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The dynamic structure factor for a two-dimensional (2D) electron gas at T =0 is calculated by
a method of recurrence relations. Our result indicates an interesting crossover behavior in go-
ing from interacting to noninteracting, which is unique to 2D electronic systems. The crossover
behavior is characterized by a simple power law with a “‘classical’’ exponent, probably detectable
by x rays. The validity of our result is tested against standard moment sum rules and also the
static form-factor sum rule at high and low frequencies.

The metal oxide semiconductor (MOS) and other
similar materials have stimulated considerable in-
terest in the physics of two-dimensional (2D) elec-
tronic systems in recent years.! Early efforts have
centered on elucidating their static behavior. There
are now advances being made in understanding their
time-dependent and dynamic behavior. We report
here our calculations of the dynamic structure factor
Si(w) for a 2D electronic system, in part, in hope of
stimulating experimental work. To our knowledge
there have been no measurements of the correspond-
ing dynamic structure factor. These materials, in
which 2D or quasi-2D electronic systems are realized,
allow a considerable range of the electron density p
or more commonly 7.2 It is well known that raising
the density (i.e., r,—0) is equivalent to turning off
the electron-electron interaction.® Thus it appears
that one can through these materials observe a cross-
over behavior, unique to 2D electronic systems,
which, we predict, arises as the interaction is gradual-
ly removed. If the density can be smoothly varied,
one need not obtain extremely high values to observe
some of the effects of the crossover behavior. Ac-
cording to our calculations, this crossover behavior
takes place in the low-frequency regime at small wave
vectors. Inelastic x-ray and electron-scattering experi-
ments* or possibly laser-optical methods® may be able
to detect it.

Recently we have shown using a method of re-
currence relations® that the dynamic structure factor
for the 2D electron gas model of Sawada’ at T =0
has the following form:

WSk(w) m(#z—wz)ln
=4,

, 0<o< (1a)
Xk ,uz—cw)2 *

=—’2’—A,,m[s(w—w,)+8(w+m,,)], (1b)

p<ow<oo ,

where wave vector k and frequency w are measured
in units of the Fermi wave vector k and the Fermi
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energy Er, respectively. The other symbols are de-
fined as follows: X is the static density-density
response function or susceptibility; u = 2kEy;
a=(x2+7)/(x?+)? where x =wg"/u and the 2D
classical plasma frequency® wg'= (2wpe®k/m)'/%
wp,= a2y, which represents the plasmon
dispersion relation®; 4;=1—(1—a)'?,
4,=[(1-a)”2= (1—-a)]/5a. The above expres-
sion (1) is valid for k << 1. It is otherwise exact.!?

It may be helpful to examine some of the parame-
ters introduced here. One can write x%= cr,;, where ¢
is a constant for a fixed k. Hence «, which turns out
to be a natural parameter, may be expressed as a
function of r;. For example, maxa =1 represents the
ideal gas limit'! and mina = 0 the classical or mean-
field-like limit.!? The relationship between a and r,
for a fixed k is illustrated in Fig. 1(a). The plasmon
frequency is bounded by u < w, < ', where the
lower bound is attained at a =1 and the upper bound
at a=0.

In Fig. 2, the dynamic structure factor is illustrated
as a function of the frequency for three different
values of r; or « at k =0.2. For r;=1 (a=0.2324)
and r;=0.5 («=0.3924), the dynamic structure fac-
tor [see Figs. 2(a) and 2(b)] shows a low-frequency
broad spectrum due to single-particle scattering and a
high-frequency sharp peak due to the plasmon mode.
These features are superficially familiar from the
dynamic structure factor for 3D electronic systems.!?
Observe, however, that in both cases the low-
frequency spectrum terminates at w = u = 0.4, which
shall be referred to as the upper terminus. As a—1,
the frequency for maxS;(w) due to single-particle
scattering (indicated by a small arrow) increases. We
shall denote this frequency by w,. The amplitude of
maxSx(w), hence Sy (wn), also increases. As «
reaches its maximum value, both w,, and S;(w,,) at-
tain the ideal gas values, respectively, w,, =u and
Sik(w,) = oo, indicated in Fig. 2(c). In 3D electronic
systems, Si(w,) remains finite as o — 1.1

In Figs. 2(a) and 2(b) one observes a gap between

2227



2228 BRIEF REPORTS 26

St () r (b)
4r 10f
3L /
« N
- £
2k 3 o5}
I~ nd
L I 1 1
05 10 o} 05 1.0
o] o]
S (c)
4.—
3 3
3 ©
%) 2k
1 1 J
(0] 05 1.0
Q

FIG. 1. (a) ry vs a. Physically allowed values of « can
range from 0 to 1 and also from —oo to 1. We consider here
only the first branch. The second branch gives a mathemat-
ical mechanism for the disappearance of the plasmon mode.
(b) @, Vs a. w,, is the frequency at which Eq. (1a) is max-
imum. Observe that w,/u is bounded by 0.7071 and 1. (c)
Si(wy) vs a. S (w,,) diverges as a power law as a— 1. It
gives rise to a quasiplasma oscillation. (d) G vs a. The gap
G is the distance between the plasmon frequency w, and the
upper terminus . The gap must vanish at o =1 since the
ideal electron gas cannot support normal plasma oscillations.

the upper terminus yx and the plasmon frequency w,,
which we define by G = (w,—p)/u. Asa—1,
G —0. The gap disappears at o =1. The disappear-
ance of the gap is not special, since the plasmon
mode cannot exist when the interaction is turned off.
But the single-particle scattering at v = u now sud-
denly behaves like a long-lived excitation, which we
shall term a quasiplasma oscillation.!* Hence as
a— 1, the gap disappears but not the long-lived exci-
tation. In 3D electronic systems, both disappear.
The above observations can be made quantitative.
One can readily obtain from Eq. (1a)

Op/p=02—a)V? . 2)
Hence

Sk(wm) =S (0m) /X =5 (1—a)/2 . 3)
The gap G follows directly from the plasmon disper-
sion relation w, =a""2y,

G=a12-1 . 4)
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FIG. 2. Normalized dynamic structure vs frequency as a
function of the density. The normalized dynamic structure
Si (@) =78, (w)/Xy is plotted against the frequency w at
k =0.2 for three different values of r; and a: (a) ry=1,
a=0.2324; (b) r,=0.5, «a=0.3924; (c) r,=0, a=1. Inall
cases u=0.4. Small arrows in (a) and (b) indicate the posi-
tions where the amplitude of S, (w) is maximum, denoted
bY . @m=0.3009 in (a), 0.3155 in (b), and w,, = u=0.4
in (c). The plasmon peaks are found at w, =0.8297 in (a)
and 0.6386 in (b). The wave vector and frequency are mea-
sured in units of kz and Ep, respectively.

In Fig. 1, oy, Sk(w,), and G are illustrated as a
function of « for k =0.2. Perhaps most remarkable
is the behavior of Sx(w,,), shown in Fig. 1(c). As
a—1, it diverges as a simple power law. This cross-
over behavior manifested in going from interacting to
noninteracting clearly is unique to 2D electronic sys-
tems. It would appear that one can detect the onset
of the divergence long before the density enters into
the ‘‘ideal gas region.”

Finally, sum rules are almost always of theoretical
interest. The validity of our result for the dynamic
structure, for example, may be tested against them.
In this case they amount to adding up the areas illus-
trated in Fig. 2 with appropriate weighting factors.
For this purpose we introduce the following quantity:

o) = [ do w15, (w) s)

with n = 0. Those with integer » represent standard
moment sum rules, e.g., the susceptibility sum rule
(n=0), the f-sum rule (n =1).'® Those with half-
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integer n also represent sum rules, but they are not
necessarily exact sum rules, e.g., the static form-
factor sum rule (n = %).‘6

By using Eq. (1), one can show that all the mo-
ment sum rules are exactly satisfied independently of
a. Forn =%, we find

21K /u=[1-(1-a)?]

x[1-=(a"2=1)(sin"la—maD)] . (6)

Fora—1,
Eq. (6) may be simplified to
a/p=1+(Gr-1DA-a)” . (7a)

The above is contributed largely by the low-frequency
(i.e., single-particle-scattering) portion of Si(w).
Equation (7a) evidently does not satisfy the static
form-factor sum rule even at a=1.17 For « —0, Eq.

(6) may be reduced to
El/yz—;wa’llz(l—a)’/z , (7b)

which is now contributed largely by the high-
frequency (i.e., plasmon) portion of S;(w). When
the plasmon mode is dominant, there is a simple re-
lationship between the susceptibility and the static
form factor.!? Using it one can prove that as o — 0,
Eq. (7b) indeed satisfies the static form factor sum
rule.
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to us. We thank Mr. S. K. Oh of the University of
Georgia for assisting us with the evaluation of sum
rules. Our work is supported in part by the U.S.
Department of Energy Office of Basic Energy Sci-
ences under Contract No. DE-AS09-77ER01023.
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