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Electronic structure of BaPb& „Bi„03
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Vacuum-prepared surfaces of BaPbl „Bi„03with x =0, 0.25, and 1 were studied by x-

ray photoelectron spectroscopy to elucidate the electronic structure and the valence states
of bismuth in these compounds. Valence-band spectra give evidence for a shallow band

in BaBi03, which is depopulated as Pb is substituted for Bi. The lack of asymmetry of
the Ba core-electron lines indicates that there is no Ba 5d or 6s character at Ep. The
asymmetry of the O ls line, especially in BaPb03, indicates that this shallow band has

largely 02@ character. The Bi4f lines of BaBi03 were significantly broadened, but could

not be unambiguously resolved into the two components expected on the basis of the crys-
tal structure.

I. INTRODUCTION

The valence of Bi in BaBi03 has long been a
subject of speculation. With few exceptions, ' stud-
ies have led to the conclusion that the formal
valence of Bi(IV) implied by the composition is less

likely than are equal amounts of Bi(III) and Bi(V).
This conclusion has found support in recent crys-
tallographic work ' which has identified two ine-

quivalent Bi sites in BaBi03. It is worth noting,
however, that the Bi—0 bond lengths of the two
sites do not differ by an amount commensurate
with expectations based on a two-electron charge
difference. In an early electron spectroscopy for
chemical analysis study, the Bi4f lines were

found to be broadened but unsplit, a result which
was taken as indicative of mixed-valence behavior.
Motivated in part by the discovery of superconduc-

tivity in the system BaPb~ „Bi 03, we have un-

dertaken a more detailed investigation of the elec-
tronic structure of these materials.

II. EXPERIMENTAL

Samples consisted of a few large crystals of
these compounds with x =0, 0.25, and 1. (Details
of the crystal-growth procedure will be published
elsewhere. ) The samples were mounted with con-
ducting epoxy cement in sample holders so that the
shiny top surface of the solidified melt was ex-
posed. The holders were introduced into the
preparation chamber of a HP 595QA spectrometer,
which was evacuated until a pressure in the 10
Pa range had been attained. The original sample
surface was then removed with a diamond file.
The progress of this cleaning procedure was fol-

lowed by recording Ba, Bi, C, and 0 core-electron
spectra. Filing was continued until carbon con-
tamination could no longer be detected by x-ray
photoemission spectroscopy. The vacuum in the
preparation chamber gave no evidence of the evo-

lution of oxygen from the sample during this pro-
cedure, indicating that these materials are stable in
vacuum at room temperature.

The 0 1s line showed profound changes in
shape, sharpening, and moving to smaller binding
energy during the cleaning pocedure. The 0-Ba
and 0-Bi ratios decreased significantly as the top
layer was removed, but the Ba-Bi ratio did not
change appreciably, indicating that the air-exposed
surface was partially hydrated. The Ba and Bi
core-electron lines also narrowed and moved to
smaller binding energy as the surface layer was re-
moved.

The data were analyzed by a least-squares pro-
cedure in which lines with the Doniach-Sunjic
shape convolved with the well-established resolu-
tion function, and a calculated background are fit-
ted to the data. The background was taken to be
proportional to the integral of the fitted curve.

III. RESULTS AND DISCUSSION

A. Valence-band spectra

For insight into the electronic structure of these
compounds the valence-band spectra are, of course,
of major interest (see Fig. 1). The prominent
structure near 14 eV is the essentially corelike
Ba 5p spin-orbit doublet. It overlaps the feature
between 8 and 12 eV which arises dominantly from
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there is little Pb 6s character at EF. Data analysis
in this case was complicated by a weak component
at smaller binding energy which was evident even

by inspection. Least-squares analysis placed it 0.85
eV toward smaller binding energy. It is tentatively
identified as divalent Pb in Ba sites. It seems like-

ly that this substitution is responsible for the
broadening of both the Ba and 0 core levels in this
compound.

In BaPb& Bi 03, all core-electron states were
found to be significantly broadened, presumably by
the random occupancy of the 8 site by Pb and Bi.
The effect on the Pb and Bi core-electron spectra
was sufficiently great so that they could not be fit-
ted with the conventional line-shape function.

IV. CONCLUSIONS

The present experiments lead to the conclusion
that the Bi atoms in the two lattice sites of BaBi03

are, electronically, only marginally distinguishable.
The occupancy of a band at FF, identified as being
dominantly of 02p character, is decreased by the
substitution of Pb for Bi. In BaBi03, this band, or
a subband split off by the lattice distortion, is com-
pletely filled, resulting in a semiconductor. The
small difference in binding energy for the two Bi
sites in BaBi03 is then largely a reflection of the
fact that this band makes only a small contribution
to the charge densities at the two inequivalent sites.
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