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Soliton diffusion in polyacetylene. II. Acoustic phonons
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The soliton diffusion due to the coupling to acoustic phonons in polyacetylene is

analyzed theoretically within the Su, Schrieffer, and Heeger model. It is shown that in

the temperature region T g& —mo, where coo (-2000 K) is the optical-phonon frequency,

the acoustic phonon dominates the soliton damping. Furthermore, for T ))To, the

sing1e-phonon process dominates the soliton diffusion where To ——2mc, and m and c are

the soliton mass and the acoustic-phonon velocity, respectively. The one-dimensional

model predicts the temperature-dependent diffusion constant D ~ T' ', while the three-

dimensional model predicts D ~ T ' . The latter temperature dependence appears to be

consistent with some of the recent nuclear-magnetic-resonance experiments.

I. INTRODUCTION

In paper I of this series, ' (which will be referred
to as I), we have studied the soliton diffusion due
to the optical-phonon scattering in polyacetylene.
We find that the soliton diffusion constant thus
calculated is consistent with that inferred from the
magnetic resonance experiments at room tempera-
ture. ' However, the diffusion constant due to the
optical phonon increases exponentially at low tem-

peratures, which is in contradiction to the magnet-
ic resonance experiments.

The object of this paper is to study the diffusion
constant due to the acoustic-phonon scattering.
The transport lifetime of the soliton is due to ei-
ther the single-phonon process or the multiphonon
process. We shall see in the following, contrary to
the case of the optical phonon, the single-phonon
process dominates the soliton diffusion for
T &g To =—2mc, where m is the soliton mass and c
is the acoustic-phonon velocity. Putting appropri-
ate values for m and c, we find To-10 K. There-
fore, in the temperature region of experimental in-

terest, the single-soliton process dominates the soh-
ton diffusion. In this temperature region, the one-

dimensional model predicts the soliton diffusion
constant. D -=A (T/Ez)', with 3=10 cm /sec is
a constant independent of T. The diffusion con-
stant decreases as the temperature decreases, where

E~ (5 eV) is the Fermi energy of the electron in
polyacetylene. This temperature dependence may
be consistent with that inferred from some of the
magnetic resonance experiments but it disagrees
with the one from the other group. Furthermore,

the magnitude of D is by a factor of 10—10 larger
than that deduced experimentally. One possible

way to improve the present calculation is to in-

clude the effect of three-dimensional acoustic
phonons. In reality, polyacetylene usually forms a
tangled fibrous matrix. Therefore, it seems to be
more likely that the soliton couples with acoustic
phonons which propagate in the three-dimensional
space. Within this generalized model and with
reasonable assumptions as to new parameters
which characterize the three-dimensional phonon
coupling, we find that the transport lifetime of sol-
iton can be reduced roughly by a factor of 10.
This implies also that the actual soliton diffusion
is likely to be dominated by the three-dimensional

phonons. The resulting diffusion constant D
behaves like (E~/T)'~ as the temperature de-

creases. This temperature dependence is also con-
sistent with some of the recent proton spin reso-
nance experiments.

II. SINGLE-PHONON PROCESS

Since the interaction Hamiltonian between a soli-
ton and acoustic phonon has been already derived
in I, we shall consider here the transport lifetime
of soliton due to the single-phonon process [see
Fig. 1(a)j. The transport lifetime within the
present approximation is given by

ri '(p) =2m.g ~
Vk

~
(I+Xk)5(E~ Ey k tok)——
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FIG. 1. Single-phonon process (a} and the multipho-
non process (b} are shown. Here wavy lines are the pho-
non propagator and the solid line is the soliton prop-
agator.
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and m is the soliton mass and c (—:—,olla) is the

acoustic sound velocity.
The sum over the phonon momentum k is re-

placed by integral and we obtain

2

g( 2 2) 2)PI ( u —C)

v

2

(2)

I fo I
'(1+&2m(u —e) ) (3)

where u =
I p I

/m is the velocity of the soliton and

fo—-f(o)=2 . (4)

As is easily seen for u & c, rl diverges, which im-

plies that for solitons with velocity v less than e,
the single-phonon process is not available. We
shall see in Sec. III that for solitons with v &c, the
multiphonon process provides the lifetime, which
is of the same order of magnitude as Eq. (3) for
v & c. However, the scattering rate due to the mul-

tiphonon process decreases exponentially with the
soliton velocity and we can neglect. the multipho-
non process except in the region v-e, in the tem-

perature region T ~~To (—:2mc ). On the other
hand, at lower temperatures, T & To, the multi-
phonon process becomes of prime importance.

We shall now consider here a possible generali-
zation of Eq. (1) in the presence of three-dimen-
sional phonon. At this point one may wonder if

vk=ig 'ch(2vcok) ' c
I
k) lf(kl) ~

where d is the average interchain distance, k& is
the momentum component parallel to the (CH)„
chain. We assume further that the phonon disper-
sion is given by

oak
——[c k) +cl(k2+k3)]'~,

where c is .the sound velocity parallel to the chain
direction and cz is the sound velocity perpendicular
to the chain direction.

The k2 and k3 integrals are easily done and we
fllld

r3 (p)=
4~1p

I

C
&( )I( )

g

and

I(u) =J dk k (1+%k)

(
P(k/2m)(2P —k) 1)

—I

B.s
The asymptotic behaviors of I(u) are calculated

the three-dimensional phonon is consistent with the
Su, Schrieffer, and Heeger (SSH) model, which is
after all a one-dimensional model. Indeed in the
case of the optical phonon, the one dimensionality
is the essential feature of the SSH model; the
three-dimensional optical phonon implies the
i..hree-dimensional dimerization order which ex-
cludes the possibility that the soliton is a low-

energy excitation. On the other hand, the three-
dimensional acoustic phonon can be incorporated
into the SSH model, since the acoustic phonon
does not disturb the one-dimensional dimerization
order in the SSH model. The simplest generaliza-
tion of Eq. (1) will be

73 (p)=2Ird g I
vk

I
(1+%k)p(E —E k

—olk)
k

p —k(
X

I(u)= '

p (2III) u ln ———,(u —c}(3u—c)+ -;pIII (u —c)
I

+ ~(pm) (u —c) (u+5c), for pmu2&&1

m4
4m (u —c) +—(pu), for pmu ~~1

I.5
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which may be interpolated as

I (u) =P '(2m) (u —c) +—Pm(u —c)
3v

Again, as in the case of the one-dimensional model, r3 diverges for u &c. Therefore, for solitons with
u & c, the multiphonon process is indispensable to obtain a finite transport lifetime even in the three-
dimensional model. %e note also that we cannot take d and cj arbitrarily within the present model, as the
available transverse phonon momentum kj ——(kz+k3)'~ is limited by dkz &qr/2. This implies other condi-
tions like mu (4qrczd ' and k /(2m) &4mcjd '. This can give the transport relaxation rate somewhat
larger than the one-dimensional model.

III. MULTIPHONON PROCESS

As in the case of the optical-phonon process discussed in I, the transport relaxation time for soliton due
to the multiphonon process is approximately given by'

I

rM(P) —2m' g ~ Tp k pk ~
Nk5(Ep Ep ) 1 ——

p'kk' p'

where

(12)

1 1
Tpk, p'k' ~p+ k,p'+k' ~k Vk' +E +cok —E +k —o. E —E k

—cok —a'
p p p p—

(13)

and

0'= —l7FQ
~ Vq ~

5(Ep Ep+k q
——coq+cok)

o'= —im.g ~
Vq

~

5(Ep Ep k+q+c—oq cok )—,
q

where Vk, cok, and Ep have been already defined after Eq. (1). Two terms in Eq. (13) arise from the process-
es shown in Fig. 1(b).

Making use of the explicit form of o and 0', we can rewrite

g I
Tpkp'k'

I
Nk =2~&

I
VI

I

'
I Vp p'+k I

Nk [) 1 -5(Ep+~k Ep+k)+'Y2 5(Ep Ep' k tup+k —p')1—
k)k' k

(1S)
with

yi= fd9 I Vq I 5(Ep+k Ep+k —q ~q)

V2& ~p[ & ) 8(p (mc) )

Y2 [ I V2(p —,
& I

'@mc —pi)+ I V2(p + ) I
''9(me+pi)1

and

p =p +k and p1 =j9—k

Substituting these in Eq. (15), we find
'2

rM (p) =2m c 4
gU

~
f(2mc)

~
[g(c —u)(2c —u)N2~(„, ) +8(c+u)(2c+u)N2 („~,)+Ng~, E(u)] (17)
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and

F(u) =8(u —3c)(u —2c)+8[—(u +3c)](—2c —u)+8(3c —u)8(u —c)(2c) '(u —c)
~

u —2c
~

+8(3c+u)8( —v —c)(2c) '( —u —c)
i
v+2c

i
. (18)

Here we have neglected v dependences of the struc-
ture factor f(k), as they introduce only small
corrections of order of a few percent.

The total relaxation time, which includes the
single-phonon process as well as the multiphonon
process is given by (for the one-dimensional model)

r '(p)=r) '(p)+rM (p),

where z) '(p) has been given in Eq. (3). From Eq.
(18), we see that, for solitons with u & c, the multi-

phonon process provides the relaxation time, which
is of the same order of magnitude as for v & c. On
the other hand, in the temperature region T & Tp,
the single-phonon process dominates the soliton
diffusion, since most of solitons have velocity
v & c. A similar calculation applies also for the
three-dimensional model.

where

A (v)=[(u —c) (1+%2~), ,
)

)

+c (2c+u)X2~(„+,)

+ —., (2c —u)(u c)E—q~, ] ' . (22)

Here we have neglected the contribution from soli-
tons with v &c, since it is negligible when T & Tp.
Further, when T& Tp, the integrand can be ex-
panded in powers of r) [—:2Pmc ] and we obtain

vp cop
D, = (arri) '~ e '~ "(1+2'),

2m c

where use is made of the relations

g =ANg7TUF
2 2

IV. DIFFUSION CONSTANT

The diffusion constant of soliton is now evaluat-

ed by'

D=( (r)uu)
1/2

(20)

A. One-dimensional model

P n f du v2&e
—)/2Pmv2

271

Here we shall consider the one-dimensional model
and the three-dimensional model separately.
Furthermore, we limit ourselves in the temperature
region T& Tp for simplicity.

Q)p =2k' g
2 2

and cop is the optical-phonon frequency of polyace-
tylene.

Substituting typical values for polyacetylene
coo/b, =0.25, c=3X 10 cmlsec, and m =3m„we
find a=0.3 cm /sec for T =300 K, for example.

The resulting diffusion constant appears to be by
a factor of 10—10 larger than that inferred for
soliton in polyacetylene from the magnetic reso-
nance experiments. Furthermore, the predicted
temperature dependence D —T' has not been seen
in any of these experiments. As we have already
noted, a reasonable extension of the present model
to the three-dimensional model appears to provide
a somewhat larger soliton relaxation rate and
smaller diffusion constant.

Substituting r(p) given in Eq. (19), we obtain
'2 ' '1/2

(~ )
i g PpB

cA 2m

x du u4e-"")~ ' &(u),
C

8. Three-dimensional model

Now inserting r3(u) given in Eq. (8) into Eq.
(20), and ignoring the contribution from the region
v ~c, we obtain

3nc)P g
(mcd)

2

D3 —— du, e ~™[1+ 2 Pmu(u —c)]
3vrc, P 2 3

(mcd) « ' (u —c)
2 1/2

Pm
2'
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where

I =(pm) 'e " '" +0(q' )1+3x

—=0.3856(Pm)-'e'-'"" . (26)

D3 ——0.289m —(mcd)1/2 1 —2

Pl

1/2p —( 1/4)q
2

The above diffusion constant is somewhat smaller
than that for the one-dimensional model. Further-
more, the three-dimensional model predicts
D ~ T ', which appears to have been observed
on some of the recent magnetic resonance experi-
ments.

(27)

Here we have ignored the divergence in the integral
(25), as it should be eliminated by the multiphonon
relaxation, and expanded the integral in power of
q. To the lowest order in g, we obtain

where D, is the diffusion constant calculated in the
present paper, while Do is due to the optical pho-
non as calculated in I. At higher temperatures,
T & —,coo, the soliton diffusion is dominated by Do.
As temperature is decreased, the acoustic-phonon
process becomes more and more important. Then
in the intermediate-temperature region
T, & T & 4 ~„the one-dimensional model predicts
D ~ T' while the three-dimensional model
predicts D oc T

The latter behavior appears to be seen in some of
the recent proton spin resonance experiments.
The absolute magnitude of the predicted diffusion
constant, however, appears to be still somewhat
larger (say by a factor of 10) than that inferred
from experiments. In much lower temperature
T & To, the present model predicts that the dif-
fusion constant diverges like D c(:e&, implying that
the other mechanism which is not considered here
may become of importance. In any event, it is of
great interest to study the soliton diffusion con-
stant below T=1 K.

V. CONCLUDING REMARKS

D '=D '+Do (28)

D, =D~ (or D3)

Do ——Do(e '—1),

Do —10 cm /sec,

(29)

We have studied theoretically the soliton dif-
fusion in polyacetylene within SSH model. The
diffusion constant of soliton may be decomposed
into two contributions
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