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in the nonmetallic regime: Pseudocluster investigation
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%e have performed an improved unrestricted Hartree-Pock pseudocluster calculation

with a correlated two-electron wave function for the D state to investigate the micro-

scopic structure of impurity bands in doped semiconductors. Though the impurity densi-

ty of states and the estimated specific heat support the Mott-Hubbard-Anderson model,

in the nonmetallic regime the impurity states are duster states and a doped semiconduct-

or can be described as statistically distributed clusters of various sizes. The distribution

function of the cluster states agrees with the recent conclusion obtained from analyzing

the optical, magnetic, dielectric, and transport data. A new picture of thermally activated

hopping is provided which is relevant to the observed non-Ohmic conductivity and large

characteristic electronic length.

I. INTRODUCTION

It has been generally accepted that the Mott-
Hubbard-Anderson (MHA) model describes proper-
ly the behavior of shallow impurity states in doped
semiconductors in a wide range of impurity con-
centration X enclosing the critical concentration

X, for the metal-nonmetal (M-NM) transition. '
The essential ingredient of this model is the inter-

play between the electron correlation and the disor-
der effects on the formation of an impurity band
with increasing X. For an n-type semiconductor
the donor band at low E has the structure of a
split Hubbard band separated by a gap and all the
states in the lower split band are localized. Owing
to the random impurity potential, Anderson locali-
zation exists in the tails of the upper split band.
As the impurity concentration increases, the split
impurity bands broaden and eventually overlap
with each other, as mell as with the semiconductor
conduction band. Although theoretical calcula-
tions with various versions of simplified MHA
model can explain qualitatively and in some cases
semiquantitatively the observed transport, magnet-
ic, and thermodynamic properties, ' the model it-
self has been questioned recently from the micro-
scopic point of view.

A review of such simplified MHA model calcu-
lations up to 1979 revealed some inconsistent as-
sumptions and approximations used in different
calculations. Each simplified model calculation is
either valid in a limited range of impurity concen-

tration or capable of explaining only very few ex-

periments. This is a consequence of the fact that
the MHA model was constructed macroscopically
without precise specification of the parameters ap-

pearing in the model.
A microscopic insight of the impurity states was

provided by numerical pseudocluster calculations
in the Hartree approximation and Hartree-Fock
approximations with the spin-polarization poten-
tials. ' In the nonmetallic regime the impurity
states are cluster states of various sizes, i.e., states
localized on clusters consisting of different number
of impurities. %ith E increasing toward N„clus-
ter states grow in size due to the screening of elec-

trons, most of which occupy the cluster states but
a few of which occupy the donor-excitonic states
(we should point out that these donor-excitonic
states differ from those defined by Thomas et al.
in terms of the pair states). It was also found that
as S increases the upper Hubbard band moves rap-
idly into the conduction band. Therefore, the na-
ture of the D state and the D band, as well as
the definitions of ez and the Hubbard U should be
examined very carefully.

It is very interesting to note that the recent
development in the theory of impurity states,
stimulated by the analyses of new experimental
data in the nonmetallic regime, reaches a similar
conclusion regarding cluster states. From the ob-
served photoconductivity without and with mag-
netic field, as well as the far-infrared absorption
spectra' of the impurity band, Narita and co-
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workers discovered cluster states localized on nega-
tively charged small clusters of impurities. These
experiments were studied theoretically by Kamimu-
ra" and by Natori and Kamimura' with a single
D center, and by Golka' with a cluster model.
The dominating role of cluster states in the nonme-
tallic regime also appears in other experiments
such as the electron-spin-resonance spectrum, ' the
dielectric phenomena, ' and the magnetic field
dependence of the specific heat. ' A recent calcu-
lation' based on the cluster states agrees well with
the measured magnetic susceptibility and specific
heat.

The clustering of the impurities prevails even in
the metallic region near the M-NM transition.
The optical absorption data on heavily doped Si:As
and Si:B (Ref. 18) and the theoretical calculation
of the electrical resistivity in heavily doped Ge:As
and Si:P (Ref. 19) indicate the necessity of consid-
ering impurity concentration fluctuation when N
reaches N, from above within about one order of
magnitude. By taking into account such concen-
tration fluctuation, Serre er al. calculated the in-

terband absorption spectrum in satisfactory agree-
ment with experiment.

The most systematic and thorough investigation
of the cluster state has been done at the Bell Lab-
oratories. ' Clusters of as many as ten impur-
ities were found to contribute to the far-infrared
absorption coefficient ' ' in nonmetallic samples
with N near N, . The measured low-temperature
magnetic susceptibility has been fitted well with a
calculation based on interacting small clusters.
In the vicinity of X, the dielectric susceptibility
derived from the optical absorption coefficient in
the nonmetallic region, and the DC conductivity
can be fitted with a scaling form with a charac-
teristic length that tends to diverge with the same
exponent at both sides of N, . Furthermore,
Bhatt and Rice have shown that in many-valley

semiconductors the localized tail state, if localized
on a dense cluster of four impurities or more, can
attract an electron from an isolated impurity. As a
result of such self-compensation, there is no Mott-
Hubbard gap due to correlation in many-valley
semiconductors.

In view of all these new effects recently dis-

covered, we will in this paper investigate with an
improved numerical pseudocluster calculation the
microscopic structure of the cluster states caused
by the concentration fluctuation. In Sec. II we
describe the calculation scheme and present some
results in the framework of the MHA model. The

characteristic feature of the cluster states is then
demonstrated in Sec. III. We then discuss in Sec.
IV the meaning of the thermoactivation energy e2
in accordance with the cluster states. A conclud-

ing remark follows in the last Sec. V.

II. PSEUDOCLUSTER CALCULATION

We can use a computer to generate M random
sites j R;, i = I,MJ in a volume Q. If we imagine
these random sites as the positions of M impuri-
ties, then a sample of a doped semiconductor with
impurity concentration n =~/0 is simulated. We
further generate M =(M more random sites out-
side 0 but within a volume gQ. On each of these
M outer sites we attach one neutral impurity.
Then the overall impurity concentration is un-
changed. The effect of the M surrounding impuri-
ties on the M impurities in A will be approximat-
ed by an effective field, which has been explained
in detail in an earlier paper. The inner cluster of
~i impurities embedded in this effective field will
be solved numerically using an improved Hartree-
Fock scheme with spin-polarized potential. The
value of M is limited by the computer capability;
however, M can be as large as necessary. We call
such a modified cluster the pseudocluster.

A. Improved unrestricted
Hartrce-Fock scheme

The Hamiltonian of the ~-impurity system is

H = g p; /2m + g V""(r;)

where V""(r;) is the impurity-ion potential acting
on the ith electron. V' '(r; —rj) is the Coulomb
interaction between the ith and the jth electrons,
and the summations are over all the M electrons.
Let ~(o.) be the number of cr-spin electrons in the
system. In an unrestricted Hartree-Fock approxi-
mation, we solve two sets of coupled Schrodinger
equations,

for o.= t, t. Let I (o ) be a set of indices which
specifies the ~(o ) single-particle wave functions
occupied by 0-spin electrons. Then the Coulomb-
exchange potential V,„(i:r)can be expressed as
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(3)

We assume an impurity orbital P; (r)=P (r —R;) localized on each impurity. The form of these orbital
will be specified later. From these orbitals we construct an orthonormal set of single-particle functions,

i)'j; (r)= gPj (r)A~J, . (4)

Then the eigenfunctions of (2) are assumed to be linear combinations,

q'; (r)= gP& (r)C j; gP,——(r)8,;,
l J

where 8~&, ——gkA~jkC~k;. If we substitute this expansion for qi;~(r) and '0;~( r ') in Eqs. (2) and (3), then

we obtain

g (H~;j Ei~5ij )C~ji —0,
J

where

H;.= f P';~(r)Ip /2m+ V""(r)]P~(r)dr

+g g f f Q;*(r)q'i, (r ')V'(r ' r)[qii—,(r ')itij (r) qii, (r—)itij (r ')5, ]dr dr '.
s l&I(s)

If we further use (4), (6) becomes

g 8aikHoaij8ojl Elu5kl ~

where

Ho J= f i'; (r)Ip /2m+V""(r)]pj (r)dr

+X X f f0 ( )q'i. ( ')V"("'—r)[qadi, (r')yj ( ) %k(r)it, (r'—)5, ]d d-'.
s IEI (s)

(9)

We defin«he matrix E with the element E ki=Ei 5ki to rewrite (8) as a matrix equation

8 Ho 8 =E (10!

For a given input Ho. , we solve this eigenvalue equation to get the eigenenergim and the eigenfunctions

Using (5) aga&n (9) can be expressed in the desired form for a numerical iteration process,

Ho;1= fiti; (r)(p /2m+V'"(r)Iitij (r)dr+ g g [8 V(crsij)8 ]ii,
s i&I(s)

where the electron-electron interaction matrix is defined as

V(os:ij)~= f f i';'(r)iI}'„(r')V''(r' r)[i'~, (r')pj ( r)—i'~, (r)itij (r')5', ]—drdr'. (12)

To get the self-consistent solution of (10) and (11)
we first neglect the exchange interaction in (2) to
obtain the Hartree eigensolution 8(HA). Then we

use this 8(HA) as the initial input to get Ho~.
Knowing Ho we solve (10) for a new 8 in order

to construct a new Ho from (11). The iteration
continues until we reach a self-consistent solution.

The ordinary Hartree-Fock scheme with many-
electron wave function represented by a single
Slater determinant is inadequate for the strongly
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correlated problem considered here. If we take

P; (r ) as the single-particle ground-state wave
function localized on the ith impurity as if the im-

purity is isolated (we call this the D state), then
the properly antisymmetrized P;,(r&)P;,(r2) cannot
correctly represent the two-electron wave function
for two antiparallel spin electrons localized on the
same impurity (we call this the D state). For ex-

ample, in a single-valley semiconductor, the one-
electron wave function P; (r) can be well approxi-
mated by a hydrogen 1s wave function with a
properly scaled effective Bohr radius. However,
the properly antisymmetrized P;,(r&)P;,(r2) is not
bound in contrast to the experimental result.

It is impossible to use the configuration interac-
tion in the present problem because the numerical

diagonalization of (10) is carried out on a comput-
er and so is restricted by the computer capability.
However, we can improve the Hartree-Fock
scheme by introducing a correlated two-electron
function 4;(r&, r2) for the D state localized on
the ith impurity. Therefore, in (12) the

P;'(r)P*„(r ') [or P~, (r ')P/ (r)] should be replaced

by 4*;(r,r ') [or @J(r,r ')] if i = t [or j =q] and

s = —0.. For the special case i =j=t =q the
single-particle-operator part in (11) should also be
modified by treating the negatively charged impur-

with the two-impurity Hamiltonian:

(p, +p, )/2m+ V;""(r,)+V;""(r,)+ V' '(r, —r, ) .

In Sec. VIA we will see that such improvement is
essential for obtaining the correct D band.

B. Impurity band and MBA specific heat

For a many-valley semiconductor the wave func-

tion of an electron localized on a single isolated
impurity is very complicated when the anisotropic
effective mass and the central-cell correction are
taken into account. The purpose of the present
work is to demonstrate via a large pseudocluster
calculation the characteristic feature of the impuri-

ty states and its impact on the physical properties
of doped semiconductors. At the end of the paper
it will be clear that in order to perform a first-
principles calculation for a microscopic investiga-
tion on the thermodynamic properties of doped
semiconductors in insulating regime, one mnst
study small clusters consisting of up to ten impuri-
ties and then take a statistical average. Then it is
necessary to use such complicated impurity orbi-
tals. Even though the isotropic effective mass is
assumed and the central-cell correction is ignored
in this paper, extremely tedious computation is re-

quired to derive the self-consistent solutions. We
will return to this point for further discussion.

The single-particle orbital P; (r) is then approxi-
mated by a hydrogenic ls wave function with an
effective Bohr radius ao. For the D orbital

4;(r ~, r2) we use the variational wave function
proposed by Chandrasekhar

@'(r1 r2) 'q[exp( —~
I
ri —« I

—& I ~z —« I
)+exp( —~

I
r2 —R

I

—& I
ri —« I )1 [1—l (

I
r~ —r21 )]

(13)

with a=1.07478, P=0.47758, and y=0.31214.
q is the normalization constant. The Chandrasek-
har wave function yields a rather accurate binding
energy 0.0259 hartree for a free H ion as com-
pared to the measured value 0.0275 hartree. The
charge density at the nucleus given by (13) is in er-
ror by only 2% relative to Pekeris's calculation.
The angular correlation 1 —y(

~

r
&

—rz
~

) in (13) is
very important because it reduces the screening of
the outer electron from 0.72 to 0.52.

Since the eigenfunctions (5) are linear combina-
tions of impurity orbitals only, the present calcula-
tion is valid only in the insulating regime. For
low-impurity concentration it is reasonable to
neglect the three- and four-center integrals in (12).
From our previous work we found it necessary to

have clusters of M=40 impurities. The number
M of outer impurities which provide a mean field
for the inner M=40 impurities is taken to be 960.
The final results are obtained with a configuration
average over 50 sample pseudoclusters.

We have chosen the effective hartree as our en-

ergy unit, and set the zero reference energy at the
bottom of the conduction band. It is convenient to
define a dimensionless impurity concentration as
I' =32m~ao/Q. For most doped semiconductors
the critical concentration I', is around 0.8 to 0.9.
The density of states for a single spin p(E) is nor-
malized to

Ip(E)dE =P/32vr =(~/Q)a o .

Two series of density of states are given in Figs. 1
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FIG. 1. Impurity-band density of states based on only hydrogenic 1s orbitals. Shaded region represents the overlap
of split bands.

and 2. Figure 1 is obtained by neglecting the
intra-impurity correlation effect and assuming

4;(r„r~)=P;,(r, )P;,(r~),

while the Chandrasekhar wave function is used in
Fig. 2. Vhthout using the correct D orbital, we
see in Fig. 1 that the upper split band does not
converge to the correct binding energy of D as

the impurity concentration P approaches zero. The
bandwidths in Fig. 1 are substantially wider than
those in Fig. 2. Excepting these differences, the
discussion in Ref. 5 concerning the qualitative
properties of the impurity band applies here
(Fig. 2) also. However, for Fig. 2 the Fermi energy
moves into the conduction band at P=0.78, which
is very close to the critical concentration for the
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FIG. 3. Linear specific heat coefficient vs the donor
concentration Nd. Dots are experimental data and stars
are present calculations.

III. CLUSTER STATES

theless, such success of the MHA model should
not be overemphasized for the following reasons.
In the next section we will see that the eigenstates
are cluster states and so the Koopmans's theorem
may not be valid. In the picture of cluster states
no sharp mobility edge can be defined and the
thermoactivation energy needs a more careful
treatment.

The IPR as functions of the eigenenergy are
shown in Figs. 4(a) —4(fl for various impurity con-

centrations. For P &P, /3 most of the states in the
lower split band (which are occupied by electrons)

have their IPR values greater than or equal to 0.5,
indicating that most of the occupied eigenstates are

either isolated impurity states or pair states. This
agrees with the finding of Thomas et al. from
analyzing the optical data. In the regime P &P, /2
(corresponding to the intermediate doping regime
defined in Ref. 7) larger clusters appear with in-

creasing weights and the whole system (in the insu-

lating regime) should be considered as statistically
distributed clusters of various sizes. It is worth-

while to point out that even in the metallic regime
there is still a non-negligible fraction of the occu-

pied states exhibiting localized properties. Al-

though our model is not reliable in the metallic re-

gime, we believe that this last conclusion is correct
as it agrees with other authors results both experi-
mentally' and theoretically. '

The mean value of IPR of each sample pseudo-
cluster with fixed impurity concentration is given

in Fig. 5 as a function of P. The solid curve is the
configuration average of IPR over all the sample
clusters. This figure shows clearly that for low

concentration the system is dominated by isolated
impurities or pairs of impurities. Andres et al.
have used the modified pair approximation to cal-

culate the magnetic susceptibility and the result

agrees well with the experimental data for impurity
concentration up to 8=0.25. We notice from Fig.
5 that for I' &0.25 the mean value of IPR is
greater than 0.5.

To study the localization of the eigenstates we

calculate the inverse participation ratio (IPR) origi-

nally defined by Bell et al. For the present prob-
lem it is more suitable to use the version of Vissch-

er for the IPR of the ith eigenstate,

(14)

If the orbitals P; (r ) are orthogonal to each other,
then I. ; has the value from zero for the extended

limit to one for the localized limit, provided the
system under consideration is infinite. Although
in our case the system is finite and the basis func-
tions are not orthogonal to each other, we can still

use (14) to estimate the localization of the electron-
ic wave functions.

IV. THERMAL ACTIVATED HOPPING

To get the microscopic insight of the cluster
states we single out seven eigenstates from an arbi-

trary sample pseudocluster with fixed concentra-
tion. These seven states are labeled as 1,2, . . . , 7
with increasing eigenenergies. States 1 —4 are just
below and states 5 —7 are just above Fermi energy.
Figure 6 shows the positions of the impurities in a
sample pseudocluster with P=0.078. Referring to
these positions the localizations of the seven eigen-
states of each spin are shown in Fig. 7. We say
that the ith eigenstate covers the jth impurity if

~
8~&,- ~

)0.1, and the localization is demonstrated
in Fig. 7 in terms of such coverage. For example,
state 1 with down spin is a pair state covering im-

purities 2 and 8. At such low concentration the
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FIG. 5. Average inverse participation ratio vs impurity concentration I'.

occupied states are really either isolated impurity
states or pair states.

Figure 8 is for the seven states of up spin with
P=0.393. Impurities covered by the same eigen-
state are connected by one type of lines. For ex-

ample, states 3 and 1 are indicated by solid lines,
states 2, 5, 6, and 7 by dotted lines, and state 4 by
dashed line. Although all the states near the Fer-
mi energy are localized, we see states of different
energies such as states 1 and 5 overlapping with
each other spatially at one impurity. State 4 does
not overlap spatially with states 1 and 5, but in a

certain region they are spatially very close to each
other. Similar eigenstates are plotted for P=0.763
in Fig. 9 where more delocalization and stronger
spatial overlap between states with different
eigenenergies are seen.

The states below and above the Fermi energy are
separated by small energies. However, many states
above the Fermi energy are spatially either overlap-

ping with or very close to many states below the
Fermi energy. Hence, thermal activated hopping is
largely enhanced in contrast to the conventional
picture that localized states are widely separated in



R. RIKI.UND AND K. A. CHAO

13

1Q

I
4

I
I
I

I
I
I

I

I

I
I

I
I

I

I I
0 g

35,'
I

I
I
l

e ~ I
I

T 3Q

39
g

~I

364
I
I

415

I ~

19
27,'

gl'
37

I

I
~

I
II y

& I T34 ~ g ~

~ y
~

~ I ~

I ~ ~

t I
I y

3I
I

I
l
I

I
I

I

r
I
I

I

hl
33) 4Q

ll
24 II

17IP
2

32

5

shown in Figs. 4(a) —4(f). Consequently, one can-
not define a single thermoactivation energy e2 of
order of Hubbard U. On the contrary e2 must be
reexamined very carefully in terms of the cluster
states as a function of the concentration and tem-
perature.

space. The thermoactivated conductivity is then
dependent on the concentration, the temperature,
and the applied electric field. If one measures the
thermoactivated conductivity in such system, and
then uses the formula derived from the percolation
theory ' to evaluate the characteristic electronic
length, the so obtained characteristic length must
be an order of magnitude larger than the true
characteristic length. We believe that such a
feature is relevant to the recently discovered non-
Ohmic conductivity and large characteristic elec-
tronic length in Si:P.

It is impossible to have a mobility edge separat-
ing one group of cluster states from the other, if
we consider the impurity states below the bottom
of the conduction band, judging from the IPR

V. DISCUSSION

The present self-consistent calculation suggests a
new picture for doped semiconductors in a nonme-
tallic regime as statistically distributed clusters of
various sizes. This new picture is originated from
the concentration fluctuation. If we use the same
description as for the eigenstates shown in Figs.

FIG. 6. Spatial distribution of impurities in a sample pseudocluster with P =0.078.
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FIG. 7. Seven cluster states near Fermi energy with

P =0.078.
7 —9, then the probability II(g) to have einater
states covering q impurities can be calculated.
Figure 10 illustrates these probabilities for various
impurity concentrations. Since the states in the
long tails are in the upper split band and are with
energies above the bottom of the conduction band,
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FIG. 8. Seven cluster states near Fermi energy with
P =0.393.

0
1 10 13 16 19

FIG. 10. Probability distribution of cluster states vs
the number of impurities covered by the cluster states.
Impurity concentrations are marked by numbers next to
the curves.
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they can be ignored if we are interested in a
nonmetallic regime. One can find certain corre-
spondences between Fig. 10 and the information
derived from the optical data (Fig. 14 of Ref. 7).

A better understanding of the impurity states in
doped semiconductors can be achieved via a first-
principles calculation of the cluster states in clus-
ters of as many as ten impurities, using an accurate
many-valley impurity orbital with anisotropic ef-

fective mass and central-cell correction. Such
work is being carried out and will be reported in
the future.
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