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Origin of simple staging in graphite intercalation compounds
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We present a simple model of staging in graphite intercalation compounds. Unlike previous

theoretical studies, finite-T calculations based on our model yield the staged structures which are
observed experimentally. Certain choices of model parameters result in more complex struc-

tures such as those predicted recently by Safran. The model provides physical guidelines for
identifying materials in which the latter structures may be realized. Rich and varied phase dia-

grams are predicted.

It has been known for many years that when other
chemical species are intercalated between the layers
of carbon atoms forming a graphite crystal, staged
structures are formed. These are periodic arrange-
meats of graphite and intercalant layers in which the
period consists of one layer of intercalant followed by
n layers of graphite. We will refer to these structures
as simple stages. Current theoretical work' suggests
that staging occurs because of electrostatic repulsion
between different intercalant layers. Recently,
Safran' showed that, assuming such an interlayer
repulsion and an intralayer attraction between inter-
calant atoms, the intercalant layers can form periodic
structures. However, instead of the simple stages
which have been observed experimentally, the finite
temperature calculations predicted more complex
structures. ' The question why only the simple stages
have been observed in nature remains unresolved.
Moreover, many of even the most basic features of
the phase diagrams associated with staging have yet
to be determined either experimentally or theoretically.

In this Communication we show how the difficul-
ties encountered by the previous theoretical studies
of staging can be overcome in a simple and intuitive-
ly appealing way. Our calculations yield the observed
simple staging for a wide variety of intercalants in-
cluding the alkali metals and aromatic molecules. We

I

also suggest possible candidates for more complex
staged structures. A rich variety of phase diagrams
depending on the host and intercalant species may be
expected for the latter class of systems.

Our model of graphite intercalation compounds is a
generalization of that of Safran. ' The intercalant is
represented by a lattice gas with No allowed sites per
intercalant layer and an intralayer interaction energy
—~ between occupied nearest-neighbor intercalant
sites. The interaction energy between an occupied in-
tercalant site and the adjacent graphite layers is —5.
It is also assumed that an energy y per intercalant
site must be supplied to separate the adjacent gra-
phite layers in order to admit the intercalant. We
consider the graphite layers to be completely rigid4 so
that for a partly occupied intercalant layer this separa-
tion energy equals Noy, independent of the fraction
of intercalant sites which are occupied. Following
Safran and Hamann, ' we assume a power-law repul-
sion V„= Vo~x) q& between intercalant layers i and

j, where x» is the separation between layers i and j.
We consider both "infinite range" potentials~ where

q,&
= 1 for all i and j, and "strongly screened" poten-

tials where q J = 1 if there is no occupied intercalant
layer between i and j and q» =0 otherwise.

In the Bragg-Williams approximation5 the energy of
the system is

E(( }N)i= $( fZNi'/2ND 8%;—+Hi@NO)+ $ V(~Nip(, /No
I i&j

where Nl is the number of occupied sites in layer i, and z is the in-plane coordination number; 8; =0 if NI = 0,
S;= 1 if N, W 0. For a given configuration (N;} the free energy obtained from the grand canonical partition func-
tion is then

(E(N})—p, XN, —kT X[NolnNO N;lnN; —(No —N, ) ln(No Nl)]

In the present work our main objective was to in-
vestigate the nature and stability of the low period
structures at finite temperatures. Thus in deciding
which structure minimizes the free energy for given
p, and T we examined all possible structures in which
the period consists of 1, 2, or 3 intercalant layers,

I

which can be either partly or completely filled, or
empty. For periods of four and five layers, selected
structures corresponding to self-consistent solutions
to the minimization problem were examined. For
periods «6 we considered only simple staging.

While a detailed identification between specific
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values of the parameters entering the model and indi-
vidual intercalation compounds is difficult, certain
broad trends are apparent. For example, in graphite
intercalation compounds the in-plane interaction e
can range from being strongly attractive for
transition-metal chloride intercalants, to being weak
and perhaps even repulsive for alkali metals and
aromatic molecules. Similarly, y and 5 depend on
the host and intercalant species. Notice that 5 can
be absorbed into the chemical potential in the free
energy Q so that while it has a role in determining
the values of the chemical potential at which the vari-
ous stages are stable it does not influence the
density-temperature phase diagrams which we present
here. The electrostatic parameters V„" should be
sensitive to the amount of charge transfer per inter-
calant site. However, it is reasonable that Vj should
be less than y for reasons of stability.

In describing the structures which we found, we
will use the term "stage (n/m) compound" to mean
a periodic structure in which the period consists of n

graphite layers and m partly filled intercalant layers.
Stage (n/I) = stage (n) will then refer to the simple
stages which have been observed experimentally. By
a stage (n/m)' compound we will mean a period n

structure in which all n intercalant layers are occupied
but the intercalant density in n-m of the layers is
markedly smaller than in the others at the lower tem-
peratures.

In the limiting case y =0 our model reduces to that
of Safran. %e shall begin the discussion of our
results by considering this limit. In Fig. 1(a) we
show the phase diagram for y = 0 and "infinite
range" repulsive interlayer interactions. In this case
all of the stage (n/m)" structures with n ) m occur
in the phase diagram. For example, the period-5
structures (5/1)', (5/2)', (5/3)', and (5/4)' are all
found. However, the experimentally observed simple
staging does not appear at all at finite temperatures,
except for stage 1. Safran and Hamann have argued
that because of electrostatic screening such an infinite
range potential may not be appropriate. ' In fact, for
equally occupied intercalant planes they found that the
repulsion is negligible beyond the nearest-neighbor
occupied intercalant layers. In order to study the ef-
fect which such a cutoff could have on the phase dia-
gram we considered the "strongly screened" poten-
tial described above. Our results for y =0 are shown
in Fig. 1(b). Simple staging is found at T = 0, but
only stages (1) and (2)" are stable for finite T. The
results in Fig. 1 are for the repulsive potentials

V;, = ( 6 )zeixj I
sq J where xj is measured in units of

the c-axis spacing of graphite. The qualitative
behavior shown is not sensitive to the exponent or to
the magnitude of the prefactor. Presumably, for un-
equally filled intercalant layers a situation in between
the strong screening and infinite-range-potential lim-
its is realized. However, in view of the above results
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it seems very unlikely that an improved repulsive po-
tential V& would by itself be capable of explaining the
simple staging observed experimentally at finite T.

In real systems, however, y can never actually be
zero, and as noted above, for many intercalants the
in-plane interaction is so weak that y can be compar-
able with ze. For example, consider the case of gra-
phite-cesium. For this material, Salzano and Aron-
son measured the energy required to separate the
graphite planes to be 1.23 kcal/mole of carbon, in
good agreement with estimates of the interlayer
bonding energy of graphite. For the compounds
C8„Cs this yields y =9.84 kcal/mole of intercalant.
e is more difficult to estimate, but we note that the
cohesive energy of pristine cesium (18.8 kcal/mole)
should be larger than —,ze (the in-plane interaction
energy between Cs atoms in the intercalate) because

FIG. 1. Temperature-density phase diagrams for y = 0. T
in units of a/k; n is the filling coefficient relative to com-
plete filling of all of the intercalant sites. n = X, N;/ g,. No.
The areas labeled stages (1) and (2) and the lines labeled
(n/m} (which represent narrow areas) are single-phase re-
gions. Only phases with period ~5 are shown.
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situation corresponding to ze/y =45, the other
parameters being chosen as in Figs. 1 and 2. Perhaps
the most striking new feature of Fig. 3 is the oc-
currence of a high-density stage (2), a low-density
stage (2), and a stage-(2)' phase at the same tem-
perature in different parts of the phase diagram. In
fact, it is possible for the stage-(2) and stage-(2)'
phases to coexist in equilibrium with each other.
This behavior is found both for the strongly screened
and the infinite-range interlayer interactions. On the
basis of the calculated in-plane densities, we expect
that the strongly screened potential should still be a
better approximation than the infinite-range potential
under these conditions. Thus even for such a large
value of ze/y the simple stages predominate in the
phase diagram, although some more complex struc-
tures, namely, stage (2)', are beginning to appear.

In conclusion, we have shown that the separation
energy y plays a decisive role in the physics of the

staging process and is crucial for the formation of the
simple stages which are observed in nature. This
quantity has no analog in the modulated magnetic
structures (e.g. , CeSb)' which have been the subject
of considerable recent theoretical interest and have
served as a model for previous theoretical studies of
the staging phenomenon.
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