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Universal features for the statistical mechanics of a general class of systems with a

one-component field in one dimension have been obtained using path-integral techniques

in a physically revealing and more direct way than was possible before from the transfer-

operator method. Results are also extended to systems that can support more than one

type of soliton. Spin-wave and soliton contributions are calculated simultaneously, thus

enabling us to investigate the relative importance of spin-wave and soliton contributions

in a given physical quantity. These general results are then applied to the double-sine-

Gordon model. We discuss the statistical-mechanical properties of the model as the

parameters are varied. Assessments of the validity of our results are also made.

I. INTRODUCTION

An anisotropic Heisenberg ferromagnetic chain
in the presence of an applied magnetic field has
been mapped approximately onto the double-sine-
Gordon (DSG) model within the classical limit. '

Treating the DSG system as our model we have in-

vestigated various mechanical properties for the
solitons in great detail. Here, we are concerned in-

stead with their thermal behavior, and in particular
the precise role they play in determining various
thermodynamic quantities and static correlation
functions. Their dynamical behavior, although
equally fascinating, will not be considered here.

Two very fruitful approaches have been em-

ployed in the past to study the statistical mechan-
ics of soliton-bearing systems, namely the trans-
fer-operator method (TOM) and the phenomenolo-

gy of an ideal gas of solitons (PIGS). With these
methods striking universal features have been
discovered and discussed at length for a number of
nonlinear models in one dimension (1D).

The TOM has the obvious advantage that it pro-
vides formally exact procedures for obtaining any
static quantity for any 1D classical system. It is
applicable at all temperatures, and for discrete as
well as continuous systems. It also has the advan-

tage that contributions from all kinds of linear and
nonlinear excitations in the system are automatical-

ly accounted for. However, the price to pay for
this latter feature is that one often finds it difficult
to isolate the effects of a specific kind of excita-
tion, such as the soliton, and the interpretation of

the physical origins of the results is in general not
very easy. Moreover, for rather general Hamiltoni-

ans, the TOM often requires numerical solution,
and interesting nonlinear behavior may sometimes
be overlooked in such computations.

The PIGS is a physically appealing method for
obtaining the statistical mechanics of solitons
and other nonlinear excitations. One works
directly with the nonlinear mode in which one is
interested. It has the disadvantage that it is appli-
cable only at low temperatures (at least at the
present stage of development), where the solitons
form a dilute gas of noninteracting particles. In
addition, because of its phenomenological nature,
its validity within a given class of systems must be
gauged by other formally more exact calculations.
But once the PIGS is set up, it is extremely impor-
tant as a means for interpreting the results ob-
tained from other methods. It was, in fact, pre-
cisely this method which made possible the first
proper identification of the soliton density by
Krumhansl and Schrieffer.

Here we employ, instead, path-integral tech-
niques (PIT). The approach, in its general form, is
a rather old one, but it has regained popularity in
recent years as the need to study intrinsically non-
linear problems arises in many branches of physics.
We are interested here specifically in its use for
studying the statistical mechanics of solitons. The
ease of implementation of the method has been im-

proving over the last decade, as important ideas
and special techniques for handling functional in-

tegrals involving solitons (or instantons) have been
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rapidly accumulating. ' '" Like the PIGS, the PIT
has very physically appealing features, and quite
often the physical origins of the results are im-

mediately transparent from the way these quanti-
ties are derived. The method is well founded, and
one works directly with the excitations of interest,
so that their effects can be studied separately from
those of other modes. The method can be extend-

ed to higher dimensions, to include multicompo-
nent fields, "and to the dynamics. ' There are,
however, two serious drawbacks of the method at
least in its present form. First, it is applicable only

to the low-temperature region where the solitons
form a dilute noninteracting gas. Second, one is
confined to work within the continuum limit, and
thus effects associated with the discreteness of real-

istic systems cannot be studied with this method.
The major contributions of the present paper are

as follows. Universal features for the statistical
mechanics for a general class of systems with a
one-component field in 1D (the so-called class A

systems ' ) have been obtained using the PIT in a
physically revealing and more direct way than was
possible before using the TOM. ' ~ We have also
extended the earlier results to include systems that
can support more than one type of soliton. '3 We
can calculate simultaneously spin-wave and soliton
contributions, thus enabling us to investigate the
relative importance of each of these contributions
to a given physical quantity. This capability is
especially important, as the relative importance of
spin-wave and soliton contributions to the central
peak in the neutron inelastic scattering experiment
of CsNiF3 (Ref. 14) is still somewhat unsettled. '

We have also applied our results here to the ther-
modynamics for various cases of the DSG model. '

The results for case (i) of the DSG model agree
with those obtained previously using the TOM and
PIGS.' Results for the other cases have not been
studied, and can also be obtained with little extra
work by adopting a proper potential. Moreover,
we have studied the interconnections of the results
for various cases by examining the statistical
mechanical properties of the system as the model
parameters are varied. This enables us, in addi-
tion, to make an assessment of the degree of validi-

ty of our results.
Previous studies of the statistical mechanics of

solitons using the PIT focus on specific models,
namely the P model, ' which belong to the class A

systems treated here, and a two-component uniaxi-
al magnetic chain, which belongs to a different
class of systems. ' No attempt to arrive at general

results was made. For the P model, '6 because of
an incorrect treatment of the translational mode of
the soliton, the expression for the soliton density is
different from ours.

Employing the PIT, we present here a detailed
study of the thermodynamics and static correlation
functions for the class. A systems. In Sec. II, the
functional integral for the partition function is
evaluated at low temperatures by the method of
steepest descent. ' Besides the trivial solution to
the classical equation of motion, the full nonlinear
soliton solutions are used. Gaussian fluctuations
about both of these paths are considered by study-
ing the normal modes of their corresponding sta-
bility operators. The functional integral is then re-
placed by ordinary integrals over the normal-mode
amplitudes. Divergences occur when the presence
of solitons destroys certain continuous symmetries
of the system, and these divergent integrals have to
be handled separately. Techniques to do this are
by now well known. " In evaluating the infinite
product of eigenvalues for the Gaussian fluctuation
equation for the soliton, certain tricks of Cole-
man" are utilized so that the results do not depend
on the specific form of the model, but instead are
valid for our entire class of systems. This is the
subject of Appendix A.

In Sec. III, the static correlation functions are
calculated specifically for various cases of the DSG
model, following the method of Polyakov. ' In the
study of correlation functions it is important to
make the distinction between soliton-sensitive and
soliton-insensitive quantities. The former are
those quantities which take on different values on
opposite sides of a soliton, and therefore are
characteristic of a true domain wall. The corre-
sponding correlation length is then determined by
the mean distance between solitons (i.e., the aver-

age domain size), and thus is extremely large at
temperatures much lower than the soliton creation
energies. ' In contrast, for the latter case these
quantities do not vary (apart from the small-
amplitude spin-wave-like fluctuations) on opposite
sides of a soliton. Thus these solitons do not play
the role of true domain walls for these physical
quantities, and the corresponding correlation length
goes to a constant value at low temperatures. '
In the present approach using the PIT, we see that
for soliton-sensitive quantities, the contribution
from a single soliton to the corresponding two-
point correlation function decreases linearly with
distance, as was found in the displacement-
displacement correlation function for the P" model
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II. FREE ENERGY

We are interested in the statistical mechanics of
solitons for a rather general class of 1D classical
systems with a single scalar field P(x). The Ham-
iltonian we adopt here has the form

+~) 2

J

(2.l)

by Polyakov. ' This implies that solitons are cru-
cial in determining the long-distance behavior of
these quantities. On the contrary, for soliton-
insensitive quantities we find that the soliton con-
tributions to the corresponding correlation func-
tions decrease exponentially with distance, thus

suggesting that solitons have little effect on the
long-distance behavior of these quantities.

A11 the results derived here can be expressed in

terms of two types of simple integrals which in-

volve the explicit form of the potential. One is
needed for the functional forms for each type of
soliton, and the other for the soliton creation ener-

gies. Thus there are two nonuniversal numbers for
each type of soliton. Universal temperature de-

pendences are found for the soliton-related quanti-

ties, as was obtained previously using the TOM
and the PIGS. Some of these results are ex-

tended here to systems which can support any
number of types of solitons.

The results of this extension can be found in

Sec. IV together with a brief discussion on the to-

pological constraints which must be imposed on

the sequencing of solitons in real space. With
these general results here, explicit expressions for
the free energies for various cases of the DSG
model are summarized also in Sec. IV.

Section V gives interpretations of our findings

for the DSG model. We pay special attention to
the specific roles of the solitons in determining

these finite-temperature results. For a given physi-

cal quantity, the relative importance between soli-

ton and spin-wave contributions is analyzed in de-

tail, with the help of the results of Appendix B
which are based on harmonic spin-wave calcula-

tions. We investigate the interconnections among
the results for various cases of the DSG model as

the parameters of the model are varied. The
failure of our results in a certain region in parame-

ter space and the physical reasons behind such

failure are discussed.
Section VI is a qualitative discussion on the sta-

tistical mechanical behavior of the DSG model for
general parameter values.

2J.
P~(x) = ~ (()(x) (2.2)

[for planar spin systems P~ corresponds precisely
to the small out-of-plane angle. '] The kinetic part
of the partition function Zz is then easily calculat-
ed by performing Gaussian integrals over P~ in the
form

The energy scale for H is set by 2J, which, for spin
systems, is just the exchange coupling parameter.
The constant c, which is the intrinsic velocity for
the linear modes of the system, also plays the role
of a limiting velocity for the solitons. There are
three general requirements on the form of the po-
tential V(P). (l) V(P) should contain no deriva-
tive interaction, nor can it be an explicit function
of x or t, so that it depends only on P. (2) The
system must have more than one degenerate
ground state. These states should form a discrete
(but possibly an infinite) set. (3) We also require
the system to possess a discrete internal symmetry
which connects all these degenerate ground states;
thus the system has well-characterized linear
modes. [The curvatures near the absolute minima
of V(P) must therefore be the same. ] Other than
these requirements, the detailed form of V(P) can
be quite arbitrary. Since the energy of the system
must be unbounded below, we can always add a
constant to V(P) so that it is non-negative, and
takes on the absolute minimum value of zero only
for the degenerate ground states.

Examples of systems belonging to this class of
Hamiltonians (the so-called class A systems ' ) in-
clude the P model, the double-quadratic system,
the m- and 2m.-SG solitons, the DSG systems, and
the double-quadratic chain. In the first two cases
V(P) is unbounded for

~ P ~

—+ ao, and the number
of degenerate ground states is finite (namely two).
The remaining ones are either singly or doubly
periodic systems, and therefore have an infinite
number of degenerate ground states.

In this section, the PIT will be used to calculate
the free energy for this class of systems at low
temperatures in the dilute soliton density limit.
Special attention will be given to the contributions
from the solitons. Despite the substantial arbitrari-
ness of V(P), in fact rather general expressions can
be obtained for the static quantities of these class A

systems.
The classical partition function here can be

separated into a kinetic and a configurational con-
tribution. To obtain the kinetic contribution, note
that the momentum conjugate to the field p(x) is
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+DO pc 2h f dP~exp — P~ (2.3)

where h is Planck's constant, to get
' L/2

4 JZK= (2.4)

The kinetic contribution to the free energy per par-
ticle is then given by E'=H[P']=2J f dx(P'„) (2.10a)

P'(x) without having to solve Eq. (2.9) explicitly.
(See Fig. 1.)

Among all the classical solutions there are al-

ways the uniform (x-independent) solutions ((),
which are given by the minima of V(P). These
paths correspond to a particle sitting forever on
top of one of the peaks of —V(P). The classical
action E' is given by

1
1

4irJ
2P PIt ~c2 (2.S)

(2.10b)
We must later add this to the configurational part
to obtain the total free energy per particle. With
the kinetic part taken care of, it is understood,
hereafter, that we are always referring to the con-
figurational contribution, which therefore will not
carry any labels.

The (configurational) partition function Z, can
be expressed in terms of a functional integral as

((ixZ= D xexp —2 J dx +V

L/2
H[P(x)]= f dx +V(P) (2.7)

plays the role of an action. At low temperatures
(pJ &~1) the functional integral can be evaluated

by the method of steepest descent. " In this tem-
perature region Z is dominated by paths that make
5H=O. These paths [P'(x)] are just the classical
solutions of the Euler-Lagrange equation, which
from Eq. (2.7) is

(2.8)

(2.6)

We work with a finite but very large L, and even-
tually we take L to infinity. The (configurational)
Hamiltonian,

where use has been made of Eq. (2.9). It follows
that the uniform solutions have no action, since
$„=0and V(tIi ) =0. Besides these trivial solu-
tions there are of course also the soliton solutions
P'. These large-amplitude solutions correspond to
a particle which at time —oo sits on top of one of
the peaks of —V((('i), rolls down the hill, and at
time + 00 reaches the top of the adjacent peak.
The fraction of time the particle spends away from
the peaks is therefore very small, and thus the soli-
tons are very localized objects in space. For a
given V(P) there may be more than one (('i'(x);

their explicit forms can be found by solving Eq.
(2.9). Their actions E', which correspond also to
the creation energies of the solitons, must be finite,
and can be obtained from Eq. (2.10). Multisoliton
paths are important, and will be treated later
within the dilute soliton gas approximation.

Next we consider the Gaussian fluctuations
about the classical path. For this purpose, a func-

v($)

0

The prime denotes the derivative with respect to
the argument. With the boundary conditions
P„'(

~

x
~

~ ao ) =0, the first integral of Eq. (2.8) is

(2.9)

Interpreting x as "time" and (() as "coordinate, "
this equation describes the motion of a classical
particle of unit mass moving in a potential of
—V((('i). The energy of this particle is easily seen
to be zero. This interpretation is extremely helpful
in visualizing the forms of the classical solutions

-v(y)

FIG. 1. For the particular potential V(P) as shown
there are two types of solitons, one type taking P(x)
from 0 to P~, and another taking (()(x) from Pi to 2ir.
We can interpret, e.g., the first type of soliton as
describing the motion of a classical particle, which at
time x = —oo sits at /=0, then rolls down the hill of
—V(P), and at time x =+ ao reaches P=P&.
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tion rl'(x) is defined for each path such that

rl'(x) =P(x) P'—(x),
rl'( —L /2) =il'(L /2) =0 .

(2.11)

The action is then expanded up to second order in
rl(x) yielding

H [p(x)]=H [p'(x)]+ —,5 H [il'(x)] . (2.12)

—,5' [il'(x)] = g A;„(a„') (2.14)

The zeroth-order term is just the classical action.
The eigenvalues and eigenfunctions of 5 H obey
the equations

1 d
ib (x)+ —, V"(P')rl„'(x)=A,'„g'„(x),

(2.13)
vf„( L/2)=—i'„l(L/2)=0.

Now 5 H can be expressed as

However, not all I,'„arepositive definite; there
must be at least one eigenfunction rip(x) with the
corresponding eigenvalue A,p

—=0. The presence of
this zero-frequency mode is a direct consequence
of the translational invariance of the Hamiltonian.
The soliton can therefore be centertxl anywhere
along x, thus instead of just one soliton solution
there is a whole family of soliton solutions
P'(x —xp) labeled by the center of the soliton, xp.
Shifting xp by a small amount implies

P (x —xp —5xp) —P (x —xp)=44(x xp)5xp

(2.20)

But P'„must be proportional to gp, since by dif-
ferentiating both sides of Eq. (2.8), it is easily seen
that P'„satisfies Eq. (2.13) with V=O. The pro-
portionality constant follows directly from the nor-
malization condition for i)p(x) and Eq. (2.10a), giv-
ing the result

where a„'are the expansion coefficients of r)'(x) in
terms of the normalized eigenfunctions rP„(x);i.e.,

1/2

alp(x) = P„'(x). (2.21)

rf(x)= ga„'v]'„(x). (2.15)

da~
Dp(x) g f

pg
7T

(2.16)

Assuming for the moment that all the eigenvalues
V„were positive definite, then each Gaussian in-

tegral over a„'would yield a factor (A.'„) '~2. Thus
the partition function can be written

z zo+zs

where

(2.17)

The functional integral in Eq. (2.6) is then replaced

by ordinary integrals over these coefficients (or
normal-mode amplitudes), thus

Thus within the steepest descent approach, the
integral of the functional integral for Z remains
constant in the direction of imp(x). The integration
over ao is therefore divergent and must be handled
separately. It is clear that there is such a zero-
frequency mode corresponding to each continuous
symmetry of the system that is broken by the soli-
ton. The remedy is by now well known. " For our
problem here, instead of integrating over ap we
will integrate over the centers of the solitons, xo.
The required transformation Jacobian can be ob-
tained by considering a path that lies entirely in
the i)p(x) direction, then one has

rip(x)da p =P (x —xp —dxp) —P (x —xp)

Z =Ng(A, ) (2.18)
=P„'(x)dxp . (2.22)

is the contribution from P (the zero-soliton sec-
tor), and «o= «o.

This gives, using Eq. (2.21),
' 1/2

(2.23)

Z'=Ne-i' 'g (X'„)-'" (2.19) Thus it follows that

is the contribution from a single sohton. N is an
unimportant normalization constant. The above
calculation neglects effects due to anharmonic spin
waves and mutual soliton interactions. Contribu-
tions from multisoliton configurations will be tak-
en into account later.

1/2

f dao
1/2 1/2g (2.24)

The factor of 2 in Eq. (2.24) is to take into account
contributions from both solitons and antisolitons.
A constant 8 has also been inserted in order to
avoid overcounting multisoliton states. Its value
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depends only on the topology of the soliton under

consideration, as will be discussed in more detail
later in Sec. IV.

Note from Eq. (2.9) that P'„(x)cannot be zero
for any finite x. Thus sf~(x) has no nodes and
must therefore be the eigenfunction of Eq. (2.13a)
with the lowest eigenvalue, i.e., i)o(x) is the Jacobi
field. All other modes must then have A,„&0,and
thus the remaining integrals over a„'with n &0 are
finite. The soliton path is therefore stable in all
directions except along ig(x), where it is only mar-

ginally stable.
Next we must take into account multisoliton

states. In the dilute soliton gas limit the procedure
amounts to writing

problem and derive a general expression for R.
Details can be found in Appendix A.

From Eqs. (2.28), (2.29), and (A18) the soliton
part of the free energy per spin is

' 1/2

fg 2 2PJ ~1/2~se pE~—
PB

(2.30)

For systems that can support more than one type
of soliton we must sum over the contributions
from each type of soliton separately. An impor-
tant contribution from the PIGS is the proper
identification of the soliton (solitons and antisoli-
tons of all types) density n'„„whichfor our class
of systems can be written

zs
Z ZO l+ zo

' 1/2
2 2PJ

tot B m

1/2 ~ ~ IEg
,.e (2.31)

zs Z /Z' (2.25) where i is to be summed over the types of solitons.
Thus we have

Thus the free energy per spin is n tot
(2.32)

f:—lim —InZ=f +f',
L

where

f = —lim —lnZ
1

L

(2.26)

(2.27)

is the contribution from the spin wave, and f' is
the soliton contribution. Using Eqs. (2.18), (2.19),
and (2.24) we have

g (gc)1/2
2 E' n

L p /g 2J g'(g )
/

'= —lim

(2.28)

The prime in the infinite product of eigenvalues

means that A,o is not to be included. The problem
now is to evaluate the ratio

R=
n

(2.29)

One could obtain R by explicitly solving for Eq.
(2.13). However, except for very simple cases this
is in general an exceedingly formidable analytical
task. Moreover, it is difficult to see how to write
down the results for a general V(P). Following the
work of Coleman, " one can in fact get around this

There are three points that deserve comment
here. First, although we are working at low tem-
peratures where (PJ) ' «1, the above results for
the solitons cannot be obtained through any finite-
order perturbation calculation. The solitons are
intrinsically nonpeiturbative in nature. Second, the
temperature dependences of n'„,are universal for
our entire class of systems. An important advan-

tage for the present approach using the PIT is that
the origin of this universal form 'for n«, is very

clear. The activation form of e ~ comes from
the fact that topological solitons have finite ac-
tions. The P'/ temperature dependence for the
prefactor of n'„,is clearly due to the zero-
frequency mode. In general one expects that for a
system with n continuous symmetries broken by
the solitons, the prefactor should be proportional
to P"/ . A system with two broken zero-frequency
modes has recently been studied by both the PIT
and the TOM, ' and indeed a P-dependent prefac-
tor is found. Third, in Eq. (2.31) the temperature-
independent quantities, ~, X, and E,' are
nonuniversal, but can be calculated for a given
V(P). (See, e.g., the DSG model in Sm. IV.)

Putting the kinetic part [Eq. (2.5)], the spin-
wave part [Eq. (A4)], and the soliton part [Eq.
(2.32)] together, the total free energy per spin is
then given by
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Clearly, not only for the soliton part, but for the
entire expression for f„,the temperature depen-
dence is of universal form.

III. STATIC CORRELATION FUNCTIONS

From Eqs. (2.33) and (2.31) we see that the soli-
ton contribution to the free energy per spin is ex-
tremely small in comparison with the spin-wave
contribution at k~T much lower than the soliton
creation energy. Therefore, the solitons have very
little effect on thermodynamic quantities, like the
internal energy and the specific heat, which are
derivable from the free energy. ' For spin sys-
tems, where V(P) depends on the external magnet-
ic field, small soliton contributions to the longitu-
dinal components of the magnetization and the
spin susceptibility are also expected. We want to
know if there are static physical quantities which
are significantly affected by the solitons. From
previous works ' we know that the solitons play
a vital role in a given physical quantity when they
separate the system into domains where this quan-
tity takes on different values in adjacent domains.
In other words, it is the presence of the solitons
that prevents this quantity from ordering. This
order-parameter correlation length is therefore

given by the average size of the domains and thus
varies as (nt0, ) '. As T~O, the soliton density
decreases exponentially with p to zero, meaning
that the domain sizes grow rapidly to infinity,

therefore quantities like the order-parameter corre-
lation length and static susceptibility must likewise
increase anomalously. At T=O, there can be no
soliton in the system; the domain size and the
correlation length are therefore infinite. Thus
T=O can be considered as a critical point of the
system.

These true domains can exist in spin systems
which support solitons which are not 2m-like, i.e.,

~ Q ~

Ql. To find properties which are dominat-
ed by solitons one must consider quantities which
are associated with the order parameter, but are
not derivable from the free energy. This is the
case for the transverse components of the static
two-spin correlation function and the static suscep-
tibility for case (i) of the DSG system' and for the
m-SG system, as will be shown in more detail
below. The vital role played by these solitons will

be evident.
In contrast, we will see that the corresponding

quantities for the longitudinal components of the
spins are not much affected by the solitons. ' 2

This comes about because these components have

practically the same value on opposite sides of a
soliton. The corresponding correlation length
therefore remains finite as T~O. Similar
behaviors are found for either spin component for
the other DSG solitons with g ~

=1.
Here we will focus our attention on the static

correlation functions for various cases of the DSG
system. The calculation of the static two-spin
correlation functions follows closely the approach
of Polyakov. ' In terms of path integrals we can
write the cosine correlation function as

D x e ~ ~'"'cos 0 cos r
( cosg(0)cosg(r) ) =

Dy(x)e
—P&lk~ ~)

(3.1)

(cosg(0)cog(r) ) -= ' 1/2
f?E~g (g0 )

—1/2+ e pE~ g i
(gs )

—t /2 —pE
8

with a similar expression for the sine components. We have in mind here case (i) of the DSG model where
the magnetic field is applied along y (see Sec. II A of paper I) and P is measured from x. Thus the cosine
(sine) components are along x (y) and transverse (parallel) to the field. The "action" in Eq. (3.1) is the same
as in Eq. (2.7), and without loss of generality we have taken r to be non-negative. The evaluations of the
functional integrals in Eq. (3.1) follow practically the same procedures as before, giving

' 1/2

cos P g (A,„)'/ +e ~ g'(A;„) ' — I dxacosg'(xa)cosg'(x0 —r)s —j/2 2

n n 7T

(3.2)

In both the numerator and the denominator of this expression, the first term comes from the trivial solution
and the second term comes from the soliton solution P'. Although not written out explicitly for the soli-
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(3 3)

ton part, a sum over the types of soliton is to be carried out when the system can support more than one

type of soliton. Thus in case (i) of the DSG model, ' we should sum over the type (a) and (b) solitons. In
the dilute soliton density limit we can write from Eq. (3.2)

' 1/2
z p(cosg(0)cosg(r) ) =cos P +— R '~ e ~ f dxp[cosP'(xp)cosP'(r —xp) —cos P ] .8

In the second term on the right-hand side of Eq.
(3.3), the factor in front of the integral is just the
soliton density n' (for a given type of soliton), and
it carries all the temperature dependences for the
correlation function. The integral over the centers
of the solitons will be denoted by F,(r),

F,(r)=—f dxp[cosp'(xp) cosf'( r—xp) —cos f ] .

(3.4)

F,(r) does not vary with the temperature, but de-

pends in general on the detail shape of the soliton,
and is the only r-dependent factor in the correla-
tion function. Similarly for the sine component we
define F,(r) by

F,(r): f dxp[sing—'(xp)sing'(r —xp) —sin P ] .

(3.5)

As shown below, the behavior of F,(r) and F,(r) as
functions of r will in fact tell us the specific roles
of the solitons in the corresponding correlation
functions.

We first discuss the case where the system can
only support solitons which are 2m-like, i.e.,

~ Q ~

= 1. Examples can be found in cases (ii) and
(iii) of I. Case (iv) also belongs here unless v—:0.
In all these cases both x and y components of the
spins assume practically the same values on oppo-
site sides of the soliton. Small deviations come
only from spin-wave-like fluctuations. By inspect-
ing the integrands of Eqs. (3.4) and (3.5), we see
that there are basically two contributions to F„(r).
Since the solitons are rather localized objects, for r
much larger than the width of the soliton the in-

tegrands are nonappreciable only in the immediate
vicinity of xp ——0 and xp r. An integral over——
these two neighborhoods should yield a term which
is independent of r, but rather depends on the de-

tailed shape of the soliton. After multiplying by
the factor n' this term contributes only to the r-
independent part of the correlation function, thus
representing a very small decrease in the corre-
sponding components of the magnetization as a re-
sult of the spins residing within the solitons. The
second contribution comes from the overlap of the

two solitons centered at xo ——0 and xo ——r, and is
therefore r dependent. Since the solitons are rather
localized, for r »a ' the overlap is very small
(even before multiplying by n') M.oreover, from
Eq. (I3.5) [Eq. (3.5) of I)] this contribution must
decrease exponentially to zero as r~ ap, meaning
that these

~ Q ~

= 1 solitons are irrelevant in deter-
mining the long-distance behavior for either of the
two spin components. We have in fact exactly
evaluated some of these integrals for the

~ Q ~

= 1

DSG solitons for all r, and in the limit r &~~
we find precise agreement between the above sim-

ple intuition and the calculated results. Thus in
general 2~ solitons have little contribution to the
long-distance behavior of these

~ Q ~

=1 soliton
systems. As will be seen in Sec. V, the major con-
tributions to the statics come in fact from the spin
waves.

Next we consider the static correlation functions
for systems which support solitons with

~ Q ~
+1.

For concreteness, and for use later, we focus our
attention on case (i) of the DSG system. Although
the solitons here have

~ Q Ql, because they carry
the field P(x) from Pp=sin '(p/A, ) to vr Pp, the-
sine component of spins nevertheless assumes prac-
tically the same value on opposite sides of a soli-
ton. Thus this component is noncritical, and the
soliton contribution to the corresponding static
correlation function at long distances is expected to
be very small, as is also the case for other static
quantities. As we will see in Sec. V, the major
contributions to these quantities in fact come from
spin waves which are somehow modified by the
presence of the two degenerate ground states.

The cosine components of spins however behave
drastically different in that on opposite sides of a
soliton, they assume the same magnitude of
[1—(p, /A, ) ]' but with opposite signs. Thus soli-
tons will be vital in determining this component of
the static correlation function, susceptibility, and
correlation length. To have a clearer understand-

ing of these soliton effects, we have calculated

F,(r) exactly using the soliton solutions in Eq.
(I2.12). The resulting expressions are somewhat
complicated and will not be written out here, but
what is important here is their behavior for
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F,(r)= —2r 1— +0(e "") . (3.6)

Putting this back into Eq. (3.3) we see that al-

though the solitons have a finite creation energy,
and so their densities are very low at k~ T &&E,'
and Eb, their effects on the order-parameter corre-
lation function in fact decrease linearly with dis-
tance. This indicates that the solitons dominate
the long-distance behavior of this correlation func-
tion. On the other hand, the spin-wave contribu-
tion is comparatively much less important. This
behavior is just the opposite of what we found for
the sine (longitudinal) component, and for both
components in systems with only 2m. solitons.

The result of Eq. (3.6) could in fact be obtained
easily without detailed calculations. For r &&~
the detailed structure of the soliton is then insigni-
ficant, the only importance of the soliton is that
they behave as true domain walls for the cosine
component of the spins. Thus using Eq. (I2.12)
and letting ~~ oo, we have the expected result

2 1/2

sgn(x) . (3.7)cosP', b(x) =+ 1—

This component of the spins therefore behaves as
an Ising system, with the solitons corresponding to
the locations where spin flips take place. Using
Eq. (3.7) in Eq. (3.4) gives

2

F,(r)= 1— I dxo[sgn(xo)sgn(xo —r) —1]

r »a '. We find for both type (a) and (b) solitons
that in this limit

'2

sideration. Following Polyakov, '9 Eq. (3.9) gives

ns r
(cosg(0)cosg(r)} —=cos Joe (3.10)

k. =(2nioi) ' (3.11)

however, can be extremely long at temperatures
much lower than E,' and Eb. The correlation
function in wave-vector space is Lorentzian, with a
very narrow width equal to 2n'„,:

4 s

W„(k)=
(2n,' ) ~k

(3.12)

The k=0 limit of W„(k)gives the static suscepti-
bility (gee =1)

XQ S
n tot

(3.13)

Both g„andX„havejust the right forms appropri-
ate to a system with an Ising symmetry, with E,'
(the smaller of the soliton creation energies) play-
ing the part of the Ising coupling constant.

IV. TOPOLOGICAL CONSTRAINTS,
EXTENSION TO POLYSOLITON SYSTEMS

AND SUMMARY OF RESULTS
FOR THE DSG MODEL

after taking into account multisoliton configura-
tions within the dilute gas approximation. This is
precisely the result one would expect from the
TOM. The exponential decay of correlations is of
course expected for 1D systems at finite tempera-
ture. The correlation length which is given by

r '2

2r, (3.8)

which is precisely the correct answer. '

Equations (3.3), (3.4), and (3.6) imply that for
r »a. ' we can write, after summing over the two
types of solitons for case (i) of the DSG system

(cosg(0)cosg(r) }=cos P [1 2(n,'+nb)—r], (3.9)

where n,' and nb are the total soliton densities for
type (a} and type (b) solitons, respectively. The ex-
pression for the soliton densities can be found in
Table I. Of course the correlation function cannot
decrease without bound as r increases; this failure
comes from the fact that we have only considered
the contribution from a single soliton. For large r,
multisoliton configurations must be taken into con-

We must now consider the factor B which has
been inserted in Eq. (2.24) and appears eventually
in the expression for the soliton density [see Eq.
(2.31}]. This factor is associated with the fact that
when one tries to construct from single soliton
solutions a multisoliton configuration that consists
of solitons widely separated from each other, the
topology of the single-soliton solution may impose
very strict constraints on the sequencing of solitons
in space. This observation was noted first for the

problem and later discussed in more detail for
other potentials. " ' Following the same line of
reasoning, we see that for the 2nsolitons ther. e is
no constraint on the sequencing of solitons, a soli-
ton can be either followed by an antisoliton or
another soliton. In constructing multisoliton con-
figurations one must therefore treat the solitons
and the antisolitons as different objects. Thus the
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factor of 2 which has been inserted in Eq. (2.24) to
account separately for contributions from the soli-
tons and the antisolitons is appropriate. Thus
B=1 for these cases. Belonging to this category
are cases (ii) —(iv) of the DSG system.

The situation for case (i) is, however, a bit dif-

ferent. The topology of the system requires that in

going from one soliton to the next either the type
of soliton or the sign of Q (Ref. 24) must change,
but not both. Thus if two adjacent particles are of
the same type then one must be a soliton and the
other an antisoliton. And if they are of different

types then they must both be solitons or both an-

tisolitons. Since contributions from the two types
of solitons are being summed up separately, the
counting of multisoliton configurations here is the
same as for the P problem. We must therefore
consider the soliton and the antisoliton of a given

type not as different particles, but as the same ob-

ject in a different state. Thus the factor of 2 in

Eq. (2.24) is unnecessary and we must divide the
result by 2. As for case (i) of the DSG system, we
must put B equal to 2.

It is interesting to note that there are two
equivalent views on the topological constraints for
the m.-SG solitons. We can view the system as con-
sisting of only one type of soliton, thus the count-
ing of multisoliton configurations is the same as
for the 2m solitons (i.e., the solitons and the an-
tisolitons are to be treated as different objects), and
thus B=1. We can also consider the ~-SG system
as a degenerate limit for case (i) of the DSG sys-

tem, i.e., we view the solitons in regions (a) and (b)
as belonging to different types (as was the view we
adopted in I). We must then treat the solitons and
the antisolitons of a given type as the same object
(but in a different state), thus we put 8=2. How-
ever, to obtain the total soliton contribution we
must also sum up the contributions from the two
types of solitons separately. The final result is
therefore exactly the same as from the previous in-

terpretation, as it must be.
The above considerations are very helpful in try-

ing to extend our results here to include spin sys-
tems which can support more than two different
types of soliton. Spin systems are necessarily 2m.

periodic, but within a 2~ interval the potential
V(P) can have in general a number of degenerate
ground states as a result of various anisotropies.
Let this number be 1V, so that there are 1V, peaks
separating these potential minima within the 2m. in-
terval. Let the peaks be labeled in increasing order
in P by an integer j=1,2, . . . , N, . To each peak

there corresponds one type of soliton, which we
denote by 5+ where j, defined modulo X„indi-
cates the type of soliton, and + gives the sign of
the topological charge (i.e., + for solitons and-
for antisolitons). It is easily seen that the topologi-
cal constraint in constructing multisoliton configu-
rations is that S+ must be followed by either 5+-+'.

Note that requirement (3) on the potential implies
that V" at the minima P have the same value ~ .
Thus we can write

S

ntot nj ~B .
(4.1)

where

1/2

'=2 '/ N'eJ pEs
J

77 J (4.2)

is the total density of type-j solitons plus antisoli-
tons without imposing any topological constraints.
The topological factor B can be obtained by
demanding that in the limit that all types of soli-
tons are identical, the result for n'„,should be the
same as for a system with only one type of soliton.
This gives B =N, . Thus in general n'„,is just the
average of the soliton densities over the number of
types of solitons,

S
nJ (4 3)

Clearly, the N, types of solitons need not be all
different. For X, =1 and 2 the previous results are
recovered from Eq. (4.3). The extension of the cal-
culation of static correlation functions (Sec. III) to
systems with X, & 3 is less trivial, and will not be
reported here.

It is now straightforward to apply the results of
Sec. II to obtain the free energy for each case of
the DSG system. These results and other relevant
quantities are summarized in Table I. The organi-
zation of the table and the notations used are as
follows. Results for cases (i), (ii), and (iii)-(iv) are
listed in columns 1, 2, and 3, respectively. The po-
tential V(P) is what we put into our Hamiltonian
in Eq. (2.1). A constant term V has been separated
out from the original potential as given by Eq.
(I2.56) so that V(P) in Eq. (2.1) is non-negative.
The inverse trigonometric functions are understood
to take on their principal values only. We have as-
sumed, without loss of generality, that the parame-
ters A, , p, , and v, as defined in Eq. (I2.5c), are non-

negative. ' For case (i), (a) and (b) refer to the two
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types of solitons discussed in Sec. II A of I. No la-

bels are put on quantities which are common to ei-
ther type of soliton. In the expressions for the to-
tal soliton densities, which include for each case
solitons and antisolitons of all possible types, the
correct topological factors B have already been ac-
counted for. Note that with the exception of V the
results in column 3 can be obtained from those in
column 2 by formally letting A,~—A, , p~v, and

P~P —m/2. The free energy per spin as given in
the table represents only the configurational contri-
bution; the kinetic part from Eq. (2.5) must be
added to obtain the total free energy per spin. For
case (i) the free energy and the order-parameter
static correlation function of Eq. (3.10) have been
derived before from the TOM and the PIGS. '

The rest are new results.

V. INTERPRETATIONS OF RESULTS
FOR THE DSG SYSTEM

With the results for various cases of the DSG
system explicitly written out in Table I, we are
now in a position to interpret these findings. The
thermodynamic quantities discussed in I are only
valid at T=O; we will see here now these results
are modified by finite temperature fluctuations.
For a given static quantity, the relative importance
of solitons and spin-wave contributions is discussed
in some detail. To facilitate our analysis, the pre-
dictions which are based on a purely harmonic
theory can be found in Appendix B.

The total free energy per spin consists of a
kinetic part [Eq. (2.5)] and a configurational part
which is given for various cases in Table I. The
physical origins of these contributions are quite
clear from the way they are derived. This is pre-
cisely one of the advantages of the PIT. From Eq.
(2.2) we see that the kinetic part is due to the small
out-of-plane motions of the spins. For the config-
urational free energy, the first term, which is tem-
perature independent, must be the ground-state
contribution. The second term comes from Gauss-
ian fluctuations about the ground state, and there-
fore represents the spin-wave contribution. The
last term arises from the soliton solution and the
fluctuations about this solution, and therefore
represents the contribution from the "dressed" soli-
tons. It must be emphasized that our results
neglect spin-wave interactions and soliton-soliton
interactions, and are applicable only at low tem-
peratures and at temperatures AT &&E' where the

solitons form a dilute noninteracting gas.
From the free energy we can obtain by differen-

tiations various thermodynamic quantities of in-
terest, e.g., the specific heat and the longitudinal
components of the magnetization and the static
susceptibility. (For the DSG system, longitudinal
and transverse refer, respectively, to directions
within the easy plane which are parallel and per-
pendicular to the applied magnetic field. Note that
depending on the case under consideration the
direction of the applied field may be different. )

The specific heats obtained for various cases have
rather similar behavior; they always go to a con-
stant value kg, as T~O, as expected for our clas-
sical treatment of the problem. Other results, like
the magnetization and the susceptibilities do, how-
ever, vary from case to case, and have rather in-
teresting properties, as will be discussed below
under different subheadings.

A. Case (i)

Since the magnetic field here is along y, one can
easily obtain from the free energy, using Table I,
the longitudinal components of the magnetization

(5.1)

and the static susceptibility

(5.2)

The soliton contributions, which of course can be
easily obtained, have not been written out explicitly
in the above equations, since they are extremely
small in the temperature region of interest. Com-
paring Eq. (5.2) with X~

~

calculated in the spin-
wave approximation [Eq. (811)]we see that al-
though the y components of the spins do not form
true domains (as opposed to the x components),
the spin-wave contribution to X~ is nevertheless
modified by the presence of these solitons with

~
Q ~

@1. This may be due to the fact that there
are two equivalent ground states from which spin
waves can be excited. The T=O limit of Eqs. (5.1)
and (5.2) of course agrees with the earlier results
mentioned in I.

Next we consider physical quantities associated
with the x components of the spins. Because the
soliton here switches these components between
the two distinct ground states (i.e., cosg0=+[1
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—(ply) ]' ), M„is identically zero at all finite
temperatures. However, at T=O there are no soli-
tons, the degeneracy of the ground states is thereby
broken given a nonzero value to M„.This indi-
cates again that T=O can be viewed as a critical
point, with the x component of the spin S„asthe
order parameter. It follows that as T~O, X„must
diverge. As we have discussed before, the long-
distance behavior of S» is dominated by the soli-

tons; we can write from Eq. (3.13), neglecting the
small and nonsingular contributions from the spin
waves,

M» ——
M~( =1 (—SPJ&i) + ' ' ',

X»
——Xii=(32PJ'a,';) '+

(5.4)

(5.5)

omitting the negligible soliton contributions. Com-
paring Eqs. (5.4) and (5.5) with Eqs. (A8) and
(All) we see that M» and X» are given to extreme-

ly high accuracy by spin-wave theory. Thus we
expect that g» =)~~=(2a;;) ', as given by Eq. (89).
For p & A,, M„must vanish at all temperatures.
Section III tells us that solitons can be ignored for
the x components of the static correlation function;
thus we can write from Eqs. (810) and (89)

X~—
~ tot

(5.3) X„=Xi= (2Jlr,'; ) (5.6)

which indeed diverges as T—+0. The correlation
length g» which is given by (2n'„,) ' also has the
same sort of essential singularity at T=O. Because
of this dependence of g„onn'„,we can view the
"phase transition" at T=O as caused by the disap-
pearance of solitons. The behavior here is reminis-
cent of the Kosterlitz-Thouless transition of 20
XF systems, ' which is driven by the disappear-
ance of free vortices as T~TKr. The solitons in
1D here and the free vortices in Kosterlitz-
Thouless systems (2D) both are topological excita-
tions which drive the phase transitions in these sys-
tems, and cause the correlation lengths to be non-
analytic at their respective transition temperatures.
The usual strong scaling laws are obeyed provided
that they are expressed in terms of their respective
correlation lengths. For our problem here we
find a =—a/v= —d = —1, y:—y/v=- 1, 5= oo, and
g= l.

Next we consider the behavior of the static
quantities as p (the magnetic field along y) is
varied. From the discussions in I, we do not ex-
pect any anomaly as p~O at any temperature. At
p=O the forms of the potential in regions (a) and
(b) are identical, but as p is increased above zero,
E,' decreases while Eb increases. The total soliton
density in fact becomes higher, implying that X»
and g» will both decrease, as expected since the
magnetic field suppresses spin fluctuations. How-
ever, as p is increased to the bifurcation value A, ,
lr~O, and our results become nonsensical (e.g.,
M» —+ oo and n, ~O). The failure of our results
near the bifurcation point will be discussed in more
detail after considering case (ii).

B. Case (ii)

From the second column in Table I we easily
find the results

(5.7)

Again our results are not expected to work near
the bifurcation point.

Combining the results for Mz and X~ for cases
(i) and (ii), their behavior as a function of the mag-
netic field along y are shown in Figs. 2(a) and 2(b),
respectively. The dot-dashed lines represent the re-

(a)

(c)

O

O
8 IFURCAT I ON

POINT

0
0

(i)
SOLI TON
DOMINATED

(ii)
SPIN-WAVE
DOMI NATED

FIG. 2. Longitudinal magnetization (a), the longitudi-
nal susceptibility (b), and the transverse correlation
length (c) as a function of the magnetic field along y.
The parameters correspond roughly to PJ =10 and
A, =0.2. The dot-dashed lines represent the results at
T =0.
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suits at T=O. The curves have not been drawn
close to the bifurcation point where our results are
not expected to work.

Note that both g„andX„for p & A, are propor-
tional to (n f„)', and therefore are extremely sens-
itive to the temperature and are very large. But
when p —+k, they become comparatively very small
and are T independent [see Eqs. (5.6) and (5.7)].
Thus as p is increased from zero to values above
the bifurcation point, g„andg„both decrease
dramatically to T-independent values. The magni-
tudes for these decreases become even larger as T
is reduced, because eventually at T =0 both g„and
X„areinfinite for p &X. The behavior for g„is
depicted in Fig. 2(c). The bifurcation region thus
marks the boundary between a soliton-dominated
regime and a spin-wave-dominated one. It should
be very interesting to see how a theory which
remains valid across the bifurcation region will
connect these two drastically different regimes.

Although the mechanical properties of the soli-
tons derived in I remain valid even at p =A, , their
thermal properties discussed here certainly do not.
Our results are based on the dilute soliton gas ap-
proximation, where soliton-soliton interactions are
neglected. This is a quite reasonable assumption
under the usual situation where the topological sol-
itons are very localized in space (see Sec. III A of
I), and when one works at temperatures much
lower than the creation energies of any type of sol-
itons in the system. Thus near the bifurcation
point there are two major reasons to suspect the
validity of our statistical mechanical results. First,
for p close to A,, ~; and ~;; are both very small;
thus the solitons whose sizes are given under usual
circumstances by ~ ' are certainly not localized.
In fact at p =A, they become the "algebraic soli-
tons" as discussed in I. Second, the creation ener-

gy of the type (a) soliton approaches zero as
p~A, , thus for p (A, a large number of these sol-
itons are excited. All these features near the bifur-
cation point suggest that the solitons there are
strongly interacting and therefore the noninteract-

ing soliton gas picture is no longer valid.
The fact that a; and R;; both go to zero at the

bifurcation point' implies that the quadratic terms
in the Taylor expansion of V(P) about the ground
states also vanish there. Thus for p sufficiently
close to A, it becomes important that one should in-
corporate into the path-integral formalism quartic
as well as quadratic fluctuations about the classical
paths. A rough estimate of where this will occur
may be obtained by studying the equation

(5.8)

where g=P ——$0, and Vo
' ——6A, . We use the spin-

wave results for (1( ) and (1( ) from Eq. (86) by
setting r =0. Equation (5.8) then becomes

4pJ
(5.9)

where b, =—1 —p/A, measures the distance away
from the bifurcation point. Thus we expect that
quartic fluctuations are not important when

' 2/3
1 A,

4A, 4pJ
(5.11a)

or

(5.11b)

Note that hz is exactly twice AL, and both are
temperature dependent. They shrink in size as the
temperature is reduced, since spin fluctuations are
then suppressed. The above considerations suggest
that our results may be trusted when p/A, is far
from the region given by 1 —AL, (p/&1+4'.
However, there is an additiona1 consideration that
has to be made. Recall from I that for @~A, , be-

sides the flattening of the two potential minima,
the height of the smaller peak separating them also
goes to zero, as they approach each other at m/2.
This means that for p & A, it is very easy for the
spins to fluctuate across these two minima, since

E,' becomes very small. Thus the density of the

type (a) solitons cannot be dilute and the soliton
gas picture is then no longer valid. This picture is
further hampered since the size of both type (a)
and (b) solitons also increases as @~i, . This
breakdown is just the second condition we have
mentioned above.

We consider the restrictions which are imposed
by the second condition on the parameters of the
theory. Since the width of a soliton is essentially

given by a ', ' for the soliton density to be low we
need to have

i && tot (5.12)

Note that the restrictions as given by Eqs. (5.11)
and (5.12) depend on the temperature and the

From Eqs. (I3.10) and (I3.11) we can write, for p
near A,,

(5.10a)

(5.10b)
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parameters of the theory in quite a different way.
One must have both of these restrictions checked
individually before any of the results here may be
used.

C. Cases (iii) and (iv)

For these cases the magnetic field whose magni-
tude is parametrized by p

—=gp&H~/4J, is applied
along x. From the free energy in the last column
of Table I, one can easily obtain

M„=1 —( SPJs;„)

X„=(32PJ~;„) '+
(5.13)

(5.14)

(5.15)

Xy ——(2Js;, ) (5.16)

Symmetry implies that Mz ——0 at all temperatures.
Note that g„saturates in the temperature range of
interest. However, at v=O the DSG system be-
comes the ~-SG system, and we know, either by
putting p=0 in case (i) or from a previous
work, ' that this system has at low T an ex-
tremely long and temperature-sensitive order-
parameter correlation length:

g„(v= 0)=(2n„,) (5.17)

The density for the ~-SG solitons n„,can be ob-
tained here either from the first or the last column
of Table I by setting the fields equal to zero. We
see from Eq. (5.15) that as v is decreased, g'„in-
creases gradually (in a temperature-independent
way), as expected, since spin fluctuations are
enhanced. This trend continues across v=A, to
small v values, until v is so close to zero that Eq.
(5.15) no longer applies. But at v=O, g must
have somehow increased to an extremely large and

Again the small soliton contributions have been
omitted in writing these equations. From Appen-
dix 8 we see that these results, with the soliton
contributions omitted, agree exactly with the spin-
wave predictions. Although for v very close to zero
n,'„becomes very large (see Table I) and our re-
sults can no longer be valid, they should be appli-
cable for v not too small. Moreover, we expect
that all static quantities to be given essentially by
spin waves; the contributions from these 2m. soli-
tons are exponentially small. This conclusion is
also suppported by a detailed calculation using the
TOM for the 2m.-SG system. Thus we can write
from Appendix 8,

$„=(2s;„)'= 2 gy,

(a)

0:-

8")il

O

o

(o)

Qm
I I

Q I 2 v/X
(iii)

7r -SG SOLI TON SP IN-WAVE

LIMI T DOMI NATED

FIG. 3. Longitudinal components of the magnetiza-
tion and the correlation length as a function of the mag-
netic field along x. The parameters correspond roughly
to PJ =10 and A, =0.2.

(iv)

T-dependent value given by (2n„,) '. The lower
the temperature the more this anomalous increase
has to be. The same behavior, of course, also ap-
plies to X„,since at v=O it is given by Pln„,. It
should be very interesting to see how a theory
which remains valid even for v=O would give re-
sults which would connect these two very different

behaviors. We do not expect any anomaly, howev-

er, across the point v=A, . Figure 3 illustrates M„
and g„asa function of v.

As v~O our calculation implies a diverging soli-
ton energy, which is definitely an absurd result and
signifies, in fact, a breakdown of the present for-
malism. Since the lifetime of the metastable state
is approaching infinity in this limit, its effect must
now be accounted for. Furthermore, the oc-
currence of reactions where a 2m.-DSG soliton dis-
sociates into two ir-SG solitons at v=O [see Eq.
(13.15)] implies that at the moment these ir solitons
are formed they must repel each other very strong-
ly. We can also consider the 2~-DSG solitons just
before their dissociation. The groups of spins with

P between 0 and n, and between n and 2n., must
interact very strongly with each other. The repul-
sion between these two groups of spins is coun-
teracted by the binding force of the soliton, thus
resulting in a wobbling motion about their equili-
brium separation. This separation increases with
the size of the soliton as

~

inv
I

(see Fig. I5). At
v=0 their repulsion finally wins, and they separate
to form two vr-SG solitons. This sort of wobbler
for small v has been observed for example in self-
induced transparency experiments in sodium va-

por. These internal structures, as well as the in-
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crease in size of the 2nS.G-solitons as v~O, v=O,
cause serious problems in the present formalism
which is based on a noninteracting soliton-gas pic-
ture.

VI. CONCLUDING REMARKS

Although we have studied the statistical
mechanics of the DSG model only along certain
symmetry directions in the entire (A, ,JM, v) parame-
ter space [see Fig. 11(a)], the qualitative behavior
for general parameter values is quite clear based on
what we have learned here. In the v=0 plane and
for p less than but some distance away from A, , the
bifurcation value, the long-distance behavior of the
order-parameter of the system is dominated by the
(a) and the (b) DSG solitons at low temperatures.
The dilute soliton gas picture is valid for AT
&&E,' and Eb. The order-parameter correlation
length and the susceptibility are both very large.
Slightly away from this plane, i.e.,

~

v
~

& 0, but

still within the shaded region of Fig. I6, either the
type (a) or the type (b) soliton becomes unstable.
The low-temperature statistical mechanics are then
strongly influenced by the presence of metastable
solitons and solitons that are strongly interacting.
Our approach here, which is based on a dilute
noninteracting soliton gas, is therefore invalid.
Nevertheless, we can still expect the correlation
length and the susceptibility to be rather large, al-
though somewhat smaller than for the above v=O
case. Away from the shaded region, these quanti-
ties should decrease rapidly to values that are
determined basically by spin-wave fluctuations.
The behavior across the bifurcation point v=0,
@=A, has been discussed in Sec. V for a constant

The behavior of the system as the bifurcation
point (line) is crossed from general directions
should be even more intriguing, but again unfor-
tunately cannot be obtained from the present work.

First, use is made of the fact that the problem of
finding the infinite product of eigenvalues of a
Sturm-Liouville operator can be reduced to that of
solving a corresponding initial value problem. '

This allows one to write

g (L/2)A, o(L)R=
g'(L/2)

where the function g'(x) satisfies the equation

(A 1)

g'(x) =0, g'(x) = 1 .
—L/2

(A2b)

For the trivial solution P'(x) =P, since V"(P )
=K is independent of x, it is easy to calculate

g (x). For large L one finds

xL
g'(L /2) =

2K
(A3)

This gives, from Eqs. (2.27) and (2.18) the spin-
wave contribution to the free energy per spin as

p Kf =2P (A4)

To obtain g'(L /2), note that r)o(x) obeys Eq.
(A2a) but fails to satisfy the boundary conditions
of Eq. (A2b) to be the desired function g'(x).
However the second-order differential equation
[Eq. (A2a)] must have a second linearly indepen-
dent solution g(x). The trick, which is due to
Coleman, " is to choose the correct linear combina-
tion of qp and gp so as to fit the required initial
conditions for g'(x). Therefore, we write

g'(x) =ay'o(x)+bg()(x) . (A5)

To properly normalize g(x) we require the Wron-
skian to be unity:

1 d c & cg'(x)+ —,V"[P'(x)]g'(x) =0, (A2a)
dx

with the initial conditions
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Demanding that g'(x) satisfies the initial condi-
tions of Eq. (A2b), and utilizing the Wronskian
condition gives a = —g( L /2) and-
b =rip( L /2). Thus w—e have

APPENDIX A: EVALUATION OF R
FOR GENERAL POTENTIALS

g (L /2) = re( L /2)gp(L /2)—
—gp( —L /2)gp(L /2) ~ (A7)

Here we will evaluate R of Eq. (2.29) for a gen-
eral V(P) following closely the work of Coleman. " To find the asymptotic forms of qp and gp, note

from Eq. (I3.5) that go must behave as e
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asymptotically. Therefore we write, for
~

x
~

~oo,
' 1/2

rl'(x) -= 2J
Es

se K
I
x (AS)

where the prefactor N', which is of course tem-
perature independent, can be obtained from the ex-
plicit form for P'(x). This equation together with

Eq. (A6) gives the asymptotic form for gp(x):
1/2

Es
g()(x) —= (2'¹) 'sgn x ——e"I" I

L
2

therefore construct the unperturbed Green's func-
tion G(x,x') from vg and g. The result is

G (X,X') = —28(x —x')[gp(x)gp(x') —g()(x)rip(x')]

(A13)

The exact wave function f is then given by the
Lippmann-Schwinger equation as

g(x) =gp(x) —Ap J d x'G( x, x')f( x') .
(A14)

Using Eqs. (AS) and (A9) in Eq. (A7) gives

(A9}
Born's approximation gives, to lowest order in A,o,

X

g(x) =go(x) —Ao j dx'G(x x')Po(x') .

g'(L /2) =& (A10)

(H'+A, o)1tt=0,

where

(Al la)

The final task in obtaining R is to compute
A,p(L), which is of course identically zero in the
L~~ limit. However, for finite L, it is finite, be-

cause in that case imp(x), as given by Eq. (2.21),
does not vanish at +L/2. The function violates

the boundary conditions of Eq. (2.13b) by an ex-

ponentially small amount, as is indicated by Eq.
(AS). The actual vg is in fact a bit more localized
than that of Eq. (2.21). The actual eigenvalue

A,p(L) must therefore be slightly larger than zero.
We expect it to be a positive but exponentially
small quantity. The smallness of A,p(L) suggests
that it may be calculated perturbatively from Eq.
(2.13a)."

Consider the Schrodinger equation

Po(x) =rip(x)+pgp(x) .

The condition fp( —L/2) =0 implies that

p = —rip( —L /2)/gp( —L /2) ~

(A16)

Demanding that g(L/2) =0 in Eq. (A15), and
using Eqs. (A13) and (A16) gives, in the limit
L —+Do,

Ao(L) = 2' (N $
)
2e

—KL

Es (A17)

As anticipated, A,o is indeed an exponentially small

quantity.
Substituting Eqs. (A3), (A10), and (A17) into Eq.

(Al) yields finally the result

(A15)
Since we are only interested in getting A,o, but not
g(x), there is no need to properly normalize Po(x},
which therefore can be constructed from rip and g
as

1H'= —— + —,V"[P'(x)],
dx

(Al lb) a(N')
Es (A18)

and the wave function g satisfies exactly the boun-

dary conditions

t/i( L /2) =Q(L /2) —=0 . (Al lc)

Let us define the unperturbed wave function fp(x)
such that

and

H'Qp 0——

yo( —L/2) =1(o(L/2) =0 . (A12)

The strategy for calculating A,o is to identify A,pl((x)
of Eq. (Al la) as a perturbation and calculate the
effmts on i}'jp(x). This computation is facilitated
by noting that since H'q$ =H'g'p=0, one can

It is reassuring to see that R is indeed finite, since
the divergent factor A,o has already been extracted.

APPENDIX B: SPIN-%AVE CALCULATIONS
FOR PLANAR SYSTEMS

When the system has a single physically distinct
ground state P we expect the solitons to give little
contribution to thermodynamic quantities and stat-
ic correlation functions. Thus for these properties
it suffices to consider only the spin-wave (sw) exci-
tations. In order to be consistent with the form of
our Hamiltonian in Eq. (21), it is important that
one should use a spin-wave theory which is ap-
propriate for planar spin systems. Such a calcula-
tion has been given previously using Villain's
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2 2

H,„=2Jfdx, + +—P'
2c

(81)

where z —= V"(P ). For planar spin systems we

have from Eq. (I2.4)

(82)

theory; however, for the establishment of our no-

tations here and for references in Sec. V, the main

results will be given below.
Defining g as P —P, the Hamiltonian of Eq.

(2.1) can be written, up to quadratic terms in 1(, in

the form

~t(k) (2pJ) —l(k2+K2) —1

=1— I 1+ e
—2KP

4pJ& 2(4pJ~)

(4PJa) (2a. ) +k

The magnetization is given by

Mii =1—(SPJn)

(85)

(86)

(87)

(8&)

Thus the harmonic Hamiltonian can be written, in
terms of a pair of canonical operators Sk and 1(k,
in the form

H,„=—,g(akSkS k+bkfkf k),
k

(83)

where ak =c (2J) ' is in fact k independent,

bk =2Jcok, and cok =(n +k )' . From Eq. (83)
the spin-wave energy is easily found to be Ek
=coke. This c is the intrinsic spin-wave velocity
and ~c is the spin-wave gap of the system. One
also readily obtains the static correlation functions
for spin components within the easy plane:

5 t(r):—(sing(0)sing(r) )

The correlation length for transverse spin fluctua-
tions is therefore lc ', which coincides with the
width of the soliton. It is also exactly twice as
long as for the longitudinal components:

g't ——a '=2/i . (89)

Xt=(2Jn )

(32PJ a )

(810)

(811)

The static susceptibility can be obtained from the
corresponding static correlation functions from
Eqs. (84) and (87) by setting k =0 and multiplying

by p to get, for gp& =1,

= (p(0)1((r) )

=(4PJlc) 'e (84)
Obviously the results written here for the spin
waves are universal for the class A systems.

K. M. Leung (unpublished); hereafter this paper will be
referred to as I.

See, e.g., A. R. Bishop, J. A. Krumhansl, and S. E.
Trullinger, Physica D 1, 1 (1980); A. R. Bishop et al. ,
Adv. Phys. (in press).

J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E.
Trullinger, Phys. Rev. B 22, 477 (1980).

4R. M. DeLeonardis and S. E. Trullinger, Phys. Rev. B
22, 4558 (1980); R. M. DeLeonardis, Ph.D. thesis,
University of Southern California, 1980 (unpublished).

A. R. Bishop, in Physics in One-Dimension, edited by J.
Bernasconi and T. Schneider (Springer, Heidelberg,
1981), p. 27.

D. J. Scalapino, M. Sears, and R. A. Ferrel, Phys. Rev.
B 6, 3409 (1972).

~J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B 11,
4470 (1975).

Phenomenological theories for dynamics have been used
by the authors in Ref. 7 and S. Aubry, J. Chem. Phys.
+2, 3217 (1975); 64, 3392 (1974), and subsequently by

many authors, e.g., K. Kawasaki, Prog. Theor. Phys.
55, 2029 (1976); H. J. Mikeska, J. Phys. C 11, L29
(1978); K. M. Leung and D. L. Huber, Solid State
Commun. 32, 127 (1979); N. Theodorakopoulos, in
Ordering in Strongly I'luetuating Condensed Matter
Systems, edited by T. Riste (Plenum, New York,
1980).

The phenomenology for the breathers of the sine-
Gordon system has been studied by A. R. Bishop, J.
Phys. A 14, 1 (1981).

'OE.g., R. Landauer and J. A. Swanson, Phys. Rev. 121,
1 (1961);J. S. Langer, Ann. Phys. (N.Y.) 14, 108
(1967).

'~S. Coleman, in The Whys of Subnuclear Physics, Erice,
1977, edited by A. Zichichi {Plenum, New York,
1979), and references therein.

2C. L. Hammer, J. E. Shrauner, and B. De Facio,
Phys. Rev. 8 23, 5890 (1981).

These are called polykink systems by R. M.
DeLeonardis and S. E. Trullinger, Phys. Rev. B (in



K. M. LEUNG 26

press).
~4J. K. Kjems and M. Steiner, Phys. Rev. Lett. 41,

1137 (1978); K. Kakurai, J. K. Kjems, and M.
Steiner, in Ordering in Strongly F/uctuating Con-
densed Matter Systems, edited by T. Riste (Plenum,
New York, 1980); M. Steiner, in Physics in One-

Dimension, edited by J. Bernasconi and T. Schneider
{Springer, Heidelberg, 1981).
G. Reiter, J. Appl. Phys. 52, 1961 (1981);Phys. Rev.
Lett. 46, 202 (1981);46, 518(E) (1981).

' G. F. Mazenko and P. S. Sahni, Phys. Rev. B 18, 6139
(1978).
A. R. Bishop, K. Nakamura, and T. J. Sasada, J.
Phys. C 13, L515 {1980);see also Ref. 5.
Our approach here makes use of a number of tech-

niques discovered in recent years in field theory. Our
calculation of the free energy follows closely the work
of Coleman (Ref. 11), and for the static correlation
function we follow the work of Polyakov (Ref. 19).

' A. M. Polyakov, Nucl. Phys. B 120, 429 (1977).
These terms are adopted from Ref. 13.
D. W. Hone and K. M. Leung, Phys. Rev. B 22, 5308
(1980).
K. M. Leung, Proceedings of the Conference on Mag-

netization and Magnetic Materials, Atlanta, 1981 [J.
Appl. Phys. 53, 1858 (1982)].

Longitudinal and transverse refer, respectively, to
directions within the easy plane that are parallel and
perpendicular to the external magnetic field.

24For a definition of the topological charge g, see I.
Similar results have been obtained before for the

~ Q ~

=1 sine-Gordon system. See Ref. 22.
H. E. Stanley, Introduction to Phase Transitions and
Critical' Phenomena (Oxford University Press, New
York, 1971).
J. Goldstone and R. Jackiw, Phys. Rev. D 11, 1486
(1975).
J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181
(1973).

29J, M. Kosterlitz, J. Phys. C 7, 1046 (1974).
3 R. K. Bullough, P. J. Caudrey, J. D. Gibbon, S. Duck-

worth, H. M. Gibbs, B. Bolger, and L. Baede, Opt.
Commun. 18, 200 (1976).

'An elegant proof was given by Coleman (Ref. 11).
For an n-dimensional version of the proof see G. J.
Papadopoulis, Phys. Rev. D 11, 2870 (1975).
J. Villa, in, J. Phys. (Paris) 35, 27 (1974).


