the transla-
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tional symmetry of the lattice is broken and the
matrix elements of A „can be nonzero even for
states which are close to each other in energy.
Thus, the energy denominators in Eq. (26) can be-
come small for a very small cluster and 5g2"(L)
can become large. In Kawabata's theory, this
quantity is proportional to L for clusters in which
the quantum-limit conditions are satisfied. Thus
in Kawabata's model 5gz" (L) approaches zero as
L —+0, increases as L for small L„and then de-
creases again for large clusters when the pertuba-
tion theory used to derive Eq. (26) is no longer
valid.

Using Eq. (26), we have numerically calculated
5gz" (L) in the single OSW approximation for a
small cube of sodium. For this calculation, we

have chosen the relation L =(N„'+ 1)a /2, where as
previously X„' is the number of atoms along the
edge of the bcc sodium lattice. In Fig. 4(a) we
show (open circles connected by a solid curve) our
results for the size dependence of the average
spin-orbit interaction matrix elements which enter
the calculation. In that same figure we show
(dashed curve) Kawabata's estimation of these
same matrix elements, obtained by combining Eqs.
(24) and (25), using 5(L)a:L, and choosing the
experimental value of —8X10 for 5g(oo). It is
remarkable that, despite the fact that these two
theories are very different in their physical as-
sumptions, they both predict a L dependence of
the average spin-orbit matrix elements. Their
quantitative agreement is, however, probably for-
tuitous.

Our results in this approximation for 5g2" (L)
are shown in Fig. 4(b) (solid curve), along with
those of Kawabata (dashed curve). As may be seen
from this figure, our model predicts that 5g2" (L)
should be smaller than the value Kawabata
predicts and that it should depend much less

strongly on L than the L dependence predicted by
his model. This result may be related to the fact
that for the cubic particle assumed in our single
OSW calculation the electronic energy levels are
highly degenerate. The average level separation is
thus larger than for a particle with an irregularly
shaped surface and is roughly proportional to L
rather than the L obtained in Kawabata's
model. Thus, in our calculation, the L dependence
of the energy denominator sum in Eq. (26)
( ~ [5(L)] ~L ) roughly cancels out the L
dependence of the square of the spin-orbit interac-
tion matrix elements which occur in that equation
( ~L ) and the result is a roughly L-independent
5g2" (L). These qualitative arguments are in agree-
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20

(b)
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I0

5g (L) single OSW

-10

—12

5g'" (L)

5g'"(L)

Kawabata

(5g(oc) = —2,82. la )
single OSW

FIG. 4. (a) Average spin-orbit matrix elements for a
sodium particle in the single OSW approximation (cir-
cles) and in Kawabata's theory (dashed curve) as a func-
tion of L /a for a bcc lattice structure with
L =(N„'+1)a/2 where N„' is the number of atoms
along a cube edge. (b) The Kawabata term in the g shift
for a sodium particle; 5g2" (L) in the single OSW ap-
proximation (solid curve); 5g2" (L) in Kawabata's theory
(dashed curve); and 5g"'(L) (exact expression) in the sin-

gle OSW approximation (dot-dashed curve).

ment with the general trend of the single OSW pre-
dictions shown in Fig. 4(b). It should be noted,
however, that the level degeneracy in real small
clusters is not as high as in a cubic particle. We
thus estimate that our calculated 5g2" (L) corre-
sponds to a minimum value.

It is certainly more correct to calculate the g-
shift contribution 5g"' directly from Eq. (14), rath-
er than consider its perturbation-theory approxima-
tion 5gq" (L). We have performed this calculation
in the single OSW approximation and the results
for a small cube of sodium, after some straightfor-
ward algebra, is

48II a 2( ) 1
1'w('&
7F

(27)
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where we have used a bcc lattice with
L =(N„'+ l)a/2, y,F is the z component of yF,
and J~ is defined in Eq. (16). As expected, this
quantity is of second order in the spin-orbit cou-
pling, since J~ is proportional to A „. For very
small clusters Eq. (27) predicts that 5g"'(L) will

approach zero, which is in agreement with
Kawabata's estimation of 5gq" (L). However, un-

like the expression obtained by Kawabata, Eq. (27)
approaches a size-independent value for large L.
If, as in the above calculations for 5gI'(L) and
5g"(L), we neglect the variation of yF with parti-
cle size, Eq. (27) can be written

5g"'(L)= 1 ——5g'"{oo ),L
{28)

where the bulk value, 5g'"( oo ), is numerically
equal to —2.2X 10 . The results obtained from
Eq. (28) are shown in Fig. 4(b) (dot-dashed curve).
They are in agreement with the average trend of
the results for 5g2"(L) obtained with the same
wave functions.

F. Summary and discussion

Using the bulk g-shift formalism we have inves-
tigated the size dependence of the CESR g shift in
a model cubic particle of sodium using both single
and multiple orthogonalized standing wave approx-
imations for the conduction-electron wave func-
tions. We have shown that, within this model, the
main size-dependent contribution to the g shift
comes from the 5g& term [Eq. (21)]. We have also
calculated the size dependence of the g-shift contri-
bution 5g" within the single OSW approximation
[Eq. (22)]. Motivated by Kawabata's treatment of
the g shift in small metallic particles and by recent
experiments which have indicated discrepancies
with his theory, we have also investigated within
our model the term which is denoted as 5g"' in the
bulk g-shift formalism. We have found that the
g-shift term that Kawabata has calculated in his
theory may be obtained from the bulk g-shift for-
malism by employing a perturbation-theory expan-
sion of 5g"' to second order in the spin-orbit cou-
pling. We find that the magnitude of 5g"' [Eq.
(27)] is smaller for all particle sizes than that
predicted by Kawabata and that its dependence on
size is very different than the L dependence that
he predicts for very small particles. This differ-
ence could, however, be partly due to the large or-
bital degeneracy found in a small cubic particle.

From this analysis we conclude that the g shift

in a small particle of sodium may be written

5g(L)=5g(a) + 1 —a—5g(~)
L L

+5g'"(L), (29)

5 (NN )=(N —N ) Ns s N s

(30)

where Nz is the number of surface atoms, N is the
total number of atoms in the particle, 5g (s)/N is
the contribution of a surface atom to the total g
shift, and 5g (s) tends towards 5g(a) for very small
clusters.

We therefore believe that the discussion of the
preceding paragraph, although quantitatively veri-

where 5g"'(L) is very small, 5g(a) is the atomic g
shift, 5g( ao ) is the bulk g shift, and a is of the or-
der of unity.

The size dependence shown in this equation is
typical of a surface effect, since the ratio of the sur-
face area to the volume of a cube edge L is propor-
tional to L '. This fact can be understood on the
basis of the following analysis. In the atomic limit
the 5g~ contribution to the g shift will be zero (for
sodium) since the outer 3s electron wave function
will be orthogonal to the spin-orbit split 2p core
wave functions. Thus, the g shift in this case will
only consist of 5g(a) =5g'(a)+5g"(a).

In a bulk metal on the other hand, if one makes
a plane-wave approximation for the 3s conduc-
tion-electron wave functions, they will not be
orthogonal to the 2p states. A better approxima-
tion for bulk metals is an OPW approximation
where the plane waves are orthogonalized to the
core wave functions. In this case the 2p core states
are mixed into the conduction-electron wave func-
tions and this mixing results in a nonzero value for
5g&. One way of describing these results is to say
that in the bulk crystal, each atom brings a contri-
bution 5g~( oo )/N to the total 5g~ shift, while the
contribution of an isolated atom is zero. Further-
more, it is expected that the contribution of the
atoms on the surface of a small particle to the
small-particle g shift should be intermediate be-
tween the isolated atom and the inner atom (bulk-
like) contributions, since the surface atom environ-
ment is intermediate between that of an isolated
atom and a bulklike atom. On the basis of this
analysis, we are thus led to rewrite Eq. (29) in the
following more general way:
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fied in this paper only for a small cubic particle of
sodium, should not depend too strongly on the
shape of the particle and should also remain quali-
tatively correct for other simple metals with essen-
tially s-type conduction-electron wave functions.
In the next section, we briefly review some of the
existing small-particle g-shift data and compare it
with this prediction.

IV. COMPARISON WITH EXPERIMENT

In Table III we summarize most of the existing
g-shift data for small metallic particles; we have
also included observed g shifts for single metal
atoms and bulk metals. Both the atomic and the
small-particle data must be interpreted with cau-
tion, since the clusters or atoms are usually either
embedded in a matrix or deposited on a substrate.
Thus, matrix or substrate effects could change the
g-shift values from those expected for isolated
small particles, particularly if the metal atoms
combine chemically with those of the host or sub-

strate. For example, Table III shows clearly that
even for atoms embedded in a rare-gas matrix, the
observed g shift is different than that of the free
atom.

Both Smithard and Gordon have made de-

tailed studies of CESR in small sodium particles
produced by irradiation in NaN3. In particular,
they were able to measure the g shift of particles
whose mean diameters range from 20 to 2000 A
and they report no change from the bulk g-shift
value over this entire size range. Our model

predicts, for example, g-shift changes from the
bulk value of 20% and 8% for 20-A and 50-A
particles, respectively. On the other hand,
Kawabata's theory predicts changes of 1% and

9% for the same particles. Unfortunately, all of
these predicted changes are within the experimental
error of the measurements. The g shift reported by
Lindsay and Herschbach for sodium trimers is

probably influenced by the matrix and certainly in-

fluenced by the isosceles-triangle geometry in
which the trimers were formed. Thus, only a de-

tailed calculation which takes into account this
geometry could predict its g shift. It is thus clear
that more precise measurements of the g shift in
small sodium particles are needed in order to check
the predictions of the present theory.

The most detailed study of the evolution of the g
shift as a function of size in small metallic parti-
cles has been done by Millet and Borel for small

magnesium particles embedded in a xenon matrix.

Their measured g shifts for particles of mean di-
ameters of 12, 17, 22, and 29 A are given in Table
III. Since the present theory should be qualitative-

ly correct for small particles other than sodium, it
is worthwhile to try to analyze their data using the
general results found here and summarized in Eq.
(29). Millet and Borel have done this and have
shown that their results can, indeed, be interpreted
using Eq. (29) if one sets the 5g"' term equal to
zero. In Kawabata's theory this term would al-

ready be equal to —8X 10 for 20-A particles, in

disagreement with the data. A detailed analysis of
the data on the basis of Eq. (29) is carried out in

Ref. (40).
The remaining g-shift values summarized in

Table III are more difficult to interpret. However,
it should be noted that, in qualitative agreement
with Eq. (29), there is a tendency for the absolute
values of the g shift in small particles to be smaller
than the corresponding bulk values. Further exper-
imental studies are certainly needed in order to ob-

tain a clearer picture of the behavior of the g shift
in small metallic particles. More generally, all as-

pects of CESR in small clusters, including relaxa-
tion times and linewidths, need further experimen-
tal study so that the behavior of such particles in
the quantum size-effect regime can be better under-

stood.

V. CONCLUSIONS

In this paper we have proposed a model for the
conduction-electron wave functions in a small me-

tallic particle of a simple metal. The proposed
model is a finite size generalization of the standard
orthogonalized plane wave" (OPW) formalism
wherein the plane waves are replaced by standing
waves in a box and these are then orthogonalized
to all core states. The resulting wave functions a,re
denoted as orthogonalized standing waves (OSW).
We have applied this model in both the single and

multiple OSW approximations to a small cubic
particle of sodium. The multiple OSW approxima-
tion is, in principle, an exact method if we take
into account self-consistent effects and include a
sufficient number of single OSW's. Since we were

not interested here in exact calculations, but in

finding the trend of the g shift as a function of
size, a non-self-consistent scheme was used. It ap-
pears, however, that the multiple OSW approxima-
tion gives reasonably good energy eigenvalues and

charge densities, while the single OSW caIculation
can only be used if qualitative calculations. are suf-
ficient.
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Using the OSW wave functions obtained for a
small sodium particle, we have calculated the vari-
ous contributions to the CESR g shift in such par-
ticles. We, however, have not calculated the so-
called surface terms which are not negligible for
sodium or other alkali metals. ' The predicted re-
sults for the g shift as a function of particle size
are summarized in Eq. (29), which was obtained on
the basis of the single OSW approximation. Al-
though we have done specific calculations only for
sodium particles, we believe that Eq. (29) is quali-
tatively also valid for clusters of metals with essen-
tially s-type conduction-electron wave functions.
In these metals the g shift should thus increase in
magnitude from its atomic value to its bulk value
as the particle size increases. In the multiple OSW
approximation we have only calculated the g-shift
contribution 5g~. However, the results obtained
for this quantity in that approximation are in qual-
itative agreement with the general behavior shown
in Eq. (29). Furthermore, we have shown that the
term in the g shift obtained by Kawabata in his
theory of CESR in small particles corresponds (in

perturbation theory in the spin-orbit coupling) to
the term denoted as 5g"' in the bulk g-shift for-
malism. We have evaluated this quantity in the
single OSW approximation and have found the
behavior shown in Fig. 4, which is in disagreement
with Kawabata's predicted behavior for this term.

The existing experimental g-shift data on small
metallic particles, although often difficult to inter-
pret, are generally in qualitative agreement with
the prediction made in Eq. (29).
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APPENDIX: DERIVATION OF THE
KA%ABATA g SHIFT

FROM THE CONTRIBUTION 5g'"

In this Appendix we show that the correction to
the g shift for small particles which was calculated

by Kawabata on the basis of his theory can be ob-
tained by starting with the term in the bulk g-shift
formalism denoted as 5g"' and performing a
perturbation-theory expansion, keeping only terms
of second order in the spin-orbit interaction.

We begin with the bulk g-shift contribution 5g"'
which has the form shown in Eq. (14) rewritten
here in a slightly different form,

5g"'(n) =2JP„,( r )(0,—1)f„,( r )d r, (Al)

where we have labeled the electronic states by the
quantum number n rather than [as in Eq. (14)] by
the wave vector k, 0., is the usual Pauli spin ma-
trix, and g„,(r ) is the wave function corresponding
to the highest occupied spin-up state, which is as-
sumed here (and in Kawabata's treatment) to be
orbitally nondegenerate. Following Kawabata's
perturbation treatment we write this wave function
in the form

(g(0)
(
~

~

y(0) } ~(~0) (A3)

where 4 „is the spin-orbit coupling Hamiltonian,
0 is the spin index, and em„' is the energy differ-
ence between states m and n belonging to the
eigenfunctions P'„,' and P'm'. This inequality is
equivalent to Kawabata's quantum limit condition
fi/r & 5, where r and 5 are, respectively, the
conduction-electron spin-lattice relaxation time and
the average level separation of the discrete energy
levels in the small particle. Both of these quanti-
ties are discussed in more detail in the text.

Given Eqs. (Al), (A2), and (A3) it is a simple
exercise to show that the first-order term in ~„
vanishes and that the second-order term is equal to

(0) 2
m+N ('Snm )

(A4)

If Eq. (A4) is now averaged over states m near the
Fermi surface, the result is the second term in Eq.
(26) of the text. Thus, beginning with 5g'", Eq.
(Al), and using the perturbation theory outlined
here, the Kawabata correction to the g shift is
easily obtained.

(A2)

where 1(„','(r ) is an eigenfunction of the crystal
Hamiltonian in the absence of both spin-orbit cou-
pling and the magnetic field and P„",'(r) and

g'„,'(r ) are the first- and second-order perturbation
terms in the spin-orbit coupling. Such a perturba-
tion expansion is only valid if
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The evaluation of 5gq" in the single OSW ap-
proximation is a rather long but straightforward
calculation if we assume that the one-electron
spin-orbit Hamiltonian can be written as

(A5)

where l1 is the orbital angular momentum of the
electron centered on site RJ and g(F) depends on
the gradient of the potential V(r ). By using Eqs.
(A4) and (A5), along with the wave functions of
Eq. (2) of the text, the quantity 5gz" can then be
calculated.
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