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Theory of electron-spin-resonance linewidth and line-shift effects
in spin-glasses with anisotropy and zero remanent magnetization
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The dramatic increase in the width of the electron-spin-resonance line in Ruderman-

Kittel-Kasuya-Yosida spin-glasses at temperatures above the transition temperature Tf,
recently regarded as evidence in favor of a phase transition, is explained as an effect of
the small measuring frequency. The present theory also gives an explanation for the
line-shift behavior as a function of the measuring frequency and the temperature.

'I. INTRODUCTION

Only recently considerable progress has been
made in understanding electron-spin-resonance
(ESR) measurements in Ruderman-Kittel-Kasuya-
Yosida (RKKY) spin-glasses such as CuMn. In
the earlier work' a large shift of the resonance
field was observed in the spin-glass regime and at
first regarded as a "special kind of antiferromag-
netic resonance. " However, as it turned out, it is
essential to refer to the magnetization properties of
the spin-glass state because the ESR results for
large-remanent magnetization differ completely
from those at small or zero remanence. ' In the
former case only one ESR frequency was found
whereas two resonances were seen in the latter case
with completely different values for slopes and in-

tercepts in the frequency-field relationship. In or-
der to interpret the experimental results, Schultz
et al. invented a phenomenological free energy in-

corporating magnetic remanence, anisotropy ener-

gy, and Zeeman energy. In the preceding paper,
hereafter referred to as I, a microscopic derivation

was given for the ESR excitations in RKKY spin-

glass systems with remanence and anisotropy. The
mathematical structure of the dynamical equations
in the large-remanence case turned out to be simi-

lar to that of an isotropic Heisenberg ferromagnet
in the ordered phase, whereas in the low-remanence

case it was more similar to a Heisenberg antifer-

romagnet. The anisotropy constant, introduced in

Ref. 6, was shown to be caused by anisotropic in-

teractions between the spins. However, in this
theoretical approach all linewidth effects were con-
sidered as small. This approximation, certainly
valid for low temperatures, might be violated for
temperatures at or above Tf. Here the anisotropy

constant which determines the ESR positions can
become very small so that linewidth effects can no
longer be neglected.

On the other side, for the same temperature re-

gime, ESR measurements were reported that
showed a dramatic increase in the linewidth.
This was considered to be evidence in favor of a
phase transition in spin-glass systems and also ex-

plained in this way by an exchange-narrowing ef-
fect. ' However, caution should be exercised in

analyzing spin-glass ESR in terms of critical
dynamics, since the linewidth increase for higher
measuring frequencies is far less pronounced. '

Indeed it will be shown that the dramatic linewidth
behavior can be understood as an effect of the
small measuring frequency without any need to
refer to critical properties of phase transitions.

II. DYNAMICAL SUSCEPTIBILITY

As in I we consider a spin-glass system consist-

ing of N quantum spins randomly distributed in a
metallic host,

N

P =A H+A g —yH'". g S;,

where A H is the dominant RKKY exchange in-

teraction mediated by the conduction electrons,
A z is a smaller anisotropic interaction between
the spins, and the last term is the Zeeman energy.
To discuss the dynamical behavior, one has to in-

vestigate the dynamical susceptibility X(co) since all

information concerning the widths and positions of
the ESR lines is contained in X(co). Based on the
projection-operator technique an exact transforma-
tion of X(co) can be obtained (cf. I),
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X(~)=Xi 1+
mi —co —M, (cg) ) /(2Xi/P)

(2a)

magnetization operator)

K=I dA, (([m„,~ ]+-e ~[m„,~ ]e-i )),„,

where X] is the static transverse susceptibility
(strictly speaking it is the isolated susceptibility)
and M&(co) is an co-dependent self-energy, defined
in Eq. (85) of I, which describes all relaxation
mechanisms of the magnetization M . Further-
more, Mi(co) can be expressed by

Xi'
Mi(co) =

co, a) M—,(co—)/(Xi/P)
(2b)

according to I. The new quantity M2(co) now de-

scribes the relaxation of the variable M (time
derivative of M ) into all nonmacrovariables (i.e.,
all operators perpendicular to M and M ) and
is responsible for linewidth effects. Finally, co&,co&

are frequency terms and X2 is a generalized suscep-
tibility,

where ( ),„ indicates the average over the random
distribution of the magnetic ions. Finally, the
quantity 6 means

The above equations (2)—(5) describe the spin
dynamics in a spin-glass with anisotropy and either
large- or small-remanent magnetization. For the
dynamical behavior in the spin-glass regime at or
above Tf, however, we can assume the remanent
magnetization to be small, i.e., M0-0, in agree-
ment with the experimental findings. ' For this
case of zero remanence and not too large values of
the applied resonance field the longitudinal and the
transverse static susceptibility are approximately
equal because of the lack of a preferred direction
in the spin-glass state, i.e., Xj -X~~. Thus we have
6 =0 and the above quantities reduce to

6/2

Here the quantity M, is the total magnetization
M, =Mo+X~~H (X~~ is the longitudinal suscepti-
bility and Mo is the remanent magnetization), and
K is the anisotropy constant defined by (M is the

72-E, a) )-yH'", o)2-0,
where we have neglected the commutator term of
co& in agreement with experiment (cf. I). In the
following, we shall neglect the real part of Mq(co)
and assume that the imaginary part is almost fre-
quency independent at least in the interesting fre-
quency regime of the ESR lines, i.e., M2(co) =iM2
(Markov approximation). Thus (2) becomes

X(~)=Xi 1+
yH'" ~ (K/Xi)/[ co—iM2/—(K/—p)] (7)

or by separating the real and the imaginary part in the denominator of (7),

X(~)=Xi [ I +co/[yH'" co(1 (K/X—i )/[ + [—M2/(K IP)] j )

i (K/Xi)[M2—/(K/P)]/I co + [M /(K/P)] I ]

Note X(co) is not only a function of the measuring
frequency co but also a function of the applied field
H'" (and of the temperature T as well). Indeed,
Eq. (8) just describes a resonance behavior for the
dynamical susceptibility as a function of the ap-
plied field (for fixed value of co) assuming the dif-
ferent quantities E, g], and M2 are independent of
H'". Though these quantities do certainly depend
on H'", as is, for instance, we11 known for the stat-
ic susceptibility 7&, as an approximation we shall

henceforth neglect this dependence. %'e believe
that for spin-glasses such as CuMn this approxi-
mation does not change the general characteristics
of X(H'",d'or, „~) but might change quantitative re-
sults. Thus, the resonance behavior of the dynami-
cal susceptibility as a function of the external field
is given by

(H'" H) i~——



26 THEORY OF ESR LINEWIDTH AND LINE-SHIFT EFFECTS IN. . . 2411

where H„ is the resonance field and LUX the
linewidth,

E/Xg
H„=—1—

y co +[M2/(K/P)]

M2/(K/I3)

}'Xi co +[M2/(K/P)]

(10)

III. LINE-SHIFT EFFECTS

Owing to the assumed temperature dependence
of M2/(K/P) we expect characteristic differences
in the experimental behavior of the line shift and
the linewidth for the two temperature regimes

[M2/(K/P)] »co and [Mz/(K/P)] «co . Of
course, the temperatures where the changes occur
depend on the value of the frequency. At first let
us consider the line shift 5H =co/y —H, which is
defined as the difference between the Larmor fre-

quency and the actual resonance field,

The resonance field H, and the linewidth ~ both
depend on the measuring frequency and on the
temperature. For the temperature behavior, we
refer to the temperature dependence of the aniso-

tropy constant. Here the experiments have shown
that K decreases linearly from its zero-temperature
value with increasing temperature as —T, i.e.,

K(T)=K(0)(1 0.67T/Tj —)
and is zero for higher temperatures T y 1.5Tf.
(The theoretical investigation in I gave a less de-

creasing function for T & Ty as T ', however, an
infinite-range model and an evaluation method
equivalent to the replica method was used. ) For
the following discussion, we shall assume a tem-
perature dependence for M2/(K/P) which is main-

ly determined by the T dependence of E alone
(that is, MiP is assumed not to depend very
much on I}. Thus, the quantity Mi/(K/P) can be
considered large (i.e., [M2/(K/P)] »co ) for suf-
ficiently high temperatures and small (i.e.,
[M2/(K/P)] «co } for the lower-temperature re-

gime. The transition between both regimes de-

pends on the value of the measuring frequency co.

This equation was used in Ref. 6 to extract the an-

isotropy constant and its T dependence from exper-
iment. However, relation (13}is only valid when

[M2/(K/P)] can be neglected compared to co .
Deviations are expected to be seen for higher tem-
peratures when [M2/(K/P)] & co or for smaller
values of the measuring frequency when T is fixed.
Let us define the quantity E=y5HXqco, which can
be extracted from the experimental data. Using
(12) we find

2

co + [M2/(K/P)]
(14)

Therefore, for fixed temperature K is equal to K
only for sufficiently high frequencies. However,
for smaller frequencies deviations from K should
be seen in K (Fig. 1). This behavior was indeed
found in experiment. ' As a function of the
measuring frequency the quantity K/co should
behave like a Lorentzian curve with a linewidth

M2/(K/P) that decreases with decreasing tempera-
ture.

A similar check of the theory can be made by
measuring the lineshift as a function of T for dif-
ferent values of the frequency co. For small tem-
peratures [Mz/(K/P)] «co the theoretical result
is given by (13) whereas for large temperatures
[M2/(K/P)] »co the expression

EC

'Y&i [Mz/(KIP)]'

should be valid. Thus one expects a qualitative
behavior of the line shift as a function of T as is
shown in Fig. 2 for two different frequency values
coi and co2 ( & coi): For the lower-temperature re-
gime the line shift with coI should be larger than
that with ~2, whereas at higher temperatures the
situation should be reversed. Again the theoretical
result agrees with the experimental findings. '

E
}'Xi co +[M2/(K/P}]

(12)

In the low-temperature regime, where

[M2/(K/P)] «co is valid, 5H reduces to

E 15H=
CO

(13)

FIG. 1. Qualitative behavior of K, defined by {14),as
a function of T. For small measuring frequencies and
high temperatures K is expected to deviate from the an-
isotropy constant E (m» col).
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FIG. 2. Qualitative behavior of the lineshift 6H as a
function of T for two different frequencies co~ and co2

{&co)}.

IV. LINE%IDTH EFFECTS

FIG. 3. Qualitative behavior of the linewidth b,H as
a function of T for two different frequencies co& and co2

( =2coi }.

Again we discuss the cases of small and large
temperatures separately. For high temperatures,
when [M2/(E/P)] is very large compared to co2,

we have

(15)

Thus, the linewidth should be independent of the
measuring frequency. One also expects AH to be-

come very small because E is small and M2/(E/P)
in the denominator of (15) is very large. However,
in the opposite case, when [M2/(X/P)] «c0, ~
is no longer frequency independent. Instead of (15)
we find

M2/(E/p)
[M2/(IC/P)] «ro

fXg Q7

That means in this regime the linewidth hH is in-
versely proportional to ro, i.e., b,H-1/ru, so that
the linewidth can be dramatically increased by
reducing the measuring frequency (compare Fig.
3). Therefore, we believe that this theory can ex-
plain the above-mentioned enormous increase of
the ESR linewidth found recently. ' lt was
claimed that this increase was a characteristic
feature of the occurrence of a phase transition in a
spin-glass and was also theoretically explained in
this way. Indeed, a reduction of the measuring
frequency, for instance, by a factor of 9 should
lead to an increase of the ESR linewidth by a fac-
tor of 81, so that it looks like a phase transition
occurs. However, the theory used here is a conven-
tional theory without any anomalous behavior of
the self-energy at or near the spin-glass transition
temperature Tf. Note that the resonance field H„,
Eq. (10), goes to zero for small temperatures when

&/Xg-co .
It may be instructive to compare the relaxation

mechanism leading to the ESR linewidth (11) with
that of an ordinary T2 relaxation process. Consid-
er the first self-energy M~(co) defined in (B5) of I,
which describes the relaxation of the magnetization
operator due to anisotropic interactions. In an or-
dinary Tz process M ~ (co) is usually considered as
co independent, i.e., M&(ru)=iM~. This leads to an
~-independent ESR linewidth AH =M, /(2X /tP) if
the 8'" dependence of M& and Xz is negligible.
For the damping mechanism considered here it is
essential to extract the co dependence from Mt(ro)
as was done in (2b). Note the final expression (7)
for X(co) is equivalent to the description of the res-
onance properties in spin-glasses by two coupled
modes in agreement with Schultz et al. In (7) the
second self-energy determines the ESR linewidth.
M2, defined by (3.8) of I describes the relaxation of
the two-spin variable [Hq, M ] (which is the
second dynamical variable for the zero-remanence
case) due to the dominant exchange interaction.
Note in the high-temperature regime,
[M2/(E/P)] «co, the first self-energy M~ and
thus the ESR linewidth (11) become co indepen-
dent, and the relaxation mechanism can again be
considered as an ordinary T2 process.

One should mention that the experimental ESR
linewidth ~ shows an co-independent background
contribution' instead of decreasing to zero for
large measuring frequencies as expected by Eq.
(11). This behavior could be caused by additional
relaxation mechanism of the localized moments
[e.g., to conduction electrons or to the lattice
which are not included in the model Hamiltonian
(1)]. The outlined theory is easily generalized to
include such new relaxation channels leading to ad-
ditional contributions to M~(co) in (2b). For in-
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stance, for an sd interaction between the localized
moments and the conduction electrons the result-
ing extra linewidth is the usual Korringa rate (for
the so-called isothermal case). However also each
different additional relaxation contribution to
M~(co} with negligible ~ dependence leads to an
co-independent background in ddX.

Finally note that ordinary T, processes (longitu-
dinal relaxation} do not enter the linear transverse
response function X(co) for the considered case of
dominant isotropic exchange and small anisotropic
interaction. T& processes should appear if contri-
butions nonlinear in the applied transverse field
h„coscot [compare (3.1} in I] are included in the
response function.

IV. CONCLUSION

It was shown that the dramatic increase of the
ESR linewidth when the temperature approaches

Tf from above can be explained as an effect of the
measuring frequency. The essential assumption for
the understanding of this effect is the temperature
dependence of the quantity Mz/(K/P). Since,
however, characteristic features of the experimental
line shift can also be consistently explained by the
same theory, this assumption can be considered as
proven by experiment. A theoretical justification
by evaluating the microscopic expressions for K
and M2, however, still remains to be done.
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