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A critical analysis of channeled-ion energy-loss experiments is presented with the goal of
commenting on the presence of the Barkas effect of Z} corrections to the stopping power.
Accurate charge-density values are obtained for silicon and used to evaluate Bloch and
straggling effects in the data. The remaining contributions to the data show a clear Z}
dependence that can be explained with an electron-gas model for the Barkas effect.

Recently a comprehensive set of measurements
showed that swift and relatively highly charged
projectiles channeling through thin silicon crystals
lose energy at a rate strictly proportional to the
square of that projectile atomic number.! This
would seem somewhat strange in view of the
current intense interest in the so-called higher-order
Z, dependence on stopping power or Barkas ef-
fect.>~7 In the following we shall try to clarify and
elaborate further on the status of these experiments
and their implications to our understanding of stop-
ping phenomena. In particular we wish to show
that agreement between theory and experiment is
not obtained unless account is taken of target polar-
ization which is the root cause of the Barkas effect.

In Ref. 1 the stopping power S (which is defined
as the energy loss per unit path length divided by
the target atomic density) for totally stripped ions
of atomic number 9, 12, 14, 16, and 17 was mea-
sured for projectiles penetrating down the center of
(110) axial channels in silicon at 3.086 Mev/amu.
The results of that work are shown in Fig. 1.
Within the experimental uncertainties the stopping
power is seen to scale as the square of the atomic
number Z,. The stopping power for the best chan-
neled ions was determined by extrapolating the
sharp least-energy-loss side of the distribution to the
baseline linearly. Effects of energy-loss straggling
were argued to be small based on the anticipated
very-low-electron density along the best channeled
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track. It was further noted that in contrast with
most other experiments of this type, here the ratio
of Z, to v, the velocity of the incident ion, was so
large that a significant contribution to the stopping
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FIG. 1. Stopping power divided by Z?3 vs Z, for total-
ly stripped ions of fluorine, magnesium, silicon, sulfur,
and chlorine, channeling down a (110) axial direction in
silicon.
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from Bloch’s correction could be expected. This
correction turns out to also depend on the local
charge density along the particle track. Further-
more, it also contributes to the expected Z3 effect in
such a way as to tend to cancel any contribution
from polarization effects. Reference 1 concluded
that the apparent absence of Z3 effects in the
energy-loss data was probably an “accident” with
Bloch and polarization terms canceling. Based on
this discussion one concluded that in order to utilize
the data in Fig. 1 to comment on the existence and
magnitude of polarization contributions to the stop-
ping, a firm knowledge of both the center-channel
average charge density and the stopping effects de-
pending on it must be achieved. Thus in the follow-
ing we give a more comprehensive discussion of
these “local” effects and the results of our most am-
bitious study of the midchannel charge density in
silicon. This analysis shows that a significant po-
larization effect must be present and that a small
modification of the electron-gas model discussed by
Lindhard® and Esbensen® can account for it.

The charge density averaged along the (110) axi-
al direction in silicon is shown in Fig. 2. The re-
sults have been generated from a bond charge model
derived from a recent refinement of the electron-
density distribution using x-ray data obtained by
Pendellosung-fringe measurements. They represent
probably the best known charge-density values for
any crystal. The details of how the Fourier recom-
position of this density was effected are described in
the Appendix. The main value we shall require
from Fig. 2 Js the midchannel density which is
Proc=0.045¢ A3 This is significantly below the
homogeneous valence gas value of 0.2 used in many

previous analyses of channeled stopping in sil-
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FIG. 2. Contour plot of average electron charge densi-
ty in e per A-3 looking down .the [110] axial direction in
silicon.

icon.”1% It is also smaller than a Thomas-Fermi
value of 0.067 that was used in Ref. 1. Dr. M.
Schiiiter of Bell Laboratories has obtained a value
of 0.042¢ A=3 by a self-consistent pseudopotential
calculation.

Armed with what we now believe to be a very ac-
curate knowledge of the charge density in silicon we
proceed with a brief but illuminating derivation of
the classic Beth-Bloch energy-loss formula which
will serve as the foundation of our current discus-
sion.!! Imagine a free electron of momentum
#ik =mv incident on a totally stripped ion of charge
Ze. A knowledge of the scattering angle distribu-
tion in this frame is sufficient to evaluate the
energy-loss rate of the heavy particle in the lab
frame through the formula

2
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Here NZ, is the density of electrons in the target, 6 is the electron scattering angle in the stationary projectile

frame, and
2
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are the well-known Coulomb phase shifts for angular-momentum quantum number /. Curiously enough, Eq.
(1) may be evaluated exactly yielding the following angular-momentum expansion for the energy-loss rate:

dE _ 41-rNZZe‘Z2 i (I+1)
dx . mw ol +1)24+k2/4

(3)

Here « is Z,e?/#v, known as Bohr’s parameter. This result is exact and not widely known. It is also loga-
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rithmically divergent as the sum is extended to infinity. This is of course related to the infinite range of the
Coulomb potential. Before adding the necessary physics to remedy this situation we break up the summation

in Eq. (3) to make it read
47NZ,e*Z? ['max ©
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———— —— 4
dx mv*? ,§0 (I+1) 4 S +D[U+1*+«2/4)]
From the definition of the digamma function ¥,'? Eq. (4) may be rewritten
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This formula reminds us of the standard nonrela- 1« o 1
tivistic Bethe-Bloch result!>!* if!? T NZ, 4 1§ AT D[ +1)2+x2/4]
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Now note that this association is all the more
reasonable when the angular-mometum sum in Eq.
(5) is limited by the adiabaticity condition that col-
lisions leading to excitation can be of duration no
longer than a characteristic orbit time 27/ (@ be-
ing effective oscillator frequency); i.e.,
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The Bethe-Bloch result is then completely recovered
if the proper oscillator strength is included for each
effective oscillator in the target atom.

In the deduction of these results perturbation
theory has not been used. Also, the angular-
momentum sums give an idea as to which electrons
are contributing to the stopping of channeled parti-
cles. Consider for example the Bloch contribution,
i.e., the second term in Eq. (4). For the experiments
under discussion k%/4 was always less than one.
Contributions to the sum come from the smallest
values of / only. (This is also why convergence dif-
ficulties did not have to be dealt with for this term.)
For I=0-—1 this corresponds to impact parameters
~7/mv~0.05A between target electrons and the
projectile. This is the basis for the claim that Bloch
corrections depend upon the electron density direct-
ly on the path of the channeled particle. Thus for
this term in the stopping we obtain

_ Ploc K_i 1
NZ, 4 S0+ D[ +112+k2/4]

A more exact expression might take the form

®)

with p(/) being the average charge density at a dis-
tance A (l +1)/mv from the track. Also no contri-
butions from electrons past the adiabatic limit (i.e.,
core electrons) should be included.

The contribution of the Bethe term may be es-
timated for the channeling conditions of the experi-
ments by noting that the adiabatic distances con-
nected with the natural frequencies of the silicon L

- electrons are already smaller than the distance from

any atom to the center of the (110) channel (which
is where the particle track lies). Hence we must
mainly deal with the valence-electron oscillator
strength distribution to evaluate the stopping. As
an initial estimate we can imagine that the valence
gas is homogeneous and all the dipole oscillator
strength collects at the plasma frequency
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The Bethe contribution for the homogeneous
valence gas then gives a value of 39.5Z% keV mg~!
cm~? almost twice the experimental value. The
major reason for this discrepancy is not hard to
find. Indeed, we expect a strong reduction in the
close-collision contribution in this term because the
gas is not uniform. The long-wavelength plasmon
contribution alone can be evaluated separately
through the formula'®

(11)
[Uf‘—“(ﬁ/m )(Trzpho;n)l/al )
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and we find that 40% of the homogeneous gas loss
goes into these long-wavelength excitations. If we
assume the close-collision contribution for our inho-
mogeneous gas is reduced by the ratio of the actual
charge density to the uniform gas value we deduce a
stopping value of 24Z% keVmg~'cm~2 a consid-
erable improvement. With this encouraging result
we interpret all the Z?3 contribution as coming from
the Bethe term and continue our analysis.

There is another straighforward correction that
we can apply now that we have a reliable charge
density for the channel. That is the straggling error
in the leading edge least-energy-loss analysis of the
data. The variance in energy loss is also a local ef-
fect and is given by'¢

Q=(4rZ3e*p,.T)"?, (12)

where T is the target thickness. The widths predict-
ed by this equation are generally smaller than the
extent of the linear regions from which the least en-
ergy loss was obtained. Hence we confirm the
negligible contribution of straggling.

Figure 3 shows a plot together with the Bloch
contribution. The value of the Bethe term has been
adjusted so the theoretical curve passes through the
last data point. It is clear that some positive slop-
ing correction is necessary to bring the Z 1 depen-
dence of the energy loss into agreement with the ex-
periment.

Such a contribution can result from the fact that
the actual orbits of electrons in the Coulomb field
of the projectile are not hyperbolic. There are two
possible causes for this. One is the effect of the
binding of the electrons to the target atoms.>~> The
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FIG. 3. Stopping power divided by Z? vs Z.
Theoretical curves are presented with and without polari-
zation term in Eq. (14). The values of a have been
chosen so curves pass through the last data point.

second lies in electron correlation effects.®® That is,
an electron scattering sees not only the field of the
projectile but that of other electrons also scattering
from the projectile. Lindhard® has argued heuristi-
cally that simple screening can result in Z3 effects
through a change in the self-energy of the projectile
during passage through the target. This self-energy
effect is due to the polarization cloud the projectile
drags along with it. After carrying out the ap-
propriate renormalizations of relative velocities and
angular momentum, Lindhard finds

VA %e 2a>12,

U2
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where o, is again the plasma frequency of the gas.
As opposed to virtually all published results based
on the target-atom binding effect, it is emphasized
that nearly equal contributions to this result come
from close and distant collisions. We may therefore
assume that this result will be modified by the
channeling effect in a way just analogous to the way
the Bethe term is modified. (It is essential that only
one effective nonlocalized oscillator contribute to
the stopping for this to be so.)

With all of the above discussion in mind, we
adopt as our final energy-loss formula:

222 2
dE —azle % |1 2mv? 3w Zie‘w, . mp?

n
dx v? hwp 2 ml ﬁcop

X3 !

oI +DIU+1)724+k2/4]

(14)

Figure 3 shows a comparison of the experimental
data from Ref. 1 with the predictions of the last
equation. A value of alpha has been chosen to
make the curve go through the chlorine data point
(which has the smallest error bar). The values of al-
pha for all the plots are ~0.54 and 7iw,, is taken as
16.6 eV and pyo./pProm=0.045/0.2. With the recent
work on charge density reported here and the dis-

~ cussion of theory given earlier, we believe the Bloch

term to be the most reliable part of the last expres-
sion. Except for the value of alpha, the Z? depen-
dence of the stopping must certainly be contained in
the Bethe term. Inspection of Fig. 3 shows that the
electron-gas prediction of the polarization effect us-
ing just the valence gas improves the overall agree-
ment with the data substantially. Indeed, a slightly
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larger polarization correction could be tolerated.

We conclude that decomposition of data for the
energy loss of channeled ions versus Z; into its
various components, i.e., Bethe, Bloch, and polari-
zation (Barkas), can be effected if accurate local
charge densities on the ion track are independently
known. When this decomposition, procedure is ap-
plied, a polarization contribution within a factor of
2 of theoretical electron-gas estimates is required to
account for the data. We take this result to be evi-
dence of the first observation of the Barkas effect in
a valence gas. We refrain from commenting further
on more quantitative questions such as theoretical
prediction of the observed value of alpha since this
approach represents a crude attempt to extend the
homogeneous gas model to clearly inhomogeneous
problem. Spurred on by the realization that chan-
neling measurements can be sensitive to higher-
order Z, effects we hope that further theoretical
work along these lines will be attempted. Finally
we note that the cancellation we believe explains the
apparent absence of higher-order Z, effects in the
stopping should not be so complete for other chan-
neling directions. Indeed, should higher-order ef-
fects still be unobservable in cases where the
minimum charge density differs significantly from
0.045¢ cm~? a rethinking of the polarization ques-
tion would be appropriate.

The work performed at BNL was supported by
the U. S. Department of Energy under Contract
NO. DE-AC02-76CH00016.

APPENDIX: CALCULATION OF ELECTRON
DENSITIES

Electron-density diagrams were obtained by
Fourier transformation of the structure factors of
293 reflections, corresponding to sinf/A < 2.0, cal-
culated on the basis of the bond-charge model pro-
posed by Scheringer.!” This involves a spherically
symmetric core with a net charge g(Si) of 1.12 posi-
tive charge units and negative Gaussian-distributed
charge clouds of 0.56e at the bond center between
near-neighbor Si atoms to describe the covalent
bonds. Variable parameters are introduced to allow
for anisotropic vibration of the bond charges and
contraction of the valence shell. The scattering fac-
tor for silicon f(Si) is set up as the sum of the
scattering factor of the core f(Si**) and that the
valence shell, which involves the difference between
the neutral atom scattering factor f(Si% and f(Si**)
modified to allow for the contraction due to the net
positive charge on the atom. Values of f(Si°) and
f(Si**) were obtained by means of the analytic ap-
proximation given in Ref. 18. For the sake of com-
parison, a second set of structure factors was calcu-
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FIG. 4. Charge densities in a (110) plane of silicon as a function of distance from the center of the channel along the
[170] and [001] directions. Plots are shown for various values of 3.
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lated from the valence scattering factors listed in
Ref. 18, £(Si**), which are obtained after repopula-
tion of the orbitals to an sp* configuration.

In order to investigate the effect of series-
termination errors, the procedure described by

Weiss!® was followed. In this, the average charge
density centered about a small parallelepiped with
edges 26a, 28b, and 26¢ is calculated instead of the
point density. The averaged density is given by the
expression

sin2mhd sin2wkd sin2wld

p(XYX):iV S S S F(hkl)exp] —2m,(hX + kY +12)] : (A1)
h k 1

-

Some value of § is then sought such that the series
oscillations are suitably damped without the loss of
significant detail. Some illustrative examples of
this process applied to the analysis of magnetic spin
densities are given by Moon.?°

Some of the results of this averaging procedure
applied to Fourier projections on a (110) plane of Si
are shown in Fig. 4. The two sets of curves show p
as a function of distance from the channel center in
the [001] and [110] directions in that plane (as indi-
cated in the inset to the figure) for various values of
8. The series oscillations are quite pronounced for
8=0.0, but are essentially damped out for 6=0.04

2whd 2wkd  2mwld

I
and above.

Figure 2 shows the average charge density seen
by a channeled particle in the [110] direction, i.e.,
Eq. (15) averaged along the [110] direction. A value
of 8=0.04 is used. It may therefore be concluded
that the average electron density derived from the
Scheringer model is about 0.045+0.005¢ A“i at the
center of the channels. At a distance of 0.4 A from
the center, p is about 0.06e A-3. For comparison,
the value at the channel centers for the simple
valence model is significantly higher, 0.08+0.01¢
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