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General analytic method of zone integration for joint densities of states in metals
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A general method to calculate analytically the cross section of any shape of a microcell is

presented. This method is the generalization of existing zone-integration methods based on the

linear approximation. This method is useful for calculating joint densities of states in metals as

well as dynamical susceptibilities and dielectric functions when the Fermi surface splits micro-

cells into contributing and noncontributing volumes. It may also prove useful for calculating

densities of states in crystals of lower symmetries.

The linear analytic method of Brillouin-zone in-

tegration has been developed and applied to many
crystals. The main purpose of this method is to com-
pute spectral functions of the type

I(co) = J 5(E(k) t«))A (k—)dk,

where A (k) is the so-called "matrix element" and it
is an analytic function of k. 0 is the Wigner-Seitz
cell volume. E(co) can be transformed into the fol-
lowing integral

i( )
0 ' A(k)dS

I &E(k) I

(2)

where dS is an area increment of the constant-energy
surface E ( k ) = tru.

In the application of the linear analytic method, the
irreducible part of the Brillouin zone (IBZ) is divided
into small domains called microcells. These micro-
cells can, in general, be any convex polyhedra but, in

practice, mostly cubes and tetrahedra have been used.
Within each microcell E ( k ) is evaluated exactly at
one point k„and then approximated linearly at any
other point by

E(k) =E(k, ) + '7E(k, ) (k —k, ) . (3)

The part of the constant-energy surface within

every microcell is approximated by a constant-energy
plane (CEP), being some polygon of area S, and the
integral in Eq. (2) can be rewritten as

X
A (k, )S,(co)

I&E(k, )l
(4)

The summation is over all the microcells, and

S,(ao) is known analytically for cubic' (or orthorhom-
bic) and tetrahedral" microcells. It is possible also
to expand A (k) linearly throughout the cells.and the
appropriate expressions for these cases are also
known. 4 5 In many cases it is simpler to assume that
A (k) =const throughout the microcell.

In the present article the main interest is focused
over the problem of calculating joint densities of

states (JDOS) for metals. Here we have the problem
that only transitions between an occupied state below
Fermi level and an unoccupied state above Fermi
level are allowed. The relevant integral is

1(q, o)) = 0
8m'

A (k+ q. k) if (k+ q) —f~(k) ]ds
X

I ~E„,I

where n and I are band indices, f„(k+q) and f~(k)
are the Fermi occupation numbers, E„I=E„(k+ q)
—EI(k) and the integral is carried over the
constant-energy surface E„I=ha. q is a variable
wave vector which is required in several calculations,
such as the dielectric function a(q, co) or the suscep-
tibility function X(q, cu). In this article we are not
concerned with problems involving q. These are dis-
cussed in a previous paper by the same author. This
manuscript is mainly concerned with the problem
caused by the Fermi surface. To appreciate this
problem we notice that the Fermi surface E (k) = EF
must split some microcells into two volumes, only
one of which is contributing to the JDOS. The general
shape of the contributing volume is a polyhedron that
has at most 10 corners for a cubic microcell and 6
corners for a tetrahedron. What is necessary to find
is the area of the polygon representing the CEP
(constant-energy plane) within the contributing part
of the microcell. This polygon is also the cross-
section area of the contributing polyhedron when
looking in the direction of O'E„I. Recently, a general
method to find this area was proposed by Riedinger. 7

In this approach it is necessary to locate all the
corners of the polygon and compute its area as a sum
of triangles. This method is numerically exact
(within the linear approximation) but it does not
yield the area of the polygon analytically. In the
present article a general method is proposed that
yields analytical expressions for the area of these
polygons for any shape of the contributing microcell.
Two different approaches are being adopted here: (a)
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an approach using explicitly the gradient V E„I and
the geometric properties of the polyhedra and the po-
lygons involved; (b) an approach avoiding the use of
O'E„I and which employs only the corners' energies
of the contributing polyhedron. The first approach
suits the description of the original cubic microcell,
whereas the latter is more in line with energy interpo-
lation.

a. Geometric approach. In each microcell the CEP
forms a set of parallel planes perpendicular to the
direction of the gradient V E„I, the value of which is
determined at k„usually at the center of the micro-
cell. The equation of this set of planes is given by

1 (k —ko) —w =0,
where 1 is a unit vector along the direction of
V E„I and w is a scale along this direction,

We begin with the evaluation of S(w) at w~. For
w = w1+ dw the CEP is a triangle intersecting three
infinitesimal segments of lengths du on the edges at
k1, where du is

dw
du

Z. ~ 1

1 is the cosine of the angle between V E„I and
the 0.th edge at k1. These three segments form an
infinitesimal tetrahedron, the volume dVof which is

( X ( x
X 2) ' lt 3 du ] du 2 du 3

(dw)'

where A1 is the determinant of P ', namely,

~11 ~12 ~12
1 1 1

w = (k —ko)((, (7)

measured from the corner ko, for which the lowest
value of E„~(k) is obtained throughout the microcell.
The relation between @co and w is given by

A1 = ~21 ~22 ~22
1 1 1

~31 A. 32 A.33
1 1 1

and dV =
3

dS dw, so that

(13)

tee ENI( ko)—
I &E„ I

Next, the general properties of the contributing
polyhedron are examined. Let p be the number of its
corners, and they consist of two types: (a) corners of
the original microcell; (b) corners generated by the
Fermi surface (plane within the microcell) intersect-
ing the edges of the original microcell. It is assumed
that the coordinates k& of all these corners can be
found. For cubic microcells this can be easily accom-
plished. These corners can be arranged in an increas-
ing order according to their relative distances w; from
the origin ko by using the relation

w;= 1 (k, —ko),

(10)

(ii)S and dS/dw are both continuous functions of w

over the entire range, but d2S/dw2 is discontinuous
at w, ,

where w;~ w;+1 andi =1,2, . . .,p. In this manner
the entire range of w is divided into p —1 ranges
where the ith range is w; ~ w ~ w;+1. If ko is includ-
ed in the contributing polyhedron, then k1= ko and
w1= 0. Now a general assumption is made about the
topology of the contributing polyhedron, which main-
tains that every corner of the polyhedron is a junc-
tion of three edges only. Such a polyhedron is re-
ferred to as a regular polyhedron. To each of its
corners k;, we relate three edges represented by unit
vectors } along them (a = 1, 2, 3). Next we look at
the analytic properties of S ( w), the area of the
cross-section polygon. There are two main proper-
ties: (i) S(w) is a positively defined quadratic func-
tion of w, say,

S(w) =Aw2+Bw+C ~0;

1 (dw)'
dS

2 A1 ~1 ~ ~1 ~ ~1 ~ ~

()(, ] ~ 1 )( h. 2 1 )(1(., 1 )
(14)

and w1~ w ~ w2. In case that the first corner k1
happens to be a corner of a cube, then A. form an
orthogonal set and S(w) reduces to

wS(w) = (0 = W ] ~~W ~~W 2)
2111213

If the original microcell is cubic but the first corner
happens to be at a Fermi cut, then still one of the
X, say A. 1, is along a Cartesian axis, and the other
two are on the cube surface, so that A1= A, 22K.33 and

1 1

S(")= X22i'33(w —wl)'
(l7)

2l i ( I
& i( 2i + 12X22) (l 1 h.3] + l3 3}(3)

Now we proceed to the case of a general corner k; of
the contributing polyhedron characterized by w&.

Whenever the CEP crosses this corner in the range
w&

—dw ~ w~ w;+dw, the number t of the corners of
the cross-sectional polygon changes by 1,

At; =+1 . (18)
For At& = 1 the CEP is approaching the corner along

one edge and departing from it along two edges. The
situation is depicted in Fig. 1. The CEP represented
by the angle Q tP38 3 is approaching .the corner A;,
and having traversed it, it is denoted by Q2P2P3R 2.
The corner P1 of the polygon along the polyhedron
edge BAI splits into two corners P2 and P3 along the

Because of condition (i) it is possible to find S (w)
in the first range where it is, actually, the area of a
triangle:

(W W&)S(w) = A]
(l(. ) 1 )()(.2 l )()(.3 1 )
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FIG. 1. The plane Q&P~R ~ approaches the corner A,
along the edge BA;. After traversing the corners, it

proceeds into the plane Q2P&R2, where it intersects the
edges CA& and DA, at P2 and P3, respectively. The discon-
tinuity in the area is described by P2P~P3.

two remaining edges. For the case ht; = —1 the op-
posite situation occurs, two corners of the CEP merge
into one. %hat can also be observed in this figure is
the discontinuity mentioned in (ii) of the CEP. This
discontinuity is described by the area dS of the trian-
gle P~'P2P3 of the infinitesimal tetrahedron HIP~'P2P3.
This area has already been calculated in Eq. (14) ex-
cept for the index 1 that must now be replaced by i,

(19)

straints seldom occur.
b. Energy approach. In this approach, the corners

of the contributing polyhedron are characterized only
by the energy values E„((k;) at each corner rather
than by the coordinates k; themselves. The values
of E„((k,) can be obtained by solving the band-
structure problem at each kI, and this is the method
of interpolation, or rather by solving it at k, and ex-
trapolating for E„((k;) with the aid of the gradient
VE„((k,). Both ways are consistent and lead to the
same dscription, although the respective values for
E„((k,) are somewhat different due to inaccuracies
consistent with the linear approximation.

In this approach there is no reference to the scale
on the coordinate axes and it is necessary therefore
to know the volume V, of each contributing poly-
hedron. This can be readily accomplished for
tetrahedral microcells which are intersected by the
Fermi plane, since at least one of the volumes gen-
erated by the Fermi surface is a tetrahedron and its
edges can be calculated by using ratios of energy
differences along the relevant edges. The value of V,
for orthorhombic (generalized cubic microcells) can
also be found. Other microcells are of academic in-
terest only. It is therefore assumed that V, is known
for every contributing polyhedron. p is, again, the
number of corners of the polyhedron and

a; = E„((k;),where e; are ordered in the fashion
Again it is assumed that all po-

lyhedra are regular so that each corner e; is linked via
three edges to three additional corners' energies e

where e =i ~,i 2,i 3. It is necessary to find this triad of
energies e for each IE;, in order to define D;

D, = i(a; —a;,)(a; —~),)(~, ~;,)I— (21)

It is also obvious that the sign of the discontinuity
depends on d t, and it is positive for ht =—1. At this
point all the necessary elements for calculating S (w)
are at hand. Applying condition (i) for S (w), its
general expression for the range i for which

w/ w wj+$ is given by

( ) )
X ( )

(1/2) (1+at/)
2

jm)
)V —W

()(,' 1)()(,' 1)()(.,' I)
For a cubic microcell this general formula can be

simplified according to Eqs. (16) and (17). More-
over, it is possible to begin the counting of i from the
last to the first range and so obtain a different series
for Eq. (20), which is also valid for S(w), and, in

fact, any linear combination of these two expressions
is also a valid representation of S(w). These tricks
can help in circumventinII possible singularities that
may occur whenever ()(, ~ l ) =0. These singulari-

ties, however, are accidental and they imply very spe-
cial geometrical constraints for the Fermi plane or the
cubes' edges with respect to the CEP. Such con-

Next an energy variable X is defined over the entire
range 0 ~ X ~ a~ —e) and there are (p —1) ranges

e~ —e ~
» X» e;+~ —e~ at the boundaries of each of

which the second-order discontinuity (ii) occurs. In
the first range, the cross-section area of the CEP, be-
ing a triangle is given by

3V,S(X)= X, O~X~e2 —«) .
D)

(22)

At each consecutive corner e; the expression for
S(X) undergoes a second-order discontinuity that
can immediately be integrated due to condition. (i),
where the sign of this discontinuity is again positive
or negative when the number of corners t of the
polygon of the CEP decreases or increases by 1,
respectively, so that S(X) for the range e; —e)
«» X«» KI+) —6) 1s given by

( ) ~ (X —EJJ ))
( )

(1/2)(1+Et/)
(23)

j 1 Dj

where 5 ~P = e —es and eo ——e). Also in this case it is

possible to count the ranges backward from p to 1
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and obtain an equivalent, though different, expres-
sion for S(X) and employ it for circumventing ac-
cidential singularities. Equation (23) is somewhat
simpler than Eq. (20) and, perhaps easier to apply in
actual computation, which may give some marginal
support to the tetrahedron microcell relative to the
cubic one. On the other hand, there are certain inac-
curacies that may occur for symmetry reasons for
q W 0 in Eq. (5), which affect more the tetrahedral
mesh of corners.

In this article the linearization of A (k) in Eq. (4)
is not considered but it can be incorporated into these
approaches. One should note that, for each CEP, the
value of A (k) at the center of mass of the contribut-
ing polygon must be found. It is estimated that in
most realistic cases A (k) is not known in sufficient
accuracy so that using A (k, ) for the entire contri-
buting polyhedron is probably a good approximation.

Rea/-part calculations. The present approach allows
also for the calculation of real-part integrals:

R( ) Q, r' 3 (k)dk
(2~)' " E(k) -e (24)

which is related to real-part dielectric a(q, rs) and
dynamical susceptibility X( q, co) functions. Linear
analytic methods for performing this integration were
described by Gilat and Bohlins for a cubic mesh and

by Rath and Freemen and Lindgard' for
tetrahedron microcell. The expressions developed
here allow now also for treating the case of JDOS in
metals where the Fermi surface may intersect micro-
cells into a contributing and noncontributing parts. It
is possible to use either approach described in Eqs.
(20) and (23) to integrate R (n) over the contribut-
ing part of the microcell. This procedure is briefly
described here. In analogy to Eq. (5), R (q, n) is
written

R(q, n) = 0
2-77

x —
' " dk,~ (k+ q, k) [f„(k+q) -f,(k)]

l E„(k+q) EI(k) An

(25)

and d k can be factorized into d k = dk&dk~~, where

these increments are perpendicular and parallel to the
CEP, respectively. dk~~= d~ and the integration over

dkq yields S (w), so that Eq. (25) reduces to

R (q, n) =- 0
2Ã

~ ~~ (k )
& S(w)lw

E,I (ko& + I VE,I I
tn—
(26)

where g, indicates a summation over the contribut-

ing parts of all microcells. Since S(w) is known
analytically from each c, Eq. (26) can be performed
exactly in a straightforward manner, although the ex-
plicit expressions may be somewhat lengthy. It is
also possible to reduce Eq. (26) to the approach
described in Eq. (23), which uses the corners' ener-
gies. The appropriate expression for this case is

R ( )
0 Xx~ (k ),'~~ ~g S(X)dX

(27/), „I
' ~ o a]+X gn—

(27)
In conclusion, a new and general analytic method

for incorporating transitions between above and
below the Fermi level in metals for calculating JDOS
and related properties has been presented. In fact,
this method is a generalization of the linear analytic
method to any shape of a microcell and therefore it is
not limited to the calculation of JDOS only. For
many cases, however, the tetrahedron or the cubic
microcell, being just two variants of this general
method, can serve as very useful microcells. In some
cases, in particular in the calculation of direct densi-
ties of states of crystals of lower symmetries, it may
be found useful to break up the irreducible Brillouin
zone into a combination of microcells of different
shapes, such as tetrahedra, orthorhombic cells, or
wedges. In such cases, the general method presented
here may prove useful to obtain the necessary ex-
pressions for the cross-section area of any shape. It
is hoped to apply this approach in future calculations
of dielectric matrices in metals.
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