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A microscopic theory will be developed for the electron-spin resonances (ESR) in spin-

glasses with remanence and anisotropy. The model consists of spin vectors randomly dis-

tributed and interacting through a dominant exchange interaction and a smaller

anisotropic interaction of the Dzyaloshinski-Moriya type. The resulting ESR frequencies

are in agreement with recent experimental findings on CuMn. The theory also yields a
microscopic foundation for the anisotropy constant used in a recent phenomenological

description.

I. INTRODUCTION

Spin-glasses are random dilute magnetic alloys
in which the magnetic impurity concentration is of
the order of a few percent. The classical example
of this is the system of Mn ions dissolved in Cu.
This system is metallic and the impurities primari-
ly interact through a Rudermann-Kittel-Kasuya-
Yosida (RKKY) interaction which is oscillating
and of long range.

In recent experiments a vast amount of data on
the low-temperature properties of spin-glasses has
been accumulated. ' Among the many interesting
phenomena observed there are remanence-
associated properties such as the hysteresis loops of
the magnetization, thermoremanent magnetization
(TRM), isothermal remanent magnetization (IRM),
and their extremely slow decay. Also electron-
spin-resonance (ESR) measurements have been per-
formed. However, the result of the ESR depends
critically on the magnetization of the sample and
the previous ESR work refers to a superposition to
the reversible magnetization of a partial remanent
magnetization induced by an IRM process during
the measurements. Only recently ESR experiments
were performed with clear statements concerning
the magnetization value of the samples. Monod
and Berthier cooled their system in such a way as
to produce the saturated value of the ther-
moremanent magnetization. The ESR frequency
was found to vary linearly with the external field,
~+-a 'yH'"+co„with a slope a ' slightly
smaller than 1. The quantity co turned out to be
inversely proportional to the total magnetization
which was mainly determined by the remanent

magnetization. Shortly afterwards new ESR mea-

surements were carried out by Schultz et a/. , who
adopted an opposite condition from Ref. 4. They
cooled the spin-glass in a very small external field
and used only small resonance fields in order not
to produce a significant remanent magnetization by
an IRM process. Their ESR frequency again
represented a linear relationship of the form
co+-y(aH'"+H') but different values for the
slope and the intercept from those reported in Ref.
4 were obtained. The slope with yH'" was far
from unity and approximately 0.5. A second ESR
mode was also reported which showed a linear re-
lation of its frequency versus external field as well,
but the slope was less than zero.

Halperin and Saslow developed a hydrodynami-
cal theory which explains the spin dynamics in
spin-glasses. However, anisotropy and external
fields were ignored in their treatment and systems
with remanent magnetization were only briefly dis-
cussed. Therefore, Saslow extended the hydro-
dynamical theory to include an external field as
well as remanence and anisotropy. The results
describe the observed behavior of the Monod and
Berthier experiments. Since, however, Saslow's
theory could not cover the experimental features of
their low-remanence measurements, the authors of
Ref. 5 invented a model free energy that incor-
porated magnetic remanence, anisotropy, and Zee-
man energy. From their phenomenological free en-

ergy they derived equations of motion, the eigen-
frequencies of which showed the expected behavior
for systems with both small and large remanence.

The purpose here is to give a microscopic
derivation for the ESR frequencies in spin-glass
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systems with either small or large remanence.
Note that the time scale involved in ESR experi-
ments is extremely small compared to the time
scale of the slow decay of magnetization mentioned
above. This decay is believed to be caused by a
slow time dependence of low-lying metastable
states. Therefore, for an ESR experiment the me-
tastable states can be treated as stable and the
well-known theoretical concepts such as applica-
tion of linear-response theory or linearization of
the equation of motion can be applied.

In the next section the model is introduced. In
Sec. III we present the general formalism which is
used to treat the problem of the ESR excitations in
spin-glasses with anisotropy and remanence. It is
based on the projection-operator method developed

by Zwanzig and Mori. Section IV contains a gen-
eral discussion of the ESR frequencies for both
large and small remanence. The results will also
be compared with those of the phenomenological
theory of Schultz et al. (Sec. V). Here, a micro-
scopic expression can be given for the anisotropy
constant introduced by Schultz et al. Finally, in
Sec. VI, the microscopic parameters appearing in
the ESR frequency expressions will be evaluated by
means of a Bethe-Peierls-Weiss —type mean-field

theory for the case of low-remanent magnetization.
The result for E shows a temperature and a con-
centration dependence which are in qualitative
agreement with the experimental results.

as was recently suggested by Fert and Levy. '

They believe this interaction to be relevant in a
metallic RKKY spin-glass like CuMn and explain
it by spin-orbit scattering of conduction electrons
at additional nonmagnetic transition-metal impuri-
ties, dissolved in the sample. Therefore, each in-
teraction coefficient should be proportional to the
spin-orbit coupling constant and should contain a
sum over all nonmagnetic impurities. However,
one should mention that the actual type of A z is
not essential for the final form of the resulting
ESR frequencies. Any other interaction which is
not invariant against rotations in spin space could
contribute equally well to 4 q. In the explicit cal-
culations of Sec. VI, however, we shall maintain
the Dzyaloshinski-Moriya type for 4 z and assume
instead that each interaction coefficient K;J con-
tains two contributions: the Fert-Levy part and an
additional contribution of unknown origin which is
even present when no additional nonmagnetic im-

purities are dissolved in the sample.
To simplify the model for the explicit calcula-

tions in Sec. VI we shall not use the complicated
position dependence of the interactions JJ and K~J.
Instead we shall assume the interactions to be of
infinite range and independent random variables
distributed according to distribution functions
W(JJ) and W(K,z) with vanishing first but non-
vanishing second moments

II. THE MODEL

We shall consider a system of N-quantum spin
operators S;, i = 1, . . . , N in a metallic host. The
spins are randomly distributed in a volume V.
Their Hamiltonian is (i'= 1)

4 =4 ~ +A „—yH'" g S; (2.1)

with

4 & is the isotropic RKKY interaction between
the ionic spins, mediated by the conduction elec-
trons, which is the dominant interaction in a me-
tallic system (JJ is the exchange integral). The
term 4 q describes an additional anisotropic per-
turbation between the spins. Here, we assume the
anisotropy to be of the Dzyaloshinski-Moriya type

(2.2)

(a,P=x,y,z). Here the normalization with N must
be enforced to obtain an appropriate thermo-
dynamic limit. The first moment of the distribu-
tion W(K,J) is zero since K;J is antisymmetric

K;1= —Kz, . A nonzero first moment of W(J J)
would only lead to a transition between the spin-
glass and ferromagnetic state and will be neglected
here. The higher moments of W(Jz ) and W(K,J)
are assumed to be of higher order in 1/N. Note
that the second moment of the anisotropic interac-
tion should contain two contributions,
a =aci+f(c~„), according to its physical origin.
The first contribution is proportional to the con-
centration of the nonmagnetic impurities and is
caused by single-site contributions from the double
sum in KfJ over the nonmagnetic impurities. The
second term of a is a function of the magnetic ion
concentration but is independent of cq.
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III. THE DYNAMICAL SUSCEPTIBILITY

)
X(co)+X(—to)

2
(3.1)

In order to construct a dynamical theory one
must be able to determine the macroscopic vari-
ables which will enter into the theory. The
theoretical approaches of Saslow and Schultz
et al. both used as dynamical variables the mag-
netization M and a second variable associated with
the order parameter, which was interpreted in Ref.
7 as an average angle 0 by which the spins are ro-
tated from their equilibrium positions. For a
spin-glass with a dominant Heisenberg interaction
and smaller anisotropy and Zeeman energy the to-
tal magnetization is almost conserved and should
therefore lead to a slow mode. Also, the variable
0 should lead to a slow mode because its k-

dependent static susceptibility Xe( k) diverges as
k~O in the case of a pure Heisenberg spin-glass.

In a system with small anisotropy the susceptibility

X~ no longer diverges but still is bounded by the
inverse of the small anisotropy energy as is shown
in Appendix A. Thus, both quantities M and 8
should belong to the set of dynamical variables for
the system (2.1), where we have large exchange and
small anisotropic energy. However, we find it dif-
ficult to evaluate explicitly static quantities involv-

ing 8 by starting from microscopic expressions.
We shall consider instead the time derivative of the
magnetization M =iLM as the second dynam-
ical variable. This choice is equivalent to substi-
tuting X~ for its lower bound. Thus, one expects
that M should almost equally well lead to an
adequate description of the spin-glass dynamics.

Let us consider a sample which was cooled to
low temperature from above the spin-glass regime
in the presence of a magnetic field H, along z. If
H, was not too small a remanent magnetization
(TRM) remains after the field was turned off. We
shall study the ESR frequencies in the spin-glass
state for external fields H'" applied parallel to H,
for both large- and small-remanent magnetization.
The linear response of the transverse magnetization
due to a small oscillating transverse magnetic field
h„coscot is given by the Kubo formula, "

X(co)=p M
L —z

2 ~ z =N+lYf

(3A)

where the Liouville operator L is a superoperator
which acts on operators A as LA =[A,A] (fi= 1).

The projection-operator technique is based on
the operator identity'

1 P [PLP z M(z)]+ —— QLP =P,1

L —z QLQ —z

where

M(z) =PLQ QLP .1

QLQ

(3.5)

In case P is chosen to be the projector into the sub-
space formed by the dynamical variables M and

and Q =1 Pwe obtain the exact r—epresenta-
tion of X(co) (see Appendix 8),

frequency-dependent dynamical susceptibility
which contains all information concerning the po-
sitions and the linewidths of the electron-spin reso-
nances. The infinitesimally small quantity g was
introduced for the integral in (3.1) to converge.
Note that Eq. (3.1) is based on the assumption of
vanishing off-diagonal response between the x and

y direction. This is approximately valid because
the isotropic RKKY interaction is assumed to be
the dominant energy in the system (compare Sec.
VI}.

To analyze the dynamical susceptibility we shall

apply the memory-function formalism' and define
the following scalar product:

(A
~

B)=—f dA((A+e ~Be )),„,
(3.3)

P= 1/kT

for any operator A and B. Here ( }means the ex-
pectation value with the equilibrium density matrix
and ( ),„ indicates that an average has to be taken
over all random interaction parameters. Using the
relation (( [A,B])),„=p(A +

~
LB), which connects

commutator expressions with the scalar product
(3.3) the transverse susceptibility X(to) can be ex-
pressed as

where

X(co)=—' f"
dt e+""+'""(([M+(t),M ])},„,

q~O+ (3.2)

(M +=M"+iM~=yS +).-Here X(co} is the-

X(to)=Xi 1+
~,—~—M, (~)/(2X, /P)

where

X2/
Mi(to}=

ei2 —to —M2(to) /(Xz/p)

(3.6)
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(~-
I
L~ )-

2xi/P
(3.7)

and the self-energy or "memory function" by
I'

M, (~}= m Q, LQ QLQ, m-
L Cil ——i 7)

I

(3.8)

Here the susceptibilities Xi,X2 and the frequency
terms co~,co2 are given by

Xi=p(M ~M )/2, X2 ——p(M
~
QiM ),

(~
~ Q,LQ,~-)
Xi/P

(([m+,M ])),„=kg
Xj

(3.10)

find at first,

~,=yH'"+, h=P({L„m j~-m-} .5/2
XJ

(3 9)
Here {LzM J is defined by {L„M
=[L/(L +i')]L„A/, yH'" is the Larmor fre-
quency, and 6/2xi is a line-shift term proportional
to the anisotropy energy. Or, we can use the rela-
tions L~A' =LM and (A

~

LB)
=P '(([A+B])),„so that

where M, = ((M*)),„ is the total magnetization.
Therefore, the line-shift term b, can be expressed
by M, and Xi, i.e.,

Here, Qi is a projection operator into the subspace
perpendicular to the magnetization operator M
and a quantity' A, defined by A =[L/(L +ir))]A
means that part of the operator! which does not
commute with the total Hamiltonian A . This
may be seen by taking matrix elements in a repre-
sentation in which 4 is diagonal. A connects
eigenstates of 4 having different energies. Note
that the projector P, defined above, differs from
the projector Pi =1—Q, . P projects into the sub-

space formed by M and its time derivative
whereas P~ projects only into M . Let us now
discuss the different parameters Xi,cubi, X2,co2 de-
fined in (3.7). The quantity Xi is the transverse
static susceptibility. [Strictly speaking, it is the
isolated susceptibility' because of Xi——X(ra~0). ]
The frequency term co& can be expressed in two
ways. By using LM =L~M +yH'"M we

5/2=yM, yH'*Xi—. (3.11}

Note that the total magnetization consists of a re-
versible and an irreversible part, M2 ——H'"X~~+Mo,
where Mo is the remanent magnetization (in z
direction) and X~~ the longitudinal susceptibility.
The quantity Xi of (3.7) can be considered as a
generalized static susceptibility for the variable
Q iM . Since Q iM =iQ iL„M we have

X,=P({L„M I ~
QiL„M }=K— . (3.12)

6 /2

Note that Xi can also be expressed in terms of b,

and a new defined quantity
!

K=P({L~M I ~LgM )= J dA(([{A g,M J]+e [A g,~ ]& ))„, (3.13)

where K lacks the projector Qi of (3.12). As it turns out K will take over the part of the anisotropy con-
stant. Both quantities K and X2 are of second order in the anistropic interaction A z, where higher terms in
KJ should be negligible for a spin-glass with dominant Heisenberg interaction. Note that the quantity Xz is
positive definite because it can be expressed by a norm of the scalar product (3.3). Therefore, the following
inequality must be valid (Appendix C):

XiK )2(yMg yH'"Xi)— (3.14)

Finally, also the frequency term coi can be rewritten. Using QiLM =QiL&M and (3.11) we find

cy = ({L M ]~QLQL M ) — — 2 H'"'=x, /p " ' '" =
x, x, +' +x, x,

I~ ~ L

(3.15)

IV. THE ESR FREQUENCIES

The formal result (3.6) for the dynamical susceptibility X(co) can easily be discussed. In case the self-
energy Mi(co} varies slowly with frequency, X(co} describes two individual resonances,
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N~+N2
N+=+ + +

N~ —N2

' 2 1/2
Inhlf2

2Xi/P
1 N] —N2

2 IX&/2Xi+[(~i —pi2)/2] J'
(4.1)

ImM)
+ 2Xi/P

' (4.2)

where we have neglected the real part of Mi.
In the remaining part of this section we shall

give a general discussion of the ESR excitations
based on general considerations neglecting all line-

width effects. Let us consider the cases of large
and small remanence separately.

A. Large remanence [(yMp)/X~~ &&(K/2)/yMp]

In Appendix C the inequality (3.14) is discussed
for both large- and small-remanent magnetization.
Solving for Xi one obtains lower and upper bounds
for the transverse susceptibility. In the case of
small magnetic field, yH'" «(K/2)/yM„ the
lower bound is given by

(yM, ) yMg yH'"

K/2 K/2
1— (4.3)

For the case of large remanence (yMp)/X~~
»(K/2)/yMp, which is now discussed, the trans-
verse susceptibility is always very much larger than
the longitudinal susceptibility X~~. Let us now as-
sume the transverse susceptibility is of the order of
its lower bound, i.e.,

1—(yMg ) yMgyH'"

K/2 K/2
Ej2yHex ((
yM,

(4.4)

where the first term determines the position and
the last term the linewidth of the ESR excitations.
Here, the real part of Mz was neglected and the
linewidth was assumed to be small compared to
the resonance frequencies. Note the physical
response of the transverse magnetization to an os-
cillating field perpendicular to H'" is proportional
to X(co)+X(—co) [cf. (3.1)] and only two of the
four poles of X(co)+X(—co) are seen in an ESR ex-

periment. As it turns out, Eq. (4.1) applies to a
spin-glass system with small remanent magnetiza-
tion. For the case of large remanence not Mz(co)
but the "first" self-energy Mi(co), defined in (3.6)
or (BS), can be considered as co independent. Then,
the dynamical susceptibility X(pi) describes only

one ESR excitation,

I

where the constant a may be somewhat larger than
1, a&1. Then we have

}'Mz 1,„K/2
N&= = yH +

Xg a yM,
(4.5)

(4.6)

co(k) =yH'"+ [pp/(2yM, )]k~,

The generalized susceptibility p2 would be zero in
case Xj fulfills its lower bound. So, X2——E
—(5 /2)/Xi should be very small compared to K
since Xz has a value near its lower bound, and the
second frequency term coq should become very
large because it is inversely proportional to X2.
Thus, the first self-energy Mi(pi) is small and al-
most independent of co, and only one resonance
should be found in an ESR experiment,1,„E/2

N+ ——N) ———yH'"+, a) 1.a yM,

This result means that the dynamical behavior of a
spin-glass with large remanence is determined by
the dynamics of the magnetization operator M
alone. As already mentioned, an experimental
ESR frequency described by (4.6), was indeed re-
cently observed by Monod and Berthier in a CuMn
spin-glass with large-remanent magnetization. The
experiment showed a slope of the frequency with
yH'" which differed slightly, but significantly,
from unity. Also a line shift was found which was
inversely proportional to the total magnetization.
The value for K/yMp, deduced from the experi-
ment, is small compared to the experimental value
for (yMp)/X~~. Therefore, the physical situation of
the Monod and Berthier experiment should belong
to the case of large remanence, considered here.

Note that the mathematical structure of (4.6) is
very similar to that of wave-vector-dependent exci-
tations in anisotropic Heisenberg ferromagnet in
the ordered phase. In that case the dynamical
variable is the Fourier transform Mk of the mag-
netization operator (k is the wave vector) and the
anisotropy constant K reduces to ppk (pp is the
bare stiffness constant) since for small wave vec-
tors the commutator of the Heisenberg Hamiltoni-
an with Mk is proportionate to k ([P H, Mk ] k)-
Thus, the k-dependent transverse susceptibility be-
comes Xi(k) = (yM, ) /ppk, which shows the
well-known divergence for small k, and (4.6)
reduces to the expression
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which represents the k-dependent excitations in a
Heisenberg ferromagnet. '

B. Small remanence [(yMp)/X~~ &&{K/2)/yMp]

I.et us now consider a sample which was
prepared so that it shows no remanent magnetiza-
tion, i.e., Mo-0. In this case, the Schwartz in-

equality (3.14) yields no useful bounds (Appendix
C). However, when only small Zeeman energies
are used in the ESR experiment both the transverse
and the longitudinal susceptibility should approxi-
mately be equal, XJ -XII, because there is no pre-
ferred direction in the spin-glass state. Then, the
quantity

b, /2= yM p+ (Xj —Xi~i)yH'"

should become very small, so that the generalized
susceptibility Xq ——K—(5 /2)/Xj can be replaced
by K and the frequency term co~ yH'"+(——6,/2)/Xj
by yH'", i.e.,

scribes the dynamical behavior. In an antifer-
romagnet the second variable is the staggered mag-
netization. It corresponds to the time derivative of
the magnetization operator Q&M . For the anti-
ferromagnet the frequency terms co& z both reduce

y+ex and g again reduces to ~ok2 Thus on
gets the usual result for the k-dependent excita-
tions in a Heisenberg antiferromagnet,

' 1/2
pp/2

co+(k)=+yH'"+
i
k

i
.

XJ
(4.9)

where co+ are the complex eigenfrequencies (4.1).
Using (4.10) we can express the dynamical suscep-
tibility X(co) by

It is also instructive to introduce the eigenmodes
of the system which are linear combinations of the
two dynamical variables M and Mz =—Q~M

2XJ8+ ——M +i (co&+co+)Mj
X2

(4.10)

XJ=XII & X (4.7)

( ([(L,„~-)+,L.„m-]}),„
N~ =gH, N2= E

Thus, the two ESR frequencies co+ of (4.1) are
given by

X{co)—X&
2 X+

2
N] —N+

co +co+ ( —co ) —co

2 I /2yH'"+ cd K/2 yH'" coq—
2

'
X.

'
2

(4 8)
where for small external fields the term
[(yH'" —coq)/2] of order (yH'") can be neglected
against (K/2)/Xz in the last term. This last ap-
proximation should be valid for the small external
fields that are used in the ESR experiments of Ref.
5. The result (4.8) shows the expected experimen-
tal behavior if one neglects the frequency term co&

(no coq term was employed in the phenomenological
description of Ref. 5). Here co& will be evaluated in
Sec. VI. The result leads to a value of 0.6 for the
slope of co+ with yH'" that is somewhat different
from the experimental slope 0.5. However, the
evaluation of co& is rather crude and the result also
depends on the actual type of the anisotropic in-
teraction and its position dependence.

The mathematical structure of the solution (4.8)
for a spin-glass with small remanence is very simi-
lar to that of wave-vector-dependent excitations in
a Heisenberg antiferromagnet in the ordered re-
gion. In both cases there is a second dynamical
variable besides the magnetization operator that de-

2XJ
Xa =X& 1+

I
cot+co+

I

X2
(4.12)

The prefactors in (4.11) determine the coupling of
B+ to the magnetization operator M . For small
remanence the two excitations seen in an ESR ex-
periment are given by the pole of the first term of
the right-hand side (RHS) of (4.11) and by the pole
of a contribution to X( —co) that corresponds to the
second term of (4.11). With increasing remanent
magnetization the coupling strength of the second
eigenmode in (4.11) decreases and vanishes for
large remanence because of co+ -co~. Thus the
large-remanence case of Sec. EVA is regained.

V. COMPARISON %'ITH
THE PHENOMENOLOGICAL THEORY

OF REF. 5

Our results shall be compared with those of
Schultz et al. We start by giving a dynamical

(4.11)

where X~,Xa are the static susceptibilities of the
eigenmodes B+,
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description equivalent to (3.7) in terms of two
equations of motion for the variables M and

QiM

=ico)M +My
d
t

er, X,
~~
=X,i——X,. Now we can compare (5.1b)

with (5.2). From the first equations we find that
Mq can be identified with iyK, n . The second
equations give the following relations between the
various quantities of both approaches:

d — 2
+ico2Mj.

dt 2Xi

(S.la) y K, Xi+5(yH'" co2)—

+s
(S.4a)

M, (t t')—
t'Mj t' +F t

0

yM,
yH — = +602 ~

Xs 2XJ
(5.4b)

=iyH'"M +My
dt

Xi+b (yH'" cop)—
dt . 2Xi

(5.1b)

These equations can be obtained from Eq. (3.5)
[with P and Q defined in (87}]by multiplying
from the right with M and Mi and performing
the inverse Laplace transformation. Mi(t) is the
inverse Laplace transform of M2(co) and F(t) is the
random force F(t)= exp(iQLQ)M& . The
phenomenological equations of Schultz et al. did
not include damping effects. Therefore, we shall

neglect the third and fourth terms in the second
equation and rewrite (5.1} in terms of the two new

variables M and iLqM =—Mz, where Mz is
the part of the time derivative of M which is

governed by the anisotropic energy A z. With

M~ ——Mi +(b,/2Xi)M we have

y'K, = = ( t
L—„m —

J~ L„m -). -K
2 2

(5.5)

The microscopic expression for K will be evaluated
in the next section.

In the case of large remanence

[yMp/X~
~

))(K/2)/yMp] a comparison between
both sides of (5.4} is more complicated. To ensure
a finite value for co2 we assume the following form
for the transverse susceptibility:

which must be valid if both dynamical descriptions
are equivalent. Let us discuss the cases of small
and large remanence separately.

For small remanence [yMp/X~~ (((K/2)/yM ]p

the RHS of (5.4a) reduces to K/(2X~~) because the
quantity 6 is small and also the frequency term co2

is small. Thus, if we identify X, with X~~ ( =Xi)
the phenomenological anisotropy constant K, of
Schultz et al. is determined by the microscopic
quantity K,

6/2+i +co2 M~ .
IJ

(yM, )
Xy=X +

K/2+ yM, yH'" (5.6)

=iyH'"M +iyK, n
dt

y yM,—n =i ~ —i —yH'" n
dt &st &sj.

(5.2)

The corresponding equations deducible from the
paper of Schultz et al. are

which can be deduced from the phenomenological
free energy of Ref. 5. Note that (5.6) also agrees
with both the large- and low-remanence results
(4.4) and (4.7). For small magnetic fields
yH'" «(K'/2)/yM, one now finds

X2 =[K'/(yM )']X~~/2 and

which lead to the ESR frequencies

yH'" yM p/Ks. . —
CO+ =+

2

(([[~„~-]',[m„,~-]])),„
602 =

&2av

(5.7)

(yH'"+yMp/K, ) Kg
(5.3)

In (5.2) the second dynamical variable n is a direc-
tion operator associated with the order parameter.
K, is the phenomenological anisotropy constant
and X,

~~
and g,z are the principal values of the sus-

ceptibility tensor which were set equal to each oth-

where 6/Xi ——K/yMp was used. If the first term
in (5.7) can be neglected, i.e., co2= —yMp/X~ ~,

the
RHS of (5.4a) again yields (K/2)/X~~ as in the
low-remanence case. Thus the relation (5.5) be-
tween the phenomenological anisotropy constant
K, and the microscopic expression K is also de-
rived for the large-remanence case. Note that the
two approximations used here, i.e., the assumed
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form (5.6) for g~, and the approximation
co2- —yMo/X~~, were not used in the derivation of
the ESR frequency (4.6) for the large-remanence
case. They are, however, implicitly contained in
the theory of Ref. 5.

VI. EVALUATION OF PARAMETERS

In this section the various parameters which
enter the ESR frequencies (4.1) shall be evaluated

by starting from the microscopic expressions (3.7).
Because of the complexity of the system a Bethe-
Peierls-Weiss-type mean-field theory shall be em-

ployed which, however, cannot explain the appear-
ance of a remanent magnetization due to an ap-
plied field during the cooling process. A more so-
phisticated method could make use of the concept
of spin clusters, which was recently utilized by
Ma' in explaining the remanence in spin-glasses as
well as other low-temperature phenomena. There-
fore, we shall henceforth restrict ourselves to the
zero-remanent magnetization case.

Our model (2.1) with random-exchange and an-
isotropic interactions JJ and K;J, both of infinite
range, represents a generalization of the Sherring-
ton-Kirkpatrick spin-glass model. ' The evaluation
method used here can avoid the n —+0 replica trick
of Ref. 17. In a modified form it was applied to

the Sherrington-Kirkpatrick model by Thouless et
al., ' who obtained a result that remained physical
to T =0 in contrast to the original treatment. '

Here, however, we shall use a simpler treatment by
Plefka, who could rederive the Sherrington-
Kirkpatrick solution with the nonphysical T=0
behavior. ' This approach uses the concept of an
internal-field distribution. First we replace the
Hamiltonian (2.1) by an effective Hamiltonian

N

Si x+i= g H;.S;

N—Sp H„+ g(JpS +S )&Kp)
i=1

(6.1)

The first term is the mean-field Hamiltonian of N
spins with internal fields H;. These fields are dis-
tributed with a site-independent yet unknown func-
tion P( H;). The second term represents the exact
interaction of an additional spin So, added at posi-
tion 0, with the N original spins. By construction,
H;, Jo;, and Ko; (i =1,. . . ,E) are independent ran-
dom variables with distribution functions
P( H;), W(Jp;), and IT'( Kp;), respectively.

The distribution function P( H) can be defined

by (Appendix D)

P(H)= 5 H —H'" —g (Jo;( S;)p+( S;)oXKo;)
i=1 av

(6.2)

(6.3)

where ( ),„means again the average over the random variables and ( )p is the thermal average taken with
the single-particle Hamiltonian

A o= g H S —So H + g (Jo'( S'~o+( S'~oXKo')

which is obtained from (6.1) by replacing S; by its expectation value ( S; )p. For details of the averaging we
refer to Appendix D. In the limit of vanishing external field H'" we obtain

HP(H)=(2n) ~
2 2 exp

[(J +2m )q/3] ~ 2(J +2m )q/3
(6.4)

where the order parameter q is

q = I d H (Sf )pP( H ) .

P( H ) has a Gaussian shape with linewidth

[(J +2m )q/3]'~ and possesses spherical symme-

try P( H ) =P(
~

H
~

) even though anisotropic in-
teraction between the spins is present. For finite

I

fields H'"@0, P( H ) reduces to cylindrical symme-
try.

Equation (6.4) and q= f d H(S,' )oP(H)
represent a self-consistent equation for q leading
immediately to the spin-glass transition tempera-
ture for the onset of a nonzero q solution
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Since the anisotropy energy is small compared to
the exchange energy, the spin-glass temperature
should depend little on the amount of nonmagnetic
impurities added to the sample (e.g., Ni added to
CuMn) but might be observable in experiment if
the ratio a/J can be made large enough. The mag-
netization M, is evaluated in Appendix D. It can-
not explain remanence because it has only a rever-
sible part depending on the external field. Howev-

er, from the expression for M, the longitudinal and
the transverse susceptibility can be obtained by dif-
ferentiating with respect to a small external field in
the z or in the x direction. For simplicity we re-
strict ourselves to the limit H'"=0, in which both
susceptibilities become equal, X~~ =Xq =—X,

+=Ny p I d HP(H)(SQ
i SQ —(SQ )Q)Q,

(6.5)
n =x,y, z .

Here the quantity (A
~
B)Q is defined similarly to

(3.3) but using the mean-field Hamiltonian A Q
in-

stead of A ~+~,
8

(3
~
B)Q———I dA (A +B(ii ) )Q,0

(6.6)

B(i A, ) =e 'Be

and without an average taken over the random
variables. The time dependence of B(iA, ) is best
evaluated by transforming the spins S into a new

frame of reference (x',y', z') with a new z' axis

Ny' S(S+1)
f

(6.7)

N

(J2+2~2)1/2

Note that at the transition temperature the
linewidth of the internal-field distribution goes to
zero and P(H)H degenerates to a 5 function:
P(H) =5(H)/(H 4~). The result shows that the
T =0 value of X is slightly smaller than that at T/.
X(0)/X(T/) =0.92.

Next, we evaluate the anisotropy constant K,
given by (3.13). In a first approximation we re-

place A ~+& by MQ, since K is already of second
order in the anisotropy energy EfJ Next, the
quantity ILzM I representing that part of
[P„,M ] that does not commute with the total
Hamiltonian is approximated by I L~M ]

)Q Evaluating [A wiM 1

and taking the average over the random variables
we finally obtain

parallel to the internal-field direction H. From the
final result for 7, given in Appendix E, the values
at T~ and T=0 can easily be deduced,

X(T=O)= ~2S I d'H
3 H

l

(J +2m )'

4' 'X —I, d~ I d'HoP(Ho) I d'H P(H ) [(SQS',(ii, )),+(S~QS,(iiL)),](S",S",('A, )),—Pq'

(6.8)

Thus the value at the spin-glass transition tempera-
ture is

K(T='1 )+4@ y N
3 (J2+2 2)l/2

(6.10)

whereas at T =0 we have

The A, integration leads to a rather lengthy expres-
sion (Appendix E). Therefore, we only quote the
result. For high temperatures the anisotropy con-
stant decreases as T

2

K(T) =4m X P3
(6.9)

K(T =0)=4 y E
(J2+2~2) i/2 (6.1 1)

Here a is a c number of value -0.17. The results
(6.10) and (6.11) show that K is of the order a. /J.
The ratio K(0) to K(T/) depends on the spin

1

quantum number S. For S= —, the zero-
temperature value of E is slightly smaller than the
value at T/. However, for larger values of S,K(0)
becomes larger than K(TI) for instance, by a fac-

3 5
tor —, for S=—, (spin quantum number of CuMn).
Thus for CuMn the calculated anisotropy constant
shows an overall decrease with increasing tempera-

3
ture: at first by a factor —, when T goes from
T =0 to T~ and as T ' for temperatures T & T~
[note: The theoretical value of K is non-negative
because it can be expressed by the norm of the
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scalar product (3.3)]. The experimental result for
E, deduced from the experiments, shows a quali-
tatively similar T behavior. The experimental E
also decreases with increasing T but linearly with
—T

K,„p(T=O)
V

cMB(acl +bcMll) (6.12)

(V is the volume) with a »b. From the theoreti-
cal point of view the two terms in parentheses
should be attributed to the two different physical
contributions to a discussed in Sec. II, whereas the
common factor cM„ is the number of magnetic ions
N divided by V.

Finally, the frequency term co2 has to be evaluat-
ed starting from expression (3.15),

(([(LgM )+,LgM ])),„
N2=

X2
(6.13)

where we have already used 6=0 for the low-
remanence case. By evaluating the commutator in
(6.13) and taking the average over the random vari-
ables, we find

(6.14)

which is proportional to the magnetization

y((S') ),„=yI d HP(H)(S'),

of the sample. The factor

« (S')') ).,= I d'H P(H) ((S')'),
which is best evaluated by transforming (S') to

K(T)=E(0)[1 P(T—/Tj )]

(P is a c number), and has, therefore, no cusp at
Tf as might be expected from the theoretical re-
sult. [Note that E was measured in a field of -3
kG where Tf'=0.9TI (H =0), whereas the theoret-
ical result is only valid for zero magnetic field. ]
Moreover, it is worthwhile to mention that the ex-
perimental prefactor P was found to be the same
for different concentrations of Mn ions. Again,
this behavior can be understood from the theoreti-
cal result for E (neglecting the difference between

Tf and Tf ). From (ES) one finds that the ratio
E(T)/E(0) only depends on the quantity
p(J +2' )', i.e., Tf /T, but is independent of the
concentration of the magnetic or nonmagnetic im-
purities dissolved in the sample. The experiments
also gave a dependence of the zero-temperature
value of K on the concentration of the magnetic
and nonmagnetic impurities (cM„and cr ),

the new (x',y', z') frame of reference, reduces to
S2/3 at low temperatures PJ »1. Thus the fre-

quency term co2 is found to be proportional to
~~ex

2a y S X(0)
3E(0)

~ex
6(a+2S/3)

(6.15)

VII. CONCLUSION

The purpose of the present investigation was to
derive microscopic expressions for the ESR excita-
tions in RKKY spin-glass systems with remanence
and anisotropy. Based on the projection-operator
formalism general features of the ESR frequencies
for small and large remanence were discussed
without evaluating the various parameters in-
volved. The mathematical structure of the dynam-
ical equations in the large-remanence case turned
out to be similar to that of an isotropic Heisenberg
ferromagnet in the ordered phase, whereas in the
low-remanence case it was closer to an Heisenberg
antiferromagnet. The theory presented gives a mi-
croscopic foundation for a recent phenomenologi-
cal description of the spin dynamics in spin-
glasses. Our method yielded a microscopic expres-
sion for the anisotropy constant used in that ap-
proach. This constant and other parameters, con-

1

(PJ »1) with a slope always less than —„. For
S=—, (CuMn) we have co2-0.23yH'". Thus, the

expression (4.8) for the ESR frequency co+ in a
sample with zero remanence yields a slope with
yH'" of -0.61, somewhat in opposition to the ex-
periments which gave a slope of -0.5. The differ-
ence between theory and experiment should be at-
tributed to the rather crude theoretical method
used here in the evaluation of the various parame-
ters appearing in (6.14).

From the experiments one can deduce a value of
-3 kG for the frequency co+ at zero external field
co+(H'"=0) =v'K/X. With (6.11) and (6.7), this
leads to a value of -0.9 kG for the anisotropic in-

teraction il (S=—, ). For the exchange interaction J
one finds a value of the order of 10 kG by assum-

ing a realistic value for

Tf [S(S+1)/—3](J'+2il')'" .

Thus the anisotropic interaction is indeed very
small compared to the exchange interaction as was
assumed from the beginning.
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tained in the final result for the ESR frequencies,
were evaluated by means of a Bethe-Peierls-
%eiss —type approach for the case of vanishing
remanent magnetization. The theoretical findings
were compared with the experiments. The influ-
ence of the self-energy on linewidth effects was
neglected in the present theory. However, the
selF-energy is believed to be important for relatively
high temperatures T & Tf within the spin-glass re-

gime, when the anisotropy constant E and there-
fore the excitation frequencies become rather small.
Linewidth and line-shift effects in this regime will

be discussed in the following paper.
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APPENDIX A

The variable 8(r) describes the average angle by
which the spins in the spin-glass system are rotated
from equilibrium and is defined by

of a. The RHS of (A3) can be expressed in terms
of the scalar product (3.3) due to (([A+,8])),„
=P(A

I
LB). So, we can use the Schwartz inequal-

ity (A
I
A)(8

I
8))

I
(A

I
8) I, where 2 and 8 are

the Fourier transforms of 8 and fi' =iL~k' and
obtain an upper bound for the wave-vector-
dependent static susceptibility Xg(k) =P(8t,

I
8t, ) of

the variable L9,

2

Xg(k) )—
P(M/P Mt, )

(A4)

For a pure Heisenberg spin-glass the total magneti-
zation Mi' g p is a constant of motion, so that we
have Mi' ~ =ikj for small wave vectors. Thus
Xg(k) diverges at least as k . If the divergence is
the minimal one, i.e., Xg(k) =q /(pok ), the stiff-
ness constant pp is bounded by

po(k) ( lim p(j I j~),—k p
(A5)

2

Xg(k~0) )
P([[A g,M j ] I

[4 g,M ])

(A6)

For the transverse direction the denominator
represents the anisotropy constant, defined in (5.5).

APPENDIX 8

j =j, as already quoted by Halperin and Saslow.
In case the system includes anisotropic interactions
the susceptibility Xg(k) no longer diverges for
k~0 but is limited by the anisotropy energy

8(r)= g (S;)XS;,
~ iER

(Al) We want to derive Eq. (3.6). First, we use the
identity

where the region R contains a large number of
spins centered around point r. 8(r) and the mag-
netization operator .W(r) obey the commutation re-
lation

L L L 1
+CO

L —co —ig L —tg L —tq L —co —ig

(B1)

and rewrite (3.4) as

X(co)=Xj+coP M 1

L —co —l 'g
2

with t~(r) = g,.~a (St )S; . Taking the thermal

averages of (A2) and averaging over the random
variables gives the Sherrington-Kirkpatrick order
parameter q = f dr (( t ( r ) )),„,

q =if dr fdr'(([M (r),8 (r')])),„.
(A3)

For a pure Heisenberg spin-glass q~ is independent

(B2)

where X, and M are defined in (3.7). Next, we

apply the operator identity (3.5) choosing at first a
projector P~ that projects on the magnetization
operator,

(B3)

By multiplying Eq. (3.5) from the left with
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(M
~

=(M ~Pi and from the right with

)=Pi ~M } we obtain [with (M ~Qi -—0]
and (C3)

X(ni)=Xt 1+
co i a) —M—

i (a) ) /(2Xi//3)
J

(84)

yH ex2+
2yH'"

g 4yM,
1+

2 H'" K/(2 H'")

' 1/2

Here rai is defined in (3.7) and the "first" self-
energy Mi(co) by

1
Mi(ro)= M Qi . QiM

iL i
—co —i ri

(85}

(86)

where X2 is defined in (3.7) and arrive at the final
result (3.6}—(3.8), where

Q =(1 Pi }(1—P—2) =1 Pi P2=—1 P— (87)—

projects on the operator space perpendicular to
and M

APPENDIX C

Note that M i (co) has the same mathematical struc-
ture as the original expression for [X(co)—Xt]/co.
Thus, we can apply the identity (3.5) again with

~Q,~ )(~ ~Q,

X2/p

The bounds depend on the total magnetization
Mp+H X)), the anisotropy constant K, and

the applied field H'". For low inagnetic field
yH'" «K/(2yM, ), the lower bound is

(yMg ) yMgyH'"
Xt I

ib=
K/2

1 —2

(C4)

which is discussed below (4.5). It is appropriate to
discuss the cases of large- and small-remanent
magnetization separately.

For large remanence, yMo/XII »K/yMo, both
bounds are decreasing functions of the external
field [Fig. 1(a)]. Equations (C3) should be useful
in this case. For small remanence, however, the
lower bound is an increasing function and the
upper bound a decreasing function of yH'". Then
Eqs. (C3) can be used only for large external fields
[compare Fig. 1(b)].

&(IL„m j fl.„m )(m [~ ) (Cl)

or

(yH'"2Xt 2yM, ) &K2Xi— (C2)

using (3.13), (3.11), and (3.7). K and Xt are posi-
tive definite quantities. (C2) can easily be solved
for Xt leading to a lower and an upper bound for
the transverse susceptibility,

To derive mathematical bounds for the suscepti-
bility Xj we employ the Schwartz inequality

) (A LB } )
& (A

)
A }(B

~

B}with A =
I I.„M ]

and B=M, where the scalar product is defined
in (3.3). Using the relation (A ~B)=(A ~B) (for
any A, B) the inequality reads

X~ i

K/2

( Hex)2

(yMp) 7M I

K/2 I Hex
I 7
I I
I I

. K/2 yMp

Xg ~ yMp Xll

K/2
(yHex)~

I

(yM, )

K/2 ~I(„He~X P
K/2

I I
I I
I I

yMp /K/2

(a)

Xu

(b)

HCX

yH'"2X, & 2yM, + Hcxy

X 4yMz1+
2yH'* K/(2yH'")

FIG. 1. Qualitative behavior for the lower and upper
bound of the transverse susceptibility P~ for (a) large
remanence, yMO/g~~ &&E!yMO, and (b) smail
remanence, yMO/+I, t &&E/yMO. The leading contribu-
tions are indicated in the different external field regions.

'
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APPENDIX D

For the Hamiltonian 4 N+i, defined in (6.1), the
expectation values (S;)&+i,i =1, . . . , N and

(Sp)~+i can be evaluated. After applying
Jp;,Kp;-N '~ we obtain [8,(x) is the Brillouin
function]

expression. Note that there is no contribution to
the internal field at site i due to the presence of the
added spin at site 0. Such a contribution was
necessary for the Thouless, Anderson, and Palmer
solution of the Sherrington-Kirkpatrick model to
remain physical to T =0. Using

1= f d H5(H —Hp)
(s, )„,=(s, ),=u, sa, (psH, ),
(Sp)~+i ——upsy(SPHp),

H, —=H'"+ g(J„(s,)p+(s, )pxK„),
(Dl)

in (Dl) and averaging over the random variables
leads to

((s,)„+,),„=f d'H usa, (spH}Pp(H),
where ( )p is the expectation value defined below
(6.2). u; =H;/H; and up=Hp/Hp are unit vectors
parallel to the internal fields H; and Hp at site i
and 0, respectively. Hp is the usual molecular-field

ii =H/H, where the internal-field distribution
Pp(H) at site 0 is given by

(D2)

Pp(H)=(5 H —H'" —g (J;(S,) +(S,. ) XK,.
i=1 av

, f d'«'"'" "'-(I"p[ il (J—p;(S;)p+(S, )pXK., }]]"),„.(2n )' (D3)

( ),„ indicates the average over the independent random variables H;, Jp;, and Kp; (i =1, . . . , N),

N

(A ) „=f ' f A g P(H )d H W(Jp. )dJQ ) rV(Kp )d Ep (D4)

Since all sPins are equivalent the internal field distributions must be the same at all sites, i.e., Pp(H) =P(H).
Thus, Eq. (D3) represents a self-consistent integral equation for P(H). It can be solved by expanding the
second exponent in (D3) and using (2.2). In the large-N limit we find

P(H)= i f d ke' exp( ——, I J q, +2aqi)k, +[J qi. +Ir2(q, +qi)](k2+k~)I), (D5)

where we have introduced two order parameters q, and qz,

q, = f (S )pP(H;)d'H;, qi ——f (S;")pP(H;)d'H;, (D6)

which, however, become equal for vanishing external fields. The integration over k leads to the final result,

P(H) =
3&2 2,&2 exp[ (H, H'") /2(J q, +2—a.2qi)—](2m. ) ~ (J q, +21' qi)'~

X 2 2 exp[ (H, +H~)/2—[J qi+a (qi+q, )]J .[J qi+& (qi+qs)]
(D7)

The magnetization is given by
M=¹((Sp)~+i),„, where (D3} has to be entered
into the RHS. The result for M cannot describe
the remanent magnetization, as mentioned in Sec.
V.

APPENDIX E
The time-dependence (6.6} of a single spin,

Sa( g) e OSae 0 ei,r H .s Sae i,r H s—
a=x,y,z

(El)
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where the single-particle Hamiltonian P 0 is given

by (6.3), shall be evaluated by introducing a new
frame of reference with the new z' axis parallel to
the internal field H. The new y' axis is chosen to
be perpendicular to the plane formed by the z' axis
and the old z axis. Then the transformation reads

H„, H„H, 1, HS»= Si — —S» + y —Sy
H H2 w Hw

where w = [1 (H—,/H) ]'~ . H, a =x,y,z are the
components of H in the original x,y,z frame of
reference and H =

~
H

~

. The evaluation of the
time dependence in the new x',y', z' frame is trivial
and we immediately give the results for the corre-
lation functions (S S~(iA)) ,p averaged over the
internal fields. Here ( )p means again the average
with 4 p. We find

Sy ySz y ~ ' S„» 1SyH, HHg 1, H„
H H~ w H w

H, IS'= S' +wS",
H

(E2)

with

f d HP(H)(S S~(iA, )p 5apc——~(iA,,) (E3)

H
c,(iA)= f, d HP(H) P~~+

c„(iA)=c~(iA)= —, f d HP(H)

H,
1 — Pg(i A),

H

Q~~+ 1+ $1(iA)

where P~ ~

and {{'ij are defined by

Pii=((Sp ) ) =S B,(SPH)+[SB,(SPH)]
8 H

SB,(SPH)
Pj(iJ{)=,

2
e

—AH eAH

j.—e ~H e~ —$
(E4)

the susceptibility X immediately follows from (E4) by integrating over A, ,

X= f d H p(H} pp~~+2 — pq,
SB,(SPH)

and the anisotropy constant E is evaluated by inserting (E3}into (6.8) and integrating over A, ,

4z
p f d H p( H}p(( pq +4 f d H—pp(Hp)p[[(Hp) f d Hip(Hi )SB (SpHi )

H]

+2 f d Hpp(Hp)SBs(SpHp) f d Hip(Hi)SBs(SpHi)

(Ho+H i )
1 —e

(1 e 0)(1 e i
) Hii+Hi

—p(HO —H] )
1 —e 1

(1 &Ho)(eiJHi 1) Hp H, —(E5)
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