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Many-body effects are incorporated into a theory for the density dependence of the
electron-hole ambipolar diffusion coefficient in semiconductors. Self-energy shifts of the
free-carrier band edges lead to a band-gap gradient in the presence of a carrier-density
gradient and therefore a diffusion coefficient which is less than that obtained from the
independent-particle Boltzmann transport theory. The diffusion coefficient decreases
with increasing carrier density until carrier degeneracy becomes important, after which
the coefficient increases with density as in the independent-particle theory. The differ-
ence between the two theories is most apparent for high-effective-mass semiconductors
and low carrier temperatures. Results are calculated for Ge, Si, and GaAs for common
lattice and carrier temperatures of 100 and 300 K, with silicon showing the largest influ-

ence from many-body effects.

I. INTRODUCTION

High-density nonequilibrium electrons and holes
can be produced in semiconductors through in-
teraction with pulsed laser, ion, and electron
beams. The dynamics of the carriers so produced
has been the subject of numerous experimental and
theoretical investigations during the past de-
cade.!~3 Apart from the fundamental research
reasons, much of the motivation for these studies
derives from the development of new semiconduct-
or devices and semiconductor processing tech-
niques such as laser annealing.®~!* If the semicon-
ductor plasmas are initially produced in a shallow
layer it becomes important in many cases to take
into account the spatial and temporal evolution of
the carrier distribution through diffusion. In this
paper we theoretically investigate diffusion of
high-density electrons and holes and consider the
influence of many-body effects on the ambipolar
diffusion coefficient. In particular we derive ex-
pressions for the density dependence of the ambi-
polar diffusivity in semiconductors and apply the
formalism to calculating values in Ge, Si, and
GaAs.

The simplest approach to carrier diffusion is to
assume that the electrons and holes are each
characterized by their own density and tempera-
ture-independent diffusion coefficients, with the
actual diffusion of both carriers determined by a
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constant ambipolar diffusion coefficient. However,
for sufficiently high densities such that carrier de-
generacy is important, the carrier kinetic energy in-
creases with density. One would therefore expect
that the ambipolar diffusion coefficient would
differ from its low-density value. If the carriers
can be considered to move independently (i.e.,
neglecting many-body effects), the Boltzmann
transport theory in the relaxation-time approxima-
tion (hereafter referred to as IPBTT) predicts a ra-
pid increase in the diffusion coefficient beyond the
onset of carrier degeneracy,!! which for many
semiconductors occurs at a density of approximate-
ly 10" cm ™3 at room temperature.

In general, data on the high-density diffusivity
in semiconductors is scarce with only a few isolat-
ed results reported, mostly in germanium. Using
picosecond ellipsometric techniques, Auston and
Shank!? have reported that for a surface carrier
density of 1.7 10%° cm™3 the ambipolar diffusivi-
ty in germanium at 300 K is 4 times its low-
density value, in reasonable agreement with
IPBTT. Jamison et al.,'* however, have reported
that the diffusivity does not differ substantially
from its low-density value in the density range
10" —10%° cm~3, whereas Moss et al.,'* using
transient-grating techniques, report that for a sur-
face carrier density of 5% 10" cm™? the diffusivity
is actually smaller than the low-density diffusivity
for lattice temperatures of 135 and 295 K. These
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apparent inconsistencies can occur for at least two
reasons. Because the carrier lifetime at these high
densities can be subnanosecond,'® recombination
can compete with diffusion in causing density
reduction, rendering quantitative separation of the
two processes difficult in many experiments, with
the exception, perhaps, of transient-grating experi-
ments. Secondly, the diffusivity of high-density
photogenerated carriers can be influenced by ther-
mal effects since it is well known that the carrier
diffusivity increases with carrier temperatures but
decreases with lattice temperature.'®
Notwithstanding the difficulties in pr ~* ~ing ac-
curate data on the high-density diffusivity, there is
reason to suspect that the values obtained would
not be in agreement with IPBTT. At high carrier
densities the independent-particle band picture of
semiconductors will break down as carrier ex-
change and correlation effects become important.
Many-body effects have long been recongnized,
primarily through band-gap narrowing, to influ-
ence optical absorption,” luminescence,!® and
semiconductor laser operation.!” Their possible
influence on transport properties could occur
through alteration of the carrier scattering time,
effective-mass renormalization, and band-gap nar-
rowing. Meyer and Glicksman?® have reported
that increased carrier-carrier scattering at high
densities has a strong effect on the carrier drift
mobility, i.e., the response of carriers to an applied
electric field. However, Meyer, in a recent theoret-
ical paper,?! has concluded that, at least in first or-
der, the ambipolar diffusivity would not be similar-
ly affected. Since in ambipolar flow, in the ab-
sence of an applied field, both types of carriers
travel in the same direction, the increase in
carrier-carrier scattering with increased density
does not occur. Similarly, it has been demonstrat-
ed?? that effective-mass renormalization is not sig-
nificant, except, perhaps for carrier densities in ex-
cess of 10?! cm™3, Alteration of the band struc-
ture at high densities due to the self-energy shifts
of the dressed carriers, or quasiparticles, can there-
fore be viewed, to a good approximation, as rigid
shifts of the independent-particle bands. These
shifts can certainly influence the diffusivity since,
if a carrier-density gradient is present, a band-gap
gradient will also be present as well, and each car-
rier type will experience a macroscopic force to-
wards the high-density region. Many-body effects,
primarily through band-gap narrowing, will there-
fore lead to a diffusivity which is smaller than that
given by IPBTT. Wautelet?* originally pointed out

the importance of these effects for silicon. Howev-
er, he has only included the exchange contribution
to the self-energy and has adopted an inconsistent
statistical mechanical description of the carriers,
which leads to unphysical values of the diffusion
coefficient. We will include correlation energy
contributions to the self-energy, adopt a more con-
ventional description of the carrier-distribution
functions, and present results for the ambipolar
diffusivity for Si, Ge, and GaAs for densities up to
102 cm 3,

It should be noted that band-gap narrowing and
band-gap gradients can be induced by lattice heat-
ing as well, and to a greater or lesser degree will be
present during and after carrier creation. This is
also partially due to a many-body effect because of
the increased carrier-phonon interaction at high
temperature. The effect of thermal gradients on
carrier diffusivity has been treated recently by Van
Vechten and Wautelet,>* Wautelet,”® and van Driel
et al.? In this paper we will not explicitly consid-
er thermal effects although we will briefly compare
the relative magnitudes of the thermal and carrier-
density-induced influences on the diffusivity under
various circumstances.

The remainder of this paper is outlined as fol-
lows. In Sec. II we discuss the framework for a
statistical mechanical description of high-density
electron-hole distribution. Section III presents a
summary of the many-body corrections to the
independent-particle band structure as calculated
using the single plasmon pole approximation for
the dielectric function. The ambipolar diffusivity
of the carriers is derived in Sec. IV from the
Boltzmann transport equation in the relaxation-
time approximation with appropriate corrections
for many-body effects. The theory is applied to
calculate the density dependence of the diffusivity
for Ge, Si, and GaAs in Sec. V for common lattice
and carrier temperatures of 300 and 100 K. Our
results are compared with IPBTT and the recent
theory proposed by Wautelet.

II. NONEQUILIBRIUM CARRIER
DISTRIBUTIONS

The transport properties of carriers in semicon-
ductors depend on the details of the carrier-
energy-distribution function. A considerable effort
has been put forward in recent years to obtain this
function for high-density nonequilibrium carriers
which are produced by pulsed excitation. There
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are obviously many different parameters which are
necessary to describe the state of a semiconductor
plasma, and in general, they reach their equilibri-
um values on different time scales. For example,
numerous authors">2>2¢ have indicated that the
typical momentum relaxation time is 10~ sec, the
thermalization time (time required to establish a
carrier temperature) is approximately the same
time, the energy relaxation time (time required for
the carriers and the phonons to reach a common
temperature) is a few picoseconds, and the
electron-hole pair recombination time can be as
short as a few picoseconds and as long as seconds.
Clearly the nature of the distribution function de-
pends on the time scale that one wishes to charac-
terize the plasma. On a time scale of picoseconds
or longer, however, one should be able to describe
the carriers by Fermi-Dirac distribution functions
with their own temperature and chemical poten-
tials which vary with time. This quasiequilibrium
approach to nonequilibrium plasmas has been used
since the introduction of quasi-Fermi-levels by
Shockley?’ and its validity rests on the restriction
that one not make observations on the plasma over
a time scale which is long compared to the ap-
propriate parameter’s relaxation time. Because of
rapid Coulomb scattering events, the electrons and
holes will be described by the same temperature.
However, the chemical potentials used to charac-
terize the two distribution functions will be dif-
ferent from each other and their common equilibri-
um value. This latter condition is simply related
to the fact that, on a time scale which is short
compared to the carrier lifetime, the electrons (in
the conduction band) and the holes (in the valence
band) do not have access to each other’s states.
Entropy considerations therefore dictate that they
have separate chemical potentials.

With the above general comments in mind the
electron-distribution function is given by

1

fe(E)= ks TNE=F)

(1)

where F, is the chemical potential and T, is the
electron temperature. Because the present work
considers a spatially inhomogeneous band gap, the
energy E and chemical potential are referenced to a
spatially invariant energy level such as the vacuum
level and not the band-edge energy E.. If one as-
sumes a parabolic conduction-band structure, the
electron density is given by
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where m}, is the density of states effective mass,
N, [=(F,—E_)/kgT,] is the reduced chemical po-
tential, and %, is the Fermi-Dirac integral of or-
der r.!! The corresponding hole-distribution func-
tion f; and density N, can be obtained similarly
using the valence-band-edge energy E,, the hole
chemical potential Fj,, density of states effective
mass m gy, and reduced chemical potential, 7,
[=(E, —F,)/kgT,]. For these nonequilibrium car-
rier distributions, the electron and hole densities
are related by the fact that they are equal and not
by the law of mass action which applies only to
equilibrium situations. The quantities F,, F;, and
T, are determined by a knowledge of the total en-
ergy and density of the plasma. The carrier tem-
perature will differ from the lattice temperature
only during and within picoseconds of the termina-
tion of the excitation pulse and only in the region
of excitation-pulse absorption. The two chemical
potentials will obviously approach the common
equilibrium value on the time scale of the carrier
lifetime which for high densities is usually deter-
mined by Auger recombination.

Although this view of nonequilibrium carrier
distributions is widely accepted, it is not universal-
ly accepted. Van Vechten and Wautelet>?% and
Yoffa* have offered a different description which
employs only a carrier temperature to characterize
the electron and hole distributions. Both carrier
chemical potentials are taken to be equal to the
common, equilibrium chemical potential, which
has a value near the center of the band gap. Using
Eq. (2) with silicon as an example, this implies that
as the carrier density increases from 10'2 to 10?!
cm ™3, the carrier temperature would be required to
increase from 300 to 3000 K, independent on the
details on any external excitation process. For this
single chemical potential description to be valid,
carrier recombination processes must be exactly
balanced by generation processes for all densities at
different locations within sample. For example,
Auger recombination would be balanced by impact
jonization. For densities as high as 10*! cm ™3 the
Auger lifetime is approximately 10~!! sec (Refs. 2
and 15) in a typical semiconductor and it increases
with decreasing density as N ~2.2® Auger recom-
bination can severely limit the density, but is un-
likely to induce substantial heating of the carriers
since energy relaxation occurs at a faster rate. It is
also argued that screening of the carrier-phonon in-
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teraction can reduce the rate of energy transfer
from the carriers to the lattice so as to maintain
the carrier temperature at a high value. However,
it has recently been pointed out by several au-
thors? that even at densities as high as 10?! cm
‘the carrier-phonon interaction is reduced by less
than an order of magnitude. In what follows,
therefore, we will adopt the more conventional ap-
proach to nonequilibrium carriers in our derivation
of the influence on many-body effects on the ambi-
polar diffusivity.

-3

III. MANY-BODY EFFECTS AND THE
CARRIER BAND STRUCTURE

Over the past twenty-five years there have been
several experimental and theoretical papers con-
cerning the influence of many-body effects on the
single-particle band structure in both intrinsic!®3
and extrinsic!”!%?23! semiconductors. Because of
the complexity of the problem it is perhaps not
surprising that different approaches have led to
different results.> In addition, for extrinsic semi-
conductors it is often difficult to separate carrier-
induced effects from impurity-induced effects such
as lattice distortion. For intrinsic situations the
theoretical treatment, at least, is complicated by
the presence of carriers in both the conduction and
valence bands. Much of the interest in this case
has centered around the electron-hole droplets
which can exist in several semiconductors near
liquid-helium temperatures.

It is not the purpose here to attempt to develop
another theory of many-body calculations in semi-
conductors. Rather we will use the approach of
Lundqvist® which has seen much success, certain-
ly in intrinsic semiconductors, in both electron-hole
droplet physics®* and the gain and absorption spec-
trum of high-density plasma in direct-gap semicon-
ductors.> In the Lundqvist model the inverse
dielectric constant is approximated by a single
plasmon pole and the results are essentially
equivalent to those of the random-phase approxi-
mation. For a quasiparticle of momentum k and
energy o in the ith band, the self-energy associated
with exchange and correlation Coulomb energy
corrections is given by

—-82 dk' 2

. 2; dk’ —
El(k,w)z (;:j"LO d(l)k(ik e—l(k "wl)

XGi(f(.+§',w+w') , (3)

where €/(K,o) is the wave vector and energy-
dependent dielectric constant of the electron-hole
plasma, €, is the static dielectric constant, and
Gi(K,w) is the single quasiparticle propagator. In
the single plasmon pole approximation the dielec-
tric constant is given by

2
a) — 1( k )

e (K,0)=1+

where o, is the zero wave vector plasmon reso-
nances frequency which depends on the electron-
hole pair density N and the electron and hole opti-
cal masses my, and my, through

2 Amne? 1 1
wP = * + *
€ M oe Mop

(5)

The electron optical mass is related to the
transverse m, and the longitudinal m]" effective
masses by my, = = —(2/m, +1/m}) while the
hole optical mass is given in terms of the light
(mm) and heavy (myy) hole effective masses by

my; = —( 1/myy+1/my,). The wave-vector
dependence of the plasmon frequency w; is given
to a good approximation®® by

o} (K)=w? +ak+bk*, (6)

where the various parameters are defined by
a=aw)/k} and b =#2/4m% " +mg) with k, be-
ing the screening length. We have neglected damp-
ing of the plasmon resonance. In what follows we
use the zeroth-order independent-particle propaga-
tor given by

GiEwm=—TE__ TE

O—OP—IT O—0P+Iin

with f3 being the appropriate carrier-distribution

function, 7 a small frequency, and 7w the energy

of a carrier in a single-particle state of wave vector
K. The energy integration in Eq. (3) gives

K+k’ 1

SiK,0)= —— +o
@ 217'260 k,2 fk+k P

(0p, 7 —0r—ol(k")

ZwI(E')[w—wl(ﬁ')—wi’+?f]
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For electrons the integration over k is over the various N, valleys of a multivalley semiconductor. We do
not consider the effects of nonparabolicity of the energy bands but rather consider a constant density of

states effective mass which for ellipsoidal constant-energy surfaces is given by (m2m;)

173 for electrons. For

most semiconductors the hole constant-energy surfaces are sufficiently close to sphencal so that the longitu-

372

dinal and transverse effective masses are about the same. For holes mg, =(mif’ +mi*)*, the effect of the

anisotropy of the band structure itself on the self-energy corrections for particles of arbitrary K is smal
yielding a correction no larger than 15% for m,/m,

will be ignored below.

136

~20, as for electrons in germanium. This correction

The integrations in Eq. (8) were carried out for both Maxwell-Boltzmann (MB) and totally degenerate
(T, =0) Fermi-Dirac (FD) statistics. For the MB case the self-energy correction to the conduction-band

edge is given by

2ba\nd ed
ge = 3
ki th€o ko
where
172
*
2mm dek B Te
kn=
h 2

is the thermal wave vector,
ki =32meN /eoky T,

is the Debye-Hiickel screening length,
Q=(1+5,82+8%,

and
5 — 2m G,
= — P
fikTe
The corresponding expression for the FD case is
28 2k F 2e kF
2band edge = €, e kTFtan ! _k—TF—
172
_ 2L2 m gewp f ® ds
ey | 24 o O0+8%’

(10)
where kp=(3m*N /N.)'/* is the Fermi wave vector
and

kg =12e2/ePm(m /3N VX (m e N +my)

is the Thomas-Fermi screening length. Similar ex-
pressions exist for the valence band edge. In each
case the first term is associated with the exchange
energy, while the last two terms are associated with
correlation energies.

In the intermediate degeneracy regime where nei-
ther the FD nor MB results are strictly applicable,
one can smoothly interpolate between the two ex-
pressions since the two functions agree to within
about 20% for all densities. This also indicates
that self-energy shifts of the two bands are not ex-

3/2,2
—47Ne? 4m'%e kDHNe(kTF/k,h)2
e

* 172
kpu _2e* | My fw ds 9
K, ey | 2 0 O(Q+s)?’

T
tremely sensitive to carrier temperature. For all

densities the shift in the conduction-band edge is
negative while that of the valence-band edge is pos-
itive, leading to a reduction of the band gap with
increasing density.

IV. THE AMBIPOLAR DIFFUSIVITY

To calculate the diffusivity we will use the
IPBTT with suitable modifications for the self-
energy of the carriers. As mentioned in the Intro-
duction, for densities less than 10?! cm ™2 one can
consider the quasiparticle effective mass to be den-
sity independent to a good approximation. The
Boltzmann equation in the relaxation-time approxi-

mation can be written as
fe(@)—fopl r)

%

"V fos(T)

k

<l

k‘lt—-
il

+

where f¢ and f op are the instantaneous and

quasiequilibrium carrier-distribution functions,
respectively, which are dependent on position T
and wave vector K. Ty is the carrier momentum
relaxation time which depend on K through the
particle kinetic energy, 73 < (Ex —E,, ), and Fis
a macroscopic force on the carriers. The macro-
scopic force F can be represented as
ﬁzﬁﬂ=—€?E¥—eE , (12)
dt
where we have considered it to result from an
internal force, related to the gradient of a carrier
energy and a macroscopic electric field E. The
internal force is a natural consequence of any T
dependence of N and therefore E,,. The solution
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of the linearized Boltzmann equation is therefore
TR - |Ex—F, _, - =
—(F) = — V- F+ V F
fk(r)_foi.(r) kBTefOYV T, VT, +F+VeF,
T - |Ex—F, _, - _.
_ Y B A - A ~(F,—E?) |, (13)
fOY(ﬂ kBTefo—k»V Te VrTe eE +Vr(Fe k)

for the electrons, with a similar expression for the
holes. The macroscopic electric current density for
either type of carrier can be found by integration
of the velocity distribution function so that

TonD=7e [LVfp(DdK, (14)

where the + sign corresponds to holes and the —
sign to electrons. It is usually the case in intrinsic
materials that the momentum relaxation time is
determined by electron-phonon interactions so that
p=-— %.37 Meyer?! has shown, in particular, that
carrier-carrier scattering is small in the case of am-
bipolar carrier flow. If we ignore temperature gra-
dients, Egs. (2), (11), and (13) can be combined to
give

where ul , =e{r¢ )/ m}, is the low-density (MB)
carrier mobility. Note that the only difference be-
tween the expression for the current density
presented here and that of the IPBTT is the ap-
pearance of the band-edge gradient term. For ei-
ther type of carrier its effect, as expected, is simi-
lar to that of an electric field with one important
difference. The gradients of the two band edges
have opposite signs so that the electrons and holes
would be driven in the same direction, the direc-
tion that would tend to minimize their energy.
The general carrier mobilities u, , are related to
the corresponding diffusivities by the generalized
Einstein relation,

. Folme) = eD)y Fo(Men)
—ekpTopo—— =— :
Je=ckpTete F _11(ne) Heh=",T F1/2Ne,n)
Folne) | VE. =
+eN 0 P +E ’
HeFiam | e o Follen)
_ (15) =Heh 5 o) (16)
- o Folm) = 1/2Me,h
Jh=—eknTeuhm h
o Zolnm) VE, - where Dg » is the MB diffusion coefficient. The
+eNppp F 120 e ’ charge currents are then given by
|
- FolNe,n) New F _1/0Men) |OE, | |5 FoMen) =
Jon=xeD : e : = | | VN, +eudy N, ————FE
e g aen) kpTe F1/(Nen) |ONgp | b elerTen F 1/ Ne,n)
0 aEcv =4 0 .70(7,8,') -
= —~- (F,,—E ~— | VN, New 07—~
Oe,h aNe,h( eh c,u)+ aNe,h l ehtellepNep '71/2(77e,h)

:De,h 6’Jve,h +0'e,h—f': ’

where D, j, is the actual diffusivity and o, j is the
carrier conductivity. Even if no applied field exists
a field can develop as a result of charge separation.
This field can therefore not be set to zero since it
is ultimately responsible for both carriers diffusing
with the ambipolar diffusivity. In the absence of
band-edge gradients and electric fields, the dif-

(17)

I

fusivity, which is the coefficient of V)Ne, By iD-
creases with increasing density according to the ra-
tio of the two Fermi-Dirac functions. For nonde-
generate carrier statistics this ratio is unity and the
diffusivity is density independent. However, if the
carriers are degenerate, because the carrier kinetic
energy in this case increases with density, the dif-
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fusivity will increase. The effect of the band-edge
gradients will be a reduction of the diffusivity for
both types of carriers at all densities. But since the
many-body effects will be small at low densities
while the ratio & _; 5(, )/ F 1 2(Ne,,) (Which is
proportaional to 7 4 at high densities) will be
small at high densities, the diffusivities will not
differ appreciably from that of the IPBTT for
these two limits. It is also clearly seen that the
many-body corrections to the diffusivity appear
through shifts of the band-edge energy only. If,
however, the effective mass were also renormalized
and energy dependent (as would occur for densities
in excess of 10?! cm™3), the many-body effects
would reflect all the carrier energies.

The electron and hole currents are, of course,
not independent but are linked by the electric field
which develops during charge separation as the
carriers attempt to diffuse at different rates. The
electric field is related to the carrier densities by
Poisson’s equation,

V-E=-2(N,—N.). (18)
€o

Combining Egs. (17) and (18) gives for the ambipo-
lar particle current in terms of the electron-hole
pair density, N =N, ;,

—>

VN, (19)

—

aeDh " UhDe

O, +0p

O,+0p

with the coefficients of VN defining the ambipolar
diffusivity including many-body corrections.

The evolution of the carrier density can be deter-
mined from Eq. (19) and the equation of continui-
ty. For example, if the carriers are generated by
the absorption of a light pulse of photon energy #iw
and intensity I(¢) by a semiconductor with reflec-
tivity R and absorption coefficients a, the equation
of continuity is given by

AN(T,t) =~ all-R)(tle”*
EY +V-J= P
where we have assumed that recombination occurs
by the Auger process with coefficient y. Combin-
ing Egs. (19) and (20), one obtained the temporal
and spatial evolution of the electron-hole density
from
oN =
ot v

—yN*, (0

aeDe +0’hDe Vﬁ
O +0y

i al (t)(1—R)e™*
ho

This completes the general formalism. At this

—yN3. 1)

point it is worth noting three limitations of the
theory besides those already mentioned. First, the
linearized Boltzmann equation can only be con-
sidered valid provided the mean free path of the
carriers is much less than the distance over which
the density changes appreciably. Since a typical
carrier mean free path is about 100 A at room
temperaure and about 1000 A at liquid-nitrogen
temperature, the linearized equation should be
valid except for highly inhomogeneous carrier den-
sities. Second, the expressions for the many-body
shift of the band edge were based upon the
plasmon pole approximation for the inverse dielec-
tric coefficient of a bulk homogeneous electron-
hole plasma. The presence of a surface and
carrier-density inhomogeneities might be expected
to lead to modification of our results. It is gen-
erally agreed, however, that the local-density ap-
proximation offers accurate quantitative descrip-
tions for inhomogeneous plasmas on distance scales
of much less than a micron. The influence of sur-
face effects is still an extremely active area of
research and controversy. Third, vertex correc-
tions should be considered in the calculation of the
carrier self-energies as has been done for electrons
in ‘metals by Lundqvist®® with a simplified theory
offered by Overhauser.’® Recently Berggren and
Sernelius® have indicated that the corrections are
significant for semiconductors, at least for extrinsi-
cally doped materials. For ambipolar plasmas,
however, Overhauser®® has shown that there are
four vertex functions as opposed to just one for
single component plasmas. Although particular
expressions for these functions are not available to
date, in general vertex corrections reduce the one-
carrier correlation energy by no more than 50%.
For the density range of interest here (N > 107
cm™3) one might expect therefore that the more
exact treatment of the carrier self-energies will lead
to reductions of the diffusivities by ~10—20 %
over those reported here. This margin is within
the spirit of other approximations made here.
These modifications will be considered elsewhere.

V. AMBIPOLAR DIFFUSIVITY FOR
Ge, Si, AND GaAs

Using the theory of the preceding section we
have calculated the density dependence of the am-
bipolar diffusivity for Ge, GaAs, and Si at com-
mon lattice-carrier temperatures of 100 and 300 K.
The various parameters used in the calculations are
given in Table I with most of the values taken
from Neuberger.*! Figures 1—3 illustrate the cal-
culated results for the three materials. Also indi-
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FIG. 1. Density dependence of the ambipolar dif-
fusivity in Ge at 100 and 300 K according to the
Boltzmann transport theory on the independent-particle
approximation (— — —) and with the inclusion of
many-body effects (——).

cated are the results predicted by IPBTT. In Fig.
3 for Si we also show the density dependence of
the ambipolar diffusivity as predicted by the
many-body theory of Wautelet.”* In comparing re-
sults of the three theories we note that the IPBTT
shows the diffusivity to be density independent up
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FIG. 2. Same as Fig. 1 except for GaAs.
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FIG. 3. Same as Fig. 1 except for Si. The —-—
curve represents a calculation of Wautelet.

to the point of carrier degeneracy, after which it
increases monotonically. Our results show that the
diffusivity decreases as a function of density as
many-body effects become more important. After
the onset of carrier degeneracy the diffusivity in-
creases for the same reasons as in the IPBTT and
the two curves actually come together again be-
cause the carrier mobility decreases with increasing
density, as indicated by Eq. (16). The difference
between these two theories is dependent on carrier
temperature, with the many-body effects becoming
more important at low temperatures. This is not,
per se, related to the temperature dependence of
the many-body effects, which we have indicated to
be small, but rather due to the electron (hole) car-
rier chemical potential decreasing (increasing) with
temperature for constant carrier density. From
Eq. (17) one therefore sees that the many-body ef-
fects become relatively more important at the
lower temperatures.

The value of the ambipolar diffusivity derived
by Wautelet’s theory differs substantially from that
of the other two theories. The general expression
for the individual carrier diffusivities given by
Wautelet is of the form

0
De,h

=TT (cN?/—dN'3), (22)
Bie

D,

where ¢ and d are constants and 7, is the carrier
temperature corresponding to the density N in his
theory. The first term in parentheses represents

the average kinetic energy of the carriers and the
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TABLE 1. Materials parameters taken from Ref. 41. The unit of mass is the electron
fundamental mass, while the diffusion coefficients are given in units of cm?/sec.

D, D D, D,
Material m, m; mp mm € (300 K) (300 K) (100 K) (100 K)
GaAs 007 007 009 046 131 207 11 863 54
Ge 0082 159 0043 034 158 103 54 583 232
Si 019 098 016 059 120 35 13 86 690

second term is associated with the exchange-energy
contribution to the carrier self-energy. As seen in
Fig. 3, the predicted diffusivities are much lower
than those of the other two theories. Although
part of this difference is due to the inclusion of
only exchange energy contributions to the many-
body energy shifts, most of the difference is actual-
ly attributable to the statistical mechanical descrip-
tion of the carrier-distribution functions as dis-
cussed in Sec. II. At low densities the diffusivity
is predicted to be negative for lattice temperatures
up to at least room temperature. This is due to the
assumption that the density dependence of the car-
rier kinetic energy is N2/3, which is valid for de-
generate distributions only. The diffusivity does
not go over to the MB limit for low densities. We,
too, are able to obtain negative diffusivities, al-
though only at temperatures close to liquid-helium
temperature, where the phenomenon of electron-
hole droplets is well known. Figure 4 illustrates
the individual electron and hole diffusion coeffi-
cients in the limit of zero temperature (complete

IS @
S o

DIFFUSION COEFFICIENT (Arb. units)
n
S

20
10

CARRIER DENSITY (cm™3)

FIG. 4. Density dependence of the electron and hole
diffusivities in the limit of 7=0: Ge, D, (---), Dy
(— — —); GaAs, D, ( Dy (--+);8i,D, (—.-—),
Dh (—=- =)

degeneracy), although the actual values would be
influenced by the presence of excitons at low tem-
peratures. The vertical axis is taken to have arbi-
trary units because of the lack of knowledge of the
actual momentum relaxation time in this limit.
For this limit the expression for the individual dif-
fusivities is of the form

TF, e,h
*

mde,h

De,h =

(gN2/3_pN1/3__qN1/4+rN1/6) ,
(23)

where 7F, Y is the momentum relaxation time at the
Fermi surface. It can be seen that, apart from his

DEPTH (m)

FIG. 5. Carrier-density profiles in Si at 40 and 225
psec after the beginning of a 15-MW/cm?, 25-psec,
0.53-um-square pulse for the independent-particle theory
(-, —--—), the many-body theory ( , — — —),
and a constant, low-density diffusivity (---, — - —).
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FIG. 6. Carrier-density profiles in Si at 40 and 225
psec after the beginning of a 300-MW/cm?, 25-psec,
0. 53-,um-square pulse for the independent-particle theory
(---, —--—), the many-body theory (---, — - —), and
a constant, low-density diffusivity ( y — — =)

T, dependence, Wautelet’s results are equivalent to
ours, at least in form, only in the T, =0 limit.

From our theory one can also easily understand
the role of the carrier effective mass in yielding the
different results in the various materials, especially
when carrier degeneracy becomes important. Semi-
conductors with larger carrier effective masses
demonstrate a larger deviation from IPBTT, as
shown in Figs. 1—4. But, just as for the tempera-
ture dependence discussed above, the effective-mass
dependence results primarily from the effective-
mass dependence of the carrier chemical potentials.
For constant density the change of the carrier
chemical potentials with increasing effective mass
is larger than that of the many-body shift of the
band edge so that, from Eq. (7), the many-body ef-
fects become relatively more important in influenc-
ing the value of the diffusivities as the carrier mass
increases.

To compare our results with those of IPBTT in
an actual diffusion problem we have calculated the
evolution of the carrier density in silicon at 100 K
after excitation with 0.53-um, 25-psec pulses. By
way of illustration we also include results derived
from a density-independent diffusivity which has

the MB value. The absorption,* reflection,*! and
Auger*® coefficients were taken to be 8 X 10° cm™!,
0.50, and 4 X 10~3! cm%/sec, respectively. Figure 5
shows the carrier-density profiles at 40 and 225
psec after the beginning of a 15-MW/cm? pulse.
The effect of the density-dependent diffusion coef-
ficients in increasing carrier diffusion away from
the surface is clear. It can be seen that the surface
density at a particular time varies approximately
inversely as the square root of the diffusivity and
the differences between the models are more ap-
parent at the lower densities, reflecting the larger
differences between the diffusivities, as expected.
More dramatic differences, of course, would appear
at lower temperatures and correspondingly lower
densities.

Before attempting to verify the influence of
many-body carrier effects presented here one
should be aware of two experimental difficulties.
First, since diffusion occurs in the presence of den-
sity gradients, a given experiment will not be able
to obtain the diffusion coefficient for a particular
density. Second, as was discussed in the Introduc-
tion, any technique which will allow high-density
carriers to be created in semiconductors will always
give rise to some source of inhomgeneous lattice
heating. The temperature gradient will give rise to
an_enhanced band-gap gradient since the lattice
temperature will most likely be highest where the
density is highest: Our calculations® have indicat-
ed that if the lattice temperature spatial profile has
a depth on the order of a micrometer, a surface
temperature which is only about 50 K higher than
the bulk temperature can cause a reduction in the
diffusivity comparable to the largest many-body-
induced effects discussed here. At the lower densi-
ties, however, one might hope to avoid heating ef-
fects.

In conclusion, we have demonstrated the impor-
tance of many-body effects in the density depen-
dence of the ambipolar diffusivity of Ge, Si, and
GaAs. Because of the usual complications in per-
forming any many-body calculation, we consider
our results to be accurate to within 20%. Howev-
er, we have shown how the theory is influenced by
the effective masses of the carriers and the carrier
and lattice temperatures. The lattice-temperature
dependence essentially only influences the carrier
momentum relaxation time, while the carrier tem-
perature can influence both the relaxation time and
the kinetic energy of the carriers. The theory
presented here is seen to differ dramatically from
that of Wautelet, primarily because of the different
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statistical mechanical description of the nonequili-
brium carrier distributions.
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