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Observation of linewidth asymmetry in the Mossbauer
Zeeman spectrum of amorphous yttrium iron garnet
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A measurement of the six-line Mossbauer Zeeman spectrum of 57Fe in amorphous yttrium

iron garnet at 4.2 K reveals a linewidth asymmetry involving the three line pairs L; and L7;,
i =1, 2, 3. The major source of this asymmetry is found to be a positive correlation between
isomer shift and hyperfine field with a degree of linearity of 18%. A complete linewidth analysis

is given which also leads to separate estimates of the widths of the hyperfine field, isomer shift,
and electric-field-gradient distributions in the glass,

Amorphous materials containing sufficiently large
concentrations of iron in general exhibit long-range
magnetic order below a transition temperature T,. !n
amorphous metals, such as the iron-metalloid alloys
Fe! „M„(where M is one or a combination of metal-
loids like B, F, C, Si, etc. , and 0.15 (x (0.3), this
order is ferromagnetic, while in amorphous insulators
it is generally of speromagnetic, or spin-glass, charac-
ter. ' In such materials the ' Fe Mossbauer spec-
trum can normally be studied in both the nonmagnet-
ic (T ) T, ) and magnetic (T ( T, ) phases and pro-
vides a powerful probe of short-range compositional
order in the amorphous environment.

In the paramagnetic phase a broad Mossbauer
doublet spectrum is a direct measure of the distribu-
tion of electric field gradients (EFG) at the iron
sites. Below T, this doublet is transformed by the
spontaneous magnetic hyperfine field 8 into a six-
line pattern. Many such magnetic, or Zeeman, iron
Mossbauer spectra have been published in the litera-
ture, particularly for the amorphous iron-metalloid al-

loys, and recently an increasing attention has focused
on the fact that these spectra also contain informa-
tion concerning EFG and isomer shift distribu-
tions. ' " In particular, the six-line patterns generally
contain a linewidth asymmetry involving the three
line pairs i and (7 i), where the line-s are numbered
from 1 to 6 in order of increasing energy.

In this Communication we report the first measure
of such an asymmetry for an amorphous magnetic in-
sulator, namely, one with the same chemical compo-
sition Y3Fe50t2 as yttrium iron garnet (which we ab-
breviated as a-YIG), and establish that it is primarily
a measure of correlations between hyperfine field and
isomer shift, although other smaller correlation ef-
fects can also be estimated. Linewidth asymmetry
has been observed previously in ferromagnetic amor-
phous alloys of the kind Fe~ „B„and is thought to be
due in the most part to correlations between hyper-
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FIG. 1. Experimental Fe Mossbauer Zeeman spectrum
of amorphous yttrium iron garnet at 4.2 K. The fit to the
data (continuous curve) is the best nonlinear least-squares
fit using six independent Gaussian distributions of natural
width Lorentzian lines. The Gaussian parameters corre-
sponding to this fit are given in Table I.

fine field, electric field gradient, and their relative
orientation. " '

The material was prepared using the roller
quenched technique. ' The experimental Zeeman
Mossbauer spectrum for a-YIG at 4.2 K is shown in
Fig. 1. It has been least mean-square fitted to six in-
dependent symmetric Gaussian distributions of
natural-width Lorentzian lines, the optimum fit being
shown by the full curve in Fig. 1. The mean hyper-
fine field is 450 kOe and the mean isomer shift 0.446
mm/sec, indicating that iron is in the Fe3+ valence
state.

If we consider a specific iron nuclear site in a-YIG
below its transition temperature T, —30 K, we may
define the direction of the local hyperfine field 0 in a
polar representation (S, g) with respect to the local
principal axes of EFG tensor at that site. Defining
the EFG by its principal component q and axial asym-
metry q (conventional notation), the six Mossbauer
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u = -', (3c'- I + gs'c')q'

+=(c"e+ ,'f"f)/Ig-. l~.H,
in which

e = J3 (—3sc +qscc +i ass )q'

f = (v'3/2) [3s'+g(1+c')c'+ 2i r)cs']q'

(2)

(3)

(4)

where q'=eqgq/12 is an energy measure of the prin-

cipal EFG component q (with eo being the electronic
charge and Q the nuclear quadrupole moment), and '
indicates a complex conjugate.

Mean line positions (L;) (see Table I) therefore
provide measures of (8), (H), (u), and (a+),
where the brackets imply averages over all iron sites
in the glass. In this respect we note from Fqs. (2) to
(4) that if the angles 8, Q are random variables in the
amorphous environment, then

Zeeman lines are given, to second order in EFG per-
turbation of hyperfine field energy, by'

L ]= 8 g] p,gH + Q —cxy

L p
= 8 g p |M,NH —Q + CX

L3= 5 —g3 jXNH —Q —A

L4= 8+g3 pNH —Q + 0!

L5= 5+gal pNH —Q —A

L6= 8+g) p~H + u + 0.+,
in which 8 is the isomer shift, and gt ——(gG —3gs)/2
= 0.2448, gp = (gG —gs)/2 = 0.1418, g3 = (gG+gs)/2
= 0.0388, where gE =—0.1030 and gG =+0.1805 are
the excited and ground nuclear g factors for the
Mossbauer levels. " The first- and second-order EFG
perturbation energies are, respectively [where we de-
fine c = cos8, s = sin8, c' = cos(2@), and
s' = sin(2$) ],

where Ef2= 6[q'((1+q'/3)'~' is the pure quadrupole
doublet splitting when the hyperfine field H is zero.
We have previously reported' that the relationships
(5) and (6) are found to hold (to good approxima-
tion) in a-YIG, implying that the polar angles 8, Q
are closely random variables within the glass. From
(L,) we determine the mean values (8) =0.446
mm/sec with respect to iron metal at room tempera-
ture, (H) =450.4 kOe (p, ~H =29.58 mm/sec) and,
from Eq. (6),

(Ej) =0.385 (mm/sec)' .

From Eq. (2) it now follows that

(u') = —,(Ej) =0.077 (mm/sec)'

(7)

z ( Wq + W5 ) =a + grab 2(hung)—
—2gp p~(bH/sa )

In addition to mean line positions, the best com-
puter fit (Fig. I) to the six-line Zeeman spectrum
provides us with measures of the full width 2w; at
half height of each Gaussian component, as shown in
Table I. It is clear that a linewidth asymmetry exists
with w7, & w;(i = I, 2, 3), the disparity being greatest
(=17%) for the outside lines L t and L6. These
linewidth asymmetries can be interpreted directly
from the Eqs. (1) by deriving the mean-square
linewidth fluctuations WP = ((L;—(L;) )'). For
Gaussian distributions these fluctuations are related
to the half widths w; by the equations WP = w;~/

(2 ln2). Defining deviations Ax of x (x = H, 5,u, n+)
from their mean values (x ), they are most con-
veniently cast (to second order in q') in the form of
three "symmetrized" widths:

—(W~+ W~) =a +g~b +2(huh5)
+2gt p g(b, Hha+)

(u) =0,
(~+) =3(~-) = —'

, (Eg/ lgEII wH),

(5) —,(W3 + W4') =a'+gjb' 2(b, uhg)—
+2g3p, ~(bHhn )

TABLE I. Mean positions (L;), half widths at half height w;, and mean-square widths

W;~ = ((L;—(L;) )~), of the six Gaussian distributions of natural width Lorentzian lines which

make up the Zeeman spectrum (i =1—6) of Fig. 1 for amorphous YIG at 4.2 K. The origin of the
spectrum corresponds to an isomer shift of +0.446 mm/sec with respect to iron metal at room
temperature, and W;~= w;~/(2ln2).

(L;) (mm/sec)

w; (mm/sec)

W; (mm/sec)

-7.308

0.601

0.261

-4.168

0.541

0.211

—1.168

0.458

0.151

1.180

0.468

0.158

4.169

0.572

0.236

7.307

0.703

0.357
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where

a'= ((Au)') + ((A5)')

b'= p
' ((AH ) ')

and three asymmetries:

4 (W6 —W)2) =gt pN(AH(A5+Au))

+(An (A5+Au))

—,( W5 —W22 ) =g2 p,~(AH (A5 —Au ) )
—(An (A5 —Au))

(10)

(12)

Eq. (8), since Au = u —(u) = u, o (H), and o (5)
follow [via Eqs. (1) and (11)1 from the parameters a
and b in the symmetrized width Eqs. (9). As they
stand, the three Eqs. (9) are underdetermined (five
unknowns), but progress can be made as follows.
We first attempt a zeroth-order fit by neglecting the
correlation terms. The equations are then overdeter-
mined (two unknowns) in the form

(i) a'+ g ~'b2 = 0.309

(ii) a'+ g2b'=0. 224,
(iii) a'+g3b'=0. 1SS

4 ( W4 —W3 ) =g3 pu(AH(A5 —Au ) )

+(An (A5 —Au)) .

p„(AHA5) =+0.071 (mm/sec)

p~(AHAu) =+0.028 (mm/sec)' .

(13)

(14)

The linewidth asymmetry is therefore primarily the
result of a positive correlation between hyperfine
field and isomer shifts. This effect is perhaps not
unexpected in ferric materials since both H (for sat-
urated spins) and isomer shift have long been used in

this context as a qualitative measure of covalency.
Thus, for example, the smaller H and smaller 5 at
the tetrahedrally coordinated iron site in crystalline
YIG (compared to the octahedral site) is generally
understood in terms of the larger covalency of Fe'+
in tetrahedral coordination. But how direct is this
correlation? It is possibly a linear' "one? This is a
question we can now answer since a linear correlation
5x ~ hy between any two variables x and y leads to
the result

(AxAy) =rr(x)n(y) (15)

and we are now in a position to estimate the RMS
fluctuations o(H) and o.(5). .

Since o (u) =0.28 mm/sec is already known from

In amorphous magnetic materials, the normal
sequence of magnitudes for the root-mean-square
(RMS) fluctuations o (x) = ( (Ax )2) '/2 are
o (H) » o.(5) —cr(u) » n(n+), so that the aver-
ages (n+(A5+Au)) in Eqs. (12) are expected to be
small. If they are negligible within the context of
Eqs. (12) then we should expect to find

( W4 W3 )/( W 5 W2 ) g3/g2 0.27

A ratio of 0.28 is obtained for a-YIG using the 8';2

values from Table I confirming this hypothesis. In
fact, the correlations (An+Au) can be directly calcu-
lated from Eqs. (2) to (4) for random 8, $ with the
results (An~Au) =0, and (An Au) =+0.0003
(mm/sec)'. Neglecting (An+(A5+ Au ) ), the Eqs.
(12) become overdetermined and consistently lead to
the correlation values

The solution with the smallest RMS deviation is
b'= 2.S6, a'= 0.160, leading to errors of +0.004,
—0.013, and +0.009 in (i), (ii), and (iii), respective-

ly, all units being (mm/sec)'. This gives zeroth-
order estimates for o (H) and o.(5) of 1.6 mm/sec
and 0.29 mm/sec, respectively, implying from Eqs.
(13) and (15) a linear degree of correlation
(AHA5)/o (H) o.(5) of only about +15'/0.

Using Eqs. (3) and (4), and averaging over the
random variables 8, $, we can also compute

&r(n ) =1.8o.(n+) =0.36(Eg~/igrip~H)

=0.045 mm/sec . (17)

Using Eq. (15) we find that the maximum possible
values for the correlations involved in the sym-
metrized width Eqs. (9) as follows: [units
(mm/sec)'] 2g) p~o. (H) o.(n+) = +0.020,
2g2 p~a(H) a ( .)n= +0.020, 2g3 pNo(H) o ( .)n
= + 0.005, 2o.(u) o.(5) = + 0.16. Given these
numbers, the probability is that the dominant correla-
tions in this context are almost certainly (Au A5).
Assuming this to be true and retaining only this
correlation, the Eqs. (9) can be resolved to give

o(/I, &H) = 1.9 mm/sec . (29 kOe)
o.(5) =0.21 mm/sec,
(A5Au) = —0.015 (mm/sec)2 .

(18)

Our final estimates for all pertinent fluctuations
and correlations are gathered together in Table II.
The degrees of linear correlation for (AHA5),
(AHAu ), and (A5Au) are found to be =+18%,
=+S%, and =—2S%, respectively. By virtue of our
neglect of some small correlations in the symmetrized
linewidth equations, the last number is perhaps less
accurate than the other two. In any event, it is quite
evident that any theory which postulates a simple
linear coupling between any of these variables is at
variance with our findings. It is interesting to note
that the distribution o.(5) in a-YIG is about 80%
larger than in crystalline YIG, while o (H) is about
400/0 smaller than its crystalline equivalent. '8'9 This
provides additional evidence that 5 and 0 cannot be
linearly related.

With regard to the correlations involving Au we
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TABLE II. Summary of the findings of this Communication
for mean values (x), root-mean-square fluctuations o (x)
= ((hx)2) t/2, and correlations ihxhx) for x =H (hyperflne
field), 8 (isomer shift), u tfirst-order Zeeman line shift in Eqs.
(1}],and o. + [second-order Zeeman line shifts in Eqs. (1)] at

the iron sites in a-YIG at 4.2 K. Units in mm/sec except
where stated.

1. Mean values: (u) =0(+0.004)

iu ) = (a+)/3=0. 025

(8) = 0.446 (with respect to iron metal)

(H) =450.4 kOe

2. RMS fluctuations: a(u) =0.28

~(~ ) =1.8~(~,}=0.045

~(S) =0.21

o.(H) =29 kOe

3. Correlations: p~(/t H58) =+0.071 (mm/sec}~

p~(/t H/t u) =+0.028 (mm/sec)2

(484u) = —0.015 (mm/sec)2

(ha+Au) & 0.001 (mm/sec)2

(An+48) & 0.001 (mm/sec)2

note that these imply a coupling to both (t), Q) and
q', since hu = u —(u ) = u of Eq. (2). Since (u) = 0,
and (q ) A 0, 2a the electric field gradient is known to
be essentially independent of (), @. It follows that any
fluctuation variable hx which is also independent of

. 0, @ would have a correlation

(i)xhu) = ((hx)q) (3c2 —1+qs2c) =0 . (19)

Ws2 —Wt2 =0.979(AH (d8+ hu ) )

W,' —W22 = 0.567 (b,H (/). 8 —Au ) )

II/'42 —W32 ——0.155 (/5. H ( b, 8 —5u ) )

(20)

where 8' is the mean-square linewidth

((I.; —(L;))2) of the ith line. %e find that the
linewidth inequalities in a-YIG are primarily the
result of the correlations between bH and 58. %e
are also able to estimate the mean- and root-rnean-
square (a) values of the hyperfine field, isomer
shift, and Zeeman shift parameters, and to conclude
that none of these variables is close to fully correlat-
ed with any other. The degree of linear correlation
(hH b,8) /o (H) o (8) of the most important correla-
tion effect, for example, is only about 18%.

The significantly nonzero values for correlations
(bH b, u ) and (686 u ) found in this paper, therefore
signifiy a dependence of hyperfine field and isomer
shift fluctuations directly upon the angular variables
t), Q.

In summary, we have measured the Mossbauer
Zeeman spectrum of a-YIG at 4.2 K and observed a
linewidth asymmetry between each of the line pairs

L; and L7;, i = 1, 2, 3, Since these line pairs are
closely equal in area, the asymmetry is also evident in

amplitudes. This asymmetry is dominantly the
consequence of two correlation functions; one
between the fluctuations of hyperfine field b,H and
isomer shift 55, the other between hyperfine field
and first-order Zeeman shift 4u, where the latter is a
measure of electric-field-gradient perturbation. The
outside linewidth inequality is closely a measure of
the sum of these correlations and the middle and
inner inequalities a measure of their difference ac-
cording to the equations
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