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Soliton diffusion in polyacetylene. I. Optical phonons
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In this series of work, the soliton diffusion in polyacetylene is studied theoretically

within the framework of the model due to Su, Schrieffer, and Heeger. In general, the sol-

iton interacts with both the optical and the acoustic phonons. In this paper we concen-

trate on the interaction between the soliton and the optical phonon. %e find that at room

temperature the optical-phonon interaction provides the soliton diffusion constant con-

sistent with that inferred from the magnetic-resonance experiments in pristine polyace-

tylene. However, at lower temperatures, the optica1-phonon mechanism predicts a dif-

fusion constant, which increased similar to e as the temperature (P ') decreases, where

coo is the optical-phonon frequency. This indicates that another diffusion mechanism {i.e.,
the acoustic-phonon scattering} becomes dominant at a lower temperature.

I. INTRODUCTION

The concept of solitons introduced by Su,
Schrieffer, and Heeger' (SSH) and others ' appears
to be central in correlating a variety of physical
properties of pristine and lightly doped polyace-
tylene. One of remarkable observation is that the
soliton in pristine polyacetylene is mobile and un-

dergoes one-dimensional diffusive motion. ' This
one-dimensional motion is interpreted as the soli-
ton motion along the (CH)~ chain.

The object of this series of work is to study
theoretically the soliton diffusion within the SSH
model. %e shall see in Sec. II that the soliton cou-

ples linearly to both optical and acoustic phonons.
However, since the coupling constant to the acous-
tic phonon is smaller than that of the optical pho-
non by a factor of a/g- —,, where a is the distance

between two adjacent (CH) groups projected along
the (CH)„chain direction and g is the spatial ex-

tension of the soliton, we shall limit ourselves here

to the soliton interaction with the optical phonon.
In the second part of this series we shall analyze
the interaction between the soliton and the acoustic
phonons.

In a preliminary analysis by the author, the
coupling to the optical phonon is considered only
in the lowest order. However, such a process be-

comes inefficient in the temperature region T & coo,

as most of solitons cannot emit optical phonons in

this temperature region, where ~o is the optical-
phonon frequency. In particular, since coo-

2000 K in polyacetylene, the above process is no
longer available at room temperature. Instead, in
this temperature region the multiphonon process
dominates the soliton diffusion. Looking into the
literature on the polaron mobility in ionic crystals,
it was discovered that a necessary formalism to
deal with the multiphonon process has already
been developed and this formalism is called the
Osaka-Schultz-Kadanoff theory. Following this

prescription, it was found that the soliton dif-
fusion constant is given by

D =Do(e '—1)

1

for T & —,too, where P=T ' and Do is a constant
of the order of 10 cm /sec for the parameters
used in the SSH for polyacetylene.

At room temperature, the above diffusion con-
stant is consistent with that deduced from magnet-
ic resonance experiments. ' However, at lower
temperatures Eq. (1) gives a far larger diffusion
constant than that determined experimentally. In
any case at lower temperatures, the acoustic pho-
nons will play a dominant role in the soliton dif-
fusion, which will be discussed in the following pa-
per (hereafter called paper II).

In the above comparison, a recent experimental
result by Shiren et al. ' has been ignored. They
have done a beautiful spin-echo experiment in pris-
tine polyacetylene and deduced the spin diffusion
constant which is by 10 smaller than that of
other groups. ' ' The origin of this discrepancy
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is not understood by this author. However, it can
be commented that if the value referred by Shiren
et al. happened to be true, it would cast grave
doubts on the soliton model' as it would imply
the soliton mean free path at room temperature is
10 A.

II. MODEL HAMILTONIAN

H =—g t~+i, ~(C„+i,C~+H. c. )
n, s

+ 2++(yn+1 Vn) + 2M&y. (2)

%e shall start with the SSH Hamiltonian' of po-
lyacetylene given by

from the last term in Eq. (2), which is written in
the continuum limit as

H)=2g 6x dx

where g =4a(a/M)'~ and a dot on b(x) means
the time derivative.

Now writing b, (x, t) as

h(x, t) =h, (x,t)+P(x vt, t)—
and substituting it in Eq. (8), we find

f dx —hsech +P, —uP„
1 u 2 x —vt

2g'

= —,mu —g v hg ' f dx sech

and

tn+]nt, o —cx(yn+1 Vn } ~ (3)
+ g ~

—u x
2g

(10)

h(x) =4ay(x), (4)

where y„ is the displacement of the nth (CH) group
along the (CH)„chain direction, and C„and C„
are the creation and annihilation operators for n.

electron at the nth site. First, let us consider the
coupling between a soliton and optical phonons.
For this purpose it is convenient to introduce the
dimerization order parameter h(x) by

where subscripts t and x mean the partial deriva-
tive. In deriving Eq. (10), we have made use of the
orthogonality relation'

f dxsech $, =0.

From the second term of Eq. (10) the linear cou-
pling term is finally given, which is rewritten as

where y(x) is the continuum limit of the staggered
displacement field y„=(—1)"y„. Then the perfect-

ly dimerized state is given by b,(x)=+A„where 2b,

is the Peierls energy gap. Furthermore, a soliton is
described by

b,,(x)=+6, tanh(x/g)

with g= vz/b, .
In the following we shall consider a time-

dependent solution:

and

I,= ig 2b, (2LM—aiu)

)& g uu'kf (k)(ai, —a k)
k

f( k )=g
' f dx sech —e'

=irgk csch —gk
2

(12)

(13)

b,,(x, t) =b. tanh[(x ut)/g]—
which describes a soliton with a uniform velocity
u. This moving soliton has energy'

E,(u) =E,+ —,mu

where E, =(2/rr)b, and m is the soliton mass of
the order of the electron mass' m, . The moving
soliton couples to both the electron and phonon de-
grees of freedom. However, the former coupling
introduces the correction terms of the order of
(u/uz },which is completely negligible. There-
fore, we shall concentrate on the coupling to pho-
nons. In the case of the optical phonon, this arises

where L is the length of the (CH)„chain, u and v'

are the initial and the final velocity of the soliton.
Here ak and a k are the creation and the an-

nihilation operators for the optical phonons and u

in the coupling constant is symmetrized as uv'. In
general u may be symmetrized as —,(u +u' ),

4 (u +v'}, etc. However, in the present context,
we know that the soliton with u =0 does not cou-
ple to the optical phonon. Likewise it is so also
for u'=0. This leads uniquely to the form given in
Eq. (12). Also in evaluating the matrix element in
Eq. (12), a plane-wave solution for propagating
phonons are used instead of a scattering wave solu-
tion in the presence of a soliton. ' It is difficult to
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where y(x) is the continuum limit of the displace-
ment field y„, o.

3 is the Pauli spin matrix, and

u, (x)
%,(x)=

u, (x)

is the spinor field consisting of the right-going
electron u (x) and the left-going electron u (x).

In the perfectly dimerized state, the expectation
value of ig, qi, cr3BV, is a constant independent of
the position and the above coupling term becomes
a complete integral; there is no linear coupling to
the acoustic phonon. In the presence of a soliton,
on the other hand, we obtain

(15)

where C is the same constant as in the perfectly
dimerized state, —e„ is the energy of the valence
electron, and the summation over n runs up to the
Fermi level. A derivation of Eq. (15) will be
sketched in the Appendix. Substituting Eq. (15)
into Eq. (14) we obtain

H2 ——aa g co& J dx B„yB„E(x).

This yields

H, = ig-'cx(2L, )-'"
x g(C

/

k [)'"f(k)(ak —a k),

evaluate the error involved here as the exact
scattering wave solution is not known in the SSH
model. However, if we substitute the one for the

theory' (as we know that the P model is quite
similar to the SSH model' ), the coupling constant
is reduced by 25% in the limit k tends to zero.
Therefore, we may conclude that semiquantatively
the present approximation is justified. Further-
rnore, the k dependence' of the optical-phonon
frequency coo(k) shall be neglected in the following
for simplicity.

The coupling term to the acoustic phonon, on
the other hand, comes from the first term in Eq.
(1). In the continuum limit, the coupling between

the acoustic phonon and the electron is written as

H2=iaa g I dx[B„y(x)]qlgo, B%', ,

operators for the acoustic phonon. In deriving Eq.
(17), we made use of the relation" C = —,co~a. The
fact that the coupling constant does not vanish in
the limit the soliton velocity U tends to zero, im-
plies that a soliton introduces a permanent distor-
tion on the (acoustic) phonon lattice. ' For a mov-
ing soliton with a velocity u, the distorted y (x)
field is calculated as

' —1
2

yo(x, t) = — 1—
C2

X —Ut
atanh

+C(x —ut)

with

uo ——b /(4a)

and C is a constant.
As is easily seen, the present coupling constant is

of the order of (a lg). Therefore, in the continuum
limit, the coupling to the acoustic phonon drops
out completely from the theory. However, as we
shall see in paper II, the acoustic phonon will
dominate the soliton diffusion in the low-

temperature region.

III. SOLITON RELAXATION

X 2rr5(Ep Ep ) 1——

We shall calculate the soliton diffusion constant
in two steps: First, we shall determine the trans-
port lifetime of the soliton with momentum p, and
then the diffusion constant is given by D = (ru ),
where the angle brackets mean the thermal aver-

age. As already mentioned in the temperature re-

gion T &coo, where the average kinetic energy of
the soliton is smaller than the optical-phonon fre-
quency ~0, the multiphonon process dominates the
soliton relaxation. Indeed, we can follow closely
an analysis done by Langreth in his calculation of
polaron mobility. Introducing the T matrix for the
scattering of a soliton of momentum p by a pho-
non of momentum k by Tp k p k, the transport
lifetime r(p) for soliton of momentum p is given
by9

'(Jp) =N g I
T-,-„,--„

I

'k k'P

where C is the acoustic-phonon velocity, f(k) has
the same function as defined in Eq. (13), and ak
and a k are now the creation and annihilation where
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Eq E——, + p, N=(e ' 1—)
2m

(20)

where

&p +k,p+k Vp,p+k Vp+k, p
k, ', k' E +No —E k

—0'
(21)

I

V = ig 'b, ~ ~ (21.coo)
m m

Here we have neglected the phonon dispersion in

Q)Q which has a minor effect in the final result.
Furthermore, the T matrix in Eq. (19) is approxi-
mated by

Here Eq. (22) follows from Eq. (12), and p and p'
refer to the initial and the final momentum of the
soliton. Also, it is known that the approximation
Eq. (23) is valid in the weak coupling limit.
Therefore, our analysis is also valid in the weak

coupling limit. VA'thin this approximation,

I Tz k zk I
is further approximated by

2 ~ I P,P+kl'I P+,P
I'

'V

X5(E~+coo Eq+k—)

and

xf(p —p')
I p —p'

I
(22)

with

(24)

o=—i~+
I Vpik, p+k q I'5(EJ Ep—+k q) .-

(23)

f= —28mcT .

Substitution into Eq. (19) gives

I
V — 5(Ep E~+coo)—

I

V-,
I

r '(p)=2m. N +5(Ep &p )—
Then the summations over q, p, and p' in Eq. (25) are replaced by integrals and we find

f'p =4N—
(p +p )'

I f1 I

'+ (p —p)'
I f1 I

'p

—' p. lf. '~(p),
g m

where

p=(p'+po)' ' po=(2~O1O)' ' fo=f(p» fi=f(p+p) f2=f(P p»—
(26)

E '=(2pop) '[(p+p)'(f /of~)'+(p —p)'(fo&f&)']

=(P~PO)ll+g(P~Po) +g(P~PQ) 1'1+
2 kP

I'

2+each gp2

4~((p'~po) 1+—
Po

2 '2

1+2 tanh —
gp +0 —

gp
Po I

2 2
(27)

The transport lifetime r(p) of the soliton diverges
like p, as the momentum of the soliton is re-
duced.

D=( (p)r)U
1/2

2 —(1/2)Pmu 2
v (28)

IV. DIFFUSION CONSTANT

The diffusion constant of the soliton is evaluated

where v =p/m is the soliton velocity. Here we
have assumed that the soliton. behaves like a
Boltzmann particle. Substituting r(p) determined
in the preceding section, into Eq. (26), we obtain:
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~o ~o

4 6 2m

where

~ f ~

'(,I' ')( '—1),
(29)

APPENDIX: COUPLING TO
THE ACOUSTIC PHONONS

First, let us evaluate

p(x)=i g (P,o38$, )
S

in a uniformly dimerized state. In this case we ob-
tain

and

—4nfm(Ppo) 'tanh5+0(P )

~= 2@o

(30)

p(x)= g f (2p)(u~ —u~)

=—' f,dpp',"
r

=—
U~ A + 1 —ln

2» 6' 2W

7T 2

where
(Al)

Equation (27) can be rewritten as

D =Do(e —1)Phoo

1 UFp
0 = 1+P

P

with
' 1/2

vip
1

P

0 0
Do

4 6 2m /f f

'=10 '

(31)
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~, =PuFp)'+ ~']'"
&n the presence of a soliton, %„(x) are given by3

(A2)

1

Vs(x)= . sech(x/g),
2

upp +i A(x)
1+

(A3)

%z(x)=— e'~"
2 I.

Ep

uFp +ih(x)

where h(x) =b,tanh(x /g).
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p(x)=y f P p' +- ax~(x)dp UFp 1

2&

=C+—f „dp [axe(x)]
1 h 1

=C+g cog [B„h(x)],

where use is made of a relation

h dp

(A4)
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