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We have analyzed the temperature dependence of the electrical conductivity of a series
of metallic samples of Ge:Sb in the temperature range 10 mK to 1 K. We find a tem-
perature dependence that is consistent with a sum of the behaviors predicted by Coulomb
interactions and localization theories. The observed density dependence of the Coulomb
contribution is consistent with theory but its magnitude differs by a factor of up to 4 if
intervalley scattering is neglected. With our fitting procedure the dominant inelastic
scattering process is electron-electron with a density dependence in reasonable agreement
with theory. The magnitude of this scattering is enhanced by a factor of ~2 over the
prediction for weak scattering but is much too small to be properly described by existing

strong-scattering theories.

The transport properties of doped semiconduct-
ors at low temperatures near a metal-insulator
transition have been studied previously.!=¢ A
steep decrease was found? in the resistivity with
decreasing temperature of metallic samples of
Ge:Sb. The temperature dependence seemed to be
In(7) between 0.1 and 1 K, with a magnitude that
became larger as the donor concentration was re-
duced toward n., the density of the metal-insulator
transition. These results, together with the ob-
served negative magnetoresistance, were compared
with effects expected to arise from s-d interactions.
Part of the positive magnetoresistance observed at
lower temperatures was explained within the
framework of the Kondo effect.* Measurements of
the magnetic susceptibility’° and the specific
heat! of similar semiconductors suggested the ex-
istence of localized magnetic moments near #,.
However, these discussions were qualitative because
adjustable parameters were unavoidably involved.

Recently there has been progress in the theory of
disordered materials from two points of view: the
effects of Anderson localization!! !¢ and the ef-
fects of electron-electron interactions.!”~2¢ These
theories predict behaviors different from those of
periodic systems. In one and two dimensions,
these theories can explain the T variation of the
conductivity.?”?® In this paper, we compare these
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new theories with the behavior of three-dimen-
sional (3D) doped Ge and with previous results® in
Si:P and other 3D systems.”’ Within the frame-
work of localization, we shall utilize results related
to the theory of negative magnetoresistance
developed by Kawabata.!> As we show below, the
scaling theory of localization, predicts a positive
correction to the T=0 K conductivity, ¢(0), pro-
portional to T (if weak®® electron-electron scatter-
ing dominates) as opposed to the behavior in
periodic systems of a negative term varying as T
(or higher powers of T for phonon scattering). An
alternative estimate based on localization®® also
yields a positive correction, but of the form T'/3,
From a different point of view, theories'’~!° con-
sidering the Coulomb interactions among electrons
in a random system predict a temperature correc-
tion to o(0) of the form T'/?, with a prefactor that
can change sign as the size of the screening length
varies.

Experimenally, the T variations in Si:P have
been analyzed>® assuming only a contribution from
Coulomb interactions. A negative temperature
correction was found well above n, with an ex-
ponent in the range 0.2—0.7, consistent with the
prediction of a negative T!/% term. The size of the
effect was of the right order, but there remains a
substantial theoretical uncertainty related to inter-
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valley scattering. This “cusp” was found to grow
as n was lowered toward n. and to change sign
very near . in agreement with the expected trend.

In contrast to the negative temperature correc-
tion in Si:P, studies of amorphous Ge;_,Au, al-
loys showed® a positive correction to o(0) for tem-
peratures down to ~1 K. The temperature depen-
dence was found to be consistent with T'/3, al-
though the results appear to be consistent with
T'/2 also.

The temperature correction to o(0) in Ge:Sb,
which seemed to vary? as In(T), is qualitatively
similar to that in Si:P, i.e., the temperature deriva-
tive do /dT becomes large as T goes to zero, and
the size of the correction grows as n is lowered to-
ward n.. Therefore, we have reexamined this ef-
fect in terms of the new theories. A major differ-
ence from the previous analyses of Ge:Sb and Si:P
is that here we include both + T and —T'/? types
of contributions. With this procedure we can
describe the data over a wider T region than earlier
fits in Ge:Sb. We also obtain the first analysis of
the magnitude of the localization contribution.

The temperature dependence of the conductivity
o(T) of a series of samples of Ge:Sb is shown in
Fig. 1. The samples we have measured are charac-
terized by net donor density n, zero-temperature
conductivity ¢(0), and compensation ratio K, as
given in Table I. In Ge:Sb, the critical density,
n.=1.5x10' cm~3, is considerably lower than in
the other systems mentioned above. The values of
o(0) range from near Mott’s o' pp, 17 (@ cm)™!
(Ref. 2) [where o(T) increases with increasing 71
to 0(0)~160,;, (where metallic T dependence is
observed). In the “metallic” cases in Fig. 1 a
small, sharp rise in o(T) can be seen as T—0 and
inverted behavior seen near o,;,. The data for
n=4.8x10" cm~3 (because of the larger K,) fall
near that for n =3.3x 10" cm~3 and are therefore
not shown in Fig. 1. Qualitatively, the magnitude
of K° does not change the temperature dependence
radically.

In Fig. 1, the solid line through the data indi-
cates the region over which the results can be
reasonably described by a T'/? term (e.g., 10— 150
mK for n =3.3%10'7 cm™3). The dashed line
represents a guide to the eye (at higher T) or our
extrapolation to T=0 K. It is important to note
that the region over which the 7''/2 fit can be
made is restricted to much lower temperatures in
Ge:Sb than previously observed®® in Si:P. This re-
stricted region introduces substantial systematic
uncertainty into our analysis and may arise because
of a larger contribution from localization effects.
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FIG. 1. Conductivity of a series of samples of Ge:Sb
as a function of temperature. The curves are labeled
with the net donor density n. In each case the tempera-
ture correction to o(0) can be seen to be of the form T#
with B< 1. The magnitude of this “cusplike” contribu-
tion grows as n decreases (toward the critical density
n.=1.5x10"7 cm~ and reverses sign where o(0) is
near Mott’s 0, The results of our analysis of these
curves are illustrated in Figs. 2—5. The solid curves
through the data are fitted to the form T'/2 the dashed
curves at lower T are extrapolations of this same form,
and the dashed curves at higher T are guides to the eye.

The sample near o,,;,, however, can be fit with
only a T'/? correcion over the entire region shown
in Fig. 1.

Figure 2 shows the temperature dependence of

TABLE I. The Ge:Sb crystals studied in Figs. 1 —5
have the Sb densities #n, T=0 K conductivities o(0), and
compensation ratios K, given here.

n (107 cm™3) o(0) (@ 'ecm™!) Ky (%)
(+5%) (+5%) (+10%)
6.4 114 25
4.8 65 25
33 67 <5
2.6 39.5 20
2,05 317 <5
1.6 7.6 s
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FIG. 2. Detailed analysis of a representative sample
showing o(T) with an expanded scale as a function of T
(linear in T''/?). The dashed line is the simplest fit con-
sidering only the negative T''/? behavior predicted by
Coulomb interactions theories. The variation of the
slope of this line for other samples is shown in Fig. 3.
The dashed-dotted lines are contributions of the same
T'/2 form and of the form T expected from weak
electron-electron scattering within localization theory.
The sum of the dashed-dotted curves is the solid line
which fits a wider range of T than the T'/? curve alone.
The variation of the magnitude of the contribution « T
for all samples is summarized in Fig. 4.

the electrical conductivity o(T) on an expanded
scale for a sample with compensation K, <5%.
The data, at concentration n =3.3% 10'7 cm~3,
have a zero-temperature conductivity o(0)

~ 100 iy, SO that they represent the behavior of a
reasonably good metal. This sample shows
behavior representative of all five “metal-like”
samples we have measured.

Three fits have been made to the data for each
sample and two of these we illustrate in Fig. 2.
All fits were of the general form suggested by
theories of Coulomb interactions and localization
effects in 3D random systems,

o(T)=0(0)+mTP+BT . 1)
Coulomb interaction theory'’~2® gives f=+ and
ks 172
m =S, 277%04614 5 @)

where D is the diffusion constant, and

sin0;  cos?6;

, (3)

Em*

1_1

m, m

6; being the angle between the current and the axis
of the spheroidal energy surface of the ith valley
and v the number of the valleys. The contribution
to A from hole-particle scattering is given’! by

Ahp=3—2F8 4)

where

_vm*
=R f v(ppdp , (5a)
v(p) being the potential of electron-electron in-
teraction. In the right side of Eq. (4), the first
term is the contribution from the exchange correc-
tion, the second is that from the Hartree correc-
tion.

The parameter § is introduced to take into ac-
count®>283! the valley degeneracy v (v=4 for Ge
and 6 for Si), the valley anisotropy and the inter-
valley scattering. We estimate

1 (Ge)

2 (Si), (5b)

based on the number of valleys with symmetric an-
isotropy. Following a more detailed analysis,
Bhatt and Lee?! find

v (no intervalley scattering)
1/v (isotropic valleys)
1 (anisotropic Ge) large intervalley

scattering

—)

% (anisotropic Si)

(5¢)

and intermediate results for scattering between the
large and small limits.

We have obtained the contribution to 4 from the
particle-particle scattering by converting the results
for 2D by Fukuyama?! to 3D and we find

—F (Ge)
—3F (Si),

which we add to 4y,. For v(p), we assume a
screened Coulomb interaction. Within the
Thomas-Fermi approximation F is given>3! by

= Lin(14%),
x
where 7

x =(2kp/k)?

and hence F reduces to 1 when x —0. For the ex-
perimental conditions in Ge:Sb, x is not small and
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the deviation of F from 1 can be considerable.
However, numerical calculations indicate that, if
we apply the random-phase-approximation dielec-
tric function, F is close to 1 (within 5%) for the
electron densities of most of our samples.

The effect of anisotropy on A has been ignored
since we estimate this effect to be less than 15% in
all our Ge:Sb samples. Nevertheless, the anisotro-
py of the effective mass tensor is important for .S,
since Sy =1.85 when the current is along (110) and
So=1 if the anisotropy is neglected. (For Si,
So=1.26 irrespective of the direcion of the
current.) We use

0(0)=2S,ve’DN (0) (8)

to determine D, where the density of states
N(0)=m*kp /217,

The linear term BT in Eq. (1) arises within the
localization theory!? if we assume that the energy
relaxation time 7, is of the form

1/re=cT?, 9)
where the constants B and c are related by
) 172
e c
B=Syv—— |—= 10
2% | D (10

For this case, the constant ¢ can be calculated if
we assume the energy relaxation to be due to
electron-electron scattering, for which 7, is given
by

32

2

ke (11)

V'3te

kT
Ep

#

Te

s
4

where € is the dielectric constant and

’}/=Ep/ﬁ(0p
and (12)
172
o — 4me’n
P m*e

Then we find from Egs. (10)—(12) that we can de-
fine a constant ¢’, independent of n:

3 172 1/3 2
clEcn—5/6=4 lr_ L __V _..___m*kB
4 3T 377'2 ﬁ3\/ ap
=0.17Xx10"° K~2sec™! (Ge)
=0.42%10'° K~2sec™! (Si), (13)

where the Bohr radius ag =#%¢/ m*e? and the car-

rier density 7 is in units of 10'® cm—3,

The fit shown by the dashed line in Fig. 2 is
that suggested by the analysis considering only
Coulomb interaction effects and so has fixed
parameters, as defined by Eq. (1):

B=5, B=0. (14)
Because we wish to emphasize that this 7!/? con-
tribution alone provides a reasonable description of
our results in the limit 7—0 K, we have plotted
the results versus T'/2 in Fig. 2. (The T scale is
linear in T'/2) The good fit is restricted, however,
to T'<150 mK. We shall discuss the magnitude of
the fitted values of m below and in Fig. 3. The
values of o(0) have been discussed previously by
Thomas et al.** The T region to which the fit
here is restricted is smaller than that in Si:P partly
because both the electronic and lattice characteris-
tic energies are lower in Ge than in Si.

The fit shown by the solid line in Fig. 2 is an at-
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FIG. 3. Variation of the magnitude of the T''/?
corrections to o(0) as defined by fits using the equation
in the inset. The results for both Ge:Sb and Si:P on a
logarithmic scale of n are shown along with the critical
densities n. (dashed vertical lines). The solid curves are
the predictions of the Coulomb interaction theory with »
dependence as evaluated in the text and fitted values of
A defined by Eq. (2). The fitted A’s differ from the
theoretical values based on Eqgs. (4)—(6) by 2.6 in Ge:Sb
and by ~ in Si:P.



26 TEMPERATURE-DEPENDENT CONDUCTIVITY OF METALLIC. .. 2117

tempt to include approximately localization effects
arising from electron-electron scattering by consid-
ering finite values of B in Eq. (1).

B=5, B#0. (15)

The fit in this case extends to T about a factor of
4 higher, but is still restricted to 7'<0.5 K. The
fitted values of o(0) are not appreciably affected by
the choice of B, but the values of m are somewhat
larger. The two contributions which are assumed
to obtain the solid line are shown by the dashed-
dotted lines in Fig. 2. The prefactors m and B re-
sulting from this analysis are summarized for all
samples in Figs. 3 and 4.

In the third type of fit to the data, we have used
a variable value of B and set B=0. The value of 8
tends to be smaller if a larger T region is included,
as can be seen qualitatively in Fig. 2, but the fit
becomes worse. The values of ¢(0) are again not
appreciably changed. The results for these fitted
exponents are shown in Fig. 5. The points
represent the best fit values of 3 for the T regions
indicated by solid lines in Fig. 1, while the error
bars show both statistical errors and the variation

of B values when the data at higher T are included.

If the T region above 500 mK is included, a fit
such as this with only one term is not satisfactory
(except for 7=0.16).

Figure 3 summarizes our results based on the
first type of fit, using Eqgs. (1), (2), and (14). The
magnitude of the low-temperature conductivity
correction m is plotted on a linear scale as a func-
tion of n on a logarithmic scale. We have shown
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FIG. 4. Variation of the size of the linear T term as
defined by the inset equation as a function of density.
The solid curve is a fit to the data using a constant ¢’,
defined by Eq. (13), that is larger than theory by a fac-
tor ~2.
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FIG. 5. Best fit exponents as defined by the inset
equation as a function of density. Horizontal line is

=7

the results for Si:P for comparison. The values of
density at the metal-insulator transition are indi-
cated by dashed lines and arrows labeled n, and
have values n, =1.55%10'7 cm~* for Ge:Sb and
n,=3.74x10" cm~3 for Si:P. The comparison
shown in this figure indicates that the size of the
effect is larger in Ge than in Si.

For both materials, a change in sign of m occurs
near n, as can be expected qualitatively” if the
screening wave vector  tends to diverge®* near n,.
The expected size of the T'/? term in Si:P com-
pared to Ge:Sb is also related to the value of k
compared to the Fermi wave vector k. The
Coulomb interaction theories predict in general an
increase in —m with decreasing kr/k. To com-
pare these theories with our results, we have used
free-electron formulas for k and «,

kp=3mn/v)'"? | (16)
k=12mne’m* /(eh’k?) . (17)

In these equations, we have used valley degeneracy
v, effective mass m™*, and dielectric constant €
values given by (v,m*,e€)=(4,0.22m,,15.4) for Ge
and (6,0.33m,,11.4) for Si. As a result of the
difference in these parameters, the value of

x =(2kp/Kk)* which enters the theories is 0.5687 />
for Ge and 0.1627!/3 for Si, where 7 is in units of
10'® cm~3. Because of this larger prefactor, Ge:Sb
has larger values of x, and so smaller values of
—m are expected theoretically for the same values
of D, if intervalley scattering is neglected.! The
theoretical functional dependence of m on n is
given by the solid lines shown in Fig.3; the curve is
fitted to experiment using the constant 4 in Eq. (2)
as a parameter. The fit is satisfactory indicating a
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consistent n dependence between theory and experi-
ment. However, the observation of larger values of
—m in Ge:Sb than in Si:P contradicts the theoreti-
cal expectation. The fitted value of 4 in Si:P is
about % of the theory given above in Egs. (1)—(8)
and in Ge:Sb is about 2.5 times bigger than this
theory. We interpret this disagreement as indicat-
ing that the intervalley scattering should be includ-
ed. Rosenbaum et al,® have reached the same con-
clusion based on magnetoresistance measurements
in Si:P.

Figure 4, together with Fig. 3, summarizes our
results using the second type of fit, illustrated in
Fig. 2 by the dashed-dot lines. In this case we use
Eq. 1 and B:—;— as indicated in the inset to Fig. 4,
but also include the term BT. The resulting values
of —m are larger by about 4 (2 cm K'/?)~! than
those shown in Fig. 3 and the values of ¢(0) are
increased by <1 (Q cm)~!. Both these changes in
the fit can be seen in Fig. 2. The error bars in Fig.
3 have their upper limit determined by —m from
this method and their lower limit set symmetrical-
ly. The observed magnitude of the positive linear
term, given by our values of B, increases with de-
creasing n as shown in Fig. 4. Near n., however,
the value of B drops to zero within the accuracy of
our fit. The systematic uncertainty in our value of
B is subject to the same factors discussed above for
m, but it is larger because of the additional fitting
parameter. We estimate the uncertainty to be
about 20%. The solid line through the data in
Fig. 5 is a fit using ¢’, in Eq. (13), as a parameter;
the dashed line is a guide to the eye. Our value of
¢’ is (0.340.1) X 10, larger by only a factor of
about 2 than the calculation of Quinn and Ferrel
of ¢'=0.17x10° K~ %sec™".

The effects of disorder on 7, have been discussed
by Schmidt® and also by Altshuler and Aronov3®
and by Abrahams et al.* They have found that
the 1/7, due to electron-electron scattering is
enhanced because of disorder and is proportional to
T3/2. This leads to a temperature correction to

132

o(0) of the form

(Sov/41*)e*/h/T/kg)(#/m* D)/ T /Eg)*"*

for small T/E as in our experiment. Using free-
electron formulas for the mean free path

| =#kro(0)/ne?, for the diffusion coefficient
m*D /fi=kgl /3, and for k; and Ep, we have
evaluated this contribution for Ge:Sb. We find a
conductivity that is an order of magnitude larger
than experiment and therefore we have not used
this formulation in our analysis above. However,
the fact that our analysis of the experiment gives a
larger value of 1/7, than the theory may indicate
some effect of disorder on 7.

Figure 5 shows the results of our third type of
fit. Here we use B =0, and 3 as a variable. In
this case both m and o(0) are only slightly
changed from the analysis using 8= % As seen in
I;“ig. 5, the best fit values of B are consistent with
5 (in the low-T limit discussed above) except for
the point very near n, where a slightly smaller
value occurs. The solid line through 8 =—;— is the
prediction of the Coulomb interactions theories
and should be valid for kI >>1. We calculate
kpl=0.0120(0)/7'”? using free-electron theory,
with 7 in units of 10'"® cm~3, Using this equation,
kpl=1 falls at slightly higher n than the sample
n=2.6X10" cm™3, so the theory line is dashed
below this point.

In conclusion, we have compared the tempera-
ture dependence of the conductivity of Ge:Sb with
recent theories of disordered systems. The ob-
served behavior is consistent with additive contri-
butions from both Coulomb interactions and locali-
zation with electron-electron scattering.
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