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The effects of screening in the core-level photoemission spectra of mixed-valence com-

pounds are studied with the use of an Anderson-model formulation. The mixed-valent

ground-state properties and core-hole Green's function are calculated with the use of a
decoupling approximation. The relative weights of peaks corresponding to two different

configurations (f" andf "+') are found to become appreciably different from the ground-

state valence due to shakedown as the hybridization between the localized f-level and

conduction electrons is increased. The discrepancy is estimated to be of the order of
V/Ugf where Udf is the correlation energy between the core hole and f electron, and V

represents the hybridization between f electron and conduction electrons. We also find a
shakedown f"+i peak in this limit. From a comparison of ground-state valence with the

measured intensity of the shake-down peak for Cepdi, the width of the f level due to hy-

bridization is estimated to be of the order of 1 eV, in agreement with a recent resonant

photoemission measurement.

I. INTRODUCTION

Photoemission spectroscopy has proved to be a
very powerful technique with which to study
mixed-valence compounds. Valence-band photo-
emission has been used directly to estimate the po-
sition and width of an f level relative to the Fermi
level, ' and this determination has recently be-
come more unambiguous through the use of
resonant photoemission. ' X-ray photoemission
from core levels of rare-earth compounds, 3d and
4d levels in particular, shows "fingerprint" multi-

plet structures resulting from different electronic
configurations, and, in the case of mixed-valence
compounds, two structures corresponding to f"
and f"+' configurations may often be seen in the
spectra. ' The appearance of these structures was

believed to be one of the clear tests to determine
whether a particular compound is mixed valent or
not. However, it was realized by many workers
that the core-level x-ray photoemission spectros-

copy (XPS) data may not reflect the initial-state
configuration directly because of the strong distur-
bance a core hole makes on the system, and that
final-state effects may play an important role. In
fact, it has been known for some time that the
core-level spectra of some lanthanide compounds

contain so-called "shake-up" and "shake-down"
peaks as a result of final-state interaction. '

The final-state effect in the core-level photoemis-
sion spectra, especially in mixed-valence com-
pounds, has become even more interesting in view
of a recent suggestion by Wohlleben that there ex-

ist no tetravalent Ce compounds. Available XPS
core-level data on some of the standard "tetra-
valent" Ce compounds, ' at first sight, seem to
support this suggestion. For example, the 3d
core-level XPS spectra of CeRh3, which was be-
lieved to be of the f configuration in the ground
state, shows a structure corresponding to the f '

configuration. Whether this is due to the final-
state effect of a core hole or whether the f ' config-
uration really exists in the ground state still
remains open to discussion. To settle this issue we
need a better understanding of final-state effects in
mixed-valent systems. In this paper, we report an
investigation of these effects and, in particular, of
the effects of screening on the core-level photo-
emission spectra of metallic mixed-valent com-
pounds.

Screening in the core-level spectra of metals is
an interesting problem in itself, apart from the
question of the mixed valency, and has been stud-
ied actively. Toyozawa and Kotani" (TK) intro-

2085



2086 S.-J. OH AND S. DONIACH

duced an Anderson-model picture in which a local
d level is unoccupied in the ground state (i.e., is
above the Fermi level) but becomes "pulled down"
below the Fermi level by the core-hole potential, so
that there is a finite probability of the d level

becoming occupied in the final state. The analysis
of this model was later extended by Schonhammer
and Gunnarsson' (SG). In a more detailed calcu-
lation, Lang and Williams' showed how the
screening of a core hole by occupation of a local-
ized level for a simple jellium situation could lead
to a lower final-state energy than screening by im-
age charges (plasmons). Gadzuk and Doniach'
discussed the effect of this competition on the
final-state probability distribution through the use

of a very simplified model (see also Hussain and
Newns").

In the Anderson-type model, the empty screen-

ing level
~ P; ) (which we will think of as an f lev-

el) is basically characterized by its position e~ rela-
tive to the Fermi level E~ and its coupling to the
delocalized conduction-band electrons. The f-level
energy eI is above E~ in the initial state, but the
Coulomb interaction of a core hole pulls it below

EF in the final state. The total energy of the final
state will thus be lowered if an electron is
transferred from E~ to the screening level

~ P; ).
The probability of transferring an electron to the
screening level

~ P; ) becomes bigger as the cou-

pling of
~ P; ) to the conduction band is increased,

hence, transferring spectral weight from the "un-
screened" peak having unoccupied

~ P; ) to the
"well-screened" peak with occupied

~ P; ). There
seems to be experimental support for the usefulness
of this picture. Fuggle et al. ' observed that the
intensity of the so-called well-screened peak com-
pared to the unscreened peak descreases as the de-

gree of localization of
~ P; ) is increased for a large

class of transition-metal and rare-earth compounds.
In mixed-valent compounds the f level is close

to the Fermi level, so that its occupation may be
expected to change on removal of a core electron
leading to the above localized screening effect.
However, in contrast to the situation discussed by
earlier authors, the mixing of the occupancy of the

f level in the initial ground state cannot be neglect-
ed since we are interested in the mixed-valent case.
Hence, the spectral weight of final states of various
occupancy results partly from the mixing of occu-
pancies in the initial state and partly from differ-
ing occupancy in final states, depending on the ef-
fectiveness of the above screening mechanism.

To deal with this situation, we have extended the
relaxation calculations of TK and SG to the case

where the initial state combines occupied and
unoccupimi configurations for the localized f level.
In order to work in a regime (Vk~ & UIy) close to
the atomic limit, of relevance to rare-earth materi-
als, our calculations are based on a Green's-func-
tion decoupling method introduced by Hewson' to
discuss the localized impurity problem in which
the atomic limit (Vk~~O) is treated exactly.
Nevertheless, this technique involves an uncon-
trolled approximation (originally introduced in this
context by Hubbard' ), so the results may only be
used to provide a qualitative guide to the physics
involved.

II. MODEL AND BASIC FORMALISM

A. Anderson Hamiltonian and Green's function

The model Hamiltonian we use is a single-
impurity Anderson-type Hamiltonian described by

II —Ednd +[Ef+ U4f ( 1 1ld )]g Bf + g Ekilk
n k

+ Ufflif nf + g Vkf(Qk Qf +gap ), (1)
k, a

where ed is the energy of the rare-earth core level
(3d or 4d level), e& is the energy of the 4f level
which couples to the 5d 6s conduction electrons via
the hybridization Vk~. Uyy is the intra-atomic
Coulomb repulsion between two 4f electrons and

Ugf ( & 0), the Coulomb attraction between the core
hole and the localized 4f level, which is responsible
for the pulling down of the 4f energy level in the
final state. o represents the spin index.

The "effective" f-electron energy levels in the
initial and final states of the Hamiltonian (1) are
schematically shown in Fig. I. This Hamiltonian
was used by TK and SG to study the relaxation of
a core hole in metals with an unoccupied valence
level. The same Hamiltonian with nd ——I is also
commonly used to model the ground-state
valence-band electronic structures of mixed-valence
materials. Through the use of a single-impurity
model, we neglect the effects of the periodic lattice
structure of mixed-valence compounds, but since
the core-level photoionization is essentially a local
event, we believe this will not change the basic
physics of the problem. A more serious defect of
this model to describe photoemission of real
mixed-valence compounds such as CePd3 may be
the neglect of 14-fold degeneracy of the 4f level.
We plan to look into this aspect of the problem in
the future.
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FIG. 2. Possible virtual transitions (shake-up and
shake-down) near the atomic limit.

FIG. l. "Effective" energy-level diagrams of f levels
in the initial and final states.

In x-ray photoemission spectra, the photoelec-
tron current is proportional to the imaginary part
of the Fourier transform of the retarded core-hole
Green's function' '

Ggg(t) = ((a~(t);a~(0) ))

iB(t)—({a~(t),a~(0)] ),
where ( ) represents the ground-state expectation
value, { ( the anticommutator, and a~(t) is a
Heisenberg operator. If we assume no interaction
between outgoing photoelectrons and the solid left
behind, the cross section can be written as

do. 21 ImG~~«k-
dco 8E'k

(2)

1 —g (ng )+(nf nf )
G~(co) =

g((fy ) —(ny ny ))
+

a) —eg+ U@.

(nt n~ )+
co —eg+2U@

where G~(co) is the Fourier. transform of G~~(t),
M the photoemission matrix element, fico~ the in-
cident photon energy, and ek the outgoing pho-
toelectron energy.

To gain some physical insight into the problem,
we start by looking at the atomic limit Vk~ ——0 but
assume we have an initial wave function which
mixes all three configurations nt =1,2,3 of f occu-
pancy. Since Vk~ ——0, there will be no change of
occupancy on going to the final state and we see
that

giving rise to three photoemission lines whose
weight exactly measures the ground-state valency.
This is the "spectator-hole" liriait which has often
been used in the interpretation of XPS data for
mixed-valence materials.

In order to give a physical picture of the calcula-
tions which follow, we now consider what happens
for very small but finite Vkt. The initial state is a
mixture of four atomic limit states

I
fo&=

I
ng=1 nt =0& co=0

I 1p) )=
I

ng=l nf~ —1) IE) —Ef

) =
I
ng= lynf =2) y e2=2ef+ Uff

while the final-state atomic limit configurations
and energies are

I
go&= I

no=0, n& 0& e——o= —&a

I l(t ) =
I
na O, ny =1)——,

e t = —Eg+ eJ +'Ugy,

142) I nd 0 nf
ep ———eg+2et+2Ug+ Uyg .

If Vkf is very small, the system will spend quite
long periods of time in each of the initial configu-
rations, following the Heisenberg uncertainty prin-
ciple, so that an incoming x-ray photon may catch,
temporarily, the system in one of the four configu-
rations listed above [Eq. (5)]. On ejection of a
photoelectron, a transition to the final states with
different f occupancy is possible, so we may expect
in general to see spectral features corresponding to
seven different "transition energies" in the first or-
der of Vkt (see Fig. 2):
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Eoo =~o—ao =kd

Eoi =&o—&i =&d —&f—Udf

Eio ='Ei —&o=~d+&f

which vary as a power of Vkf, hence are increas-
ingly weak in this limit. As Vkf increases, the
above transitions will broaden and merge together
into a general continuum, so this classification be-
comes less useful.

~f 2Udf Uff &

E21=~g—+1 =Cd+ Ej —Udf+ Uff

+22 ~2 +2 ~d 2Udf '

Of course, these represent virtual transitions since
the exact eigenstates of Eq. (1) will lead generally
to a transition between a unique ground state
{nd ——1) and a continuum of excited states (nd =0).
However, the above atomic limit transitions should
become increasingly well defined as Vkf ~0 so
that they will define possible excitation energies at
which the continuum should show enhanced
features, albeit with spectral weights, some of

B. Decoupling approximation

We calculate the Green's function Gdd(co) by the
equation-of-motion method' '

i—Gdd(t) =5(t) —iB(t)(I [ad(t), H],ad J )
Bt

whose Fourier transform gives

coGdd(co) = 1+(( [ad,H];ad ))~ .

(8)

Through the use of the model Hamiltonian of Eq.
(1), we can evaluate these commutators and get the
following equations of motion:

(to kd)Gdd(ted—)=1—Udf g ((adnf, ad))„,

(to Ed+ Udf )((odnf od )) = (nf ) Udf ((odnf nf od ))

—Q Ikf(«adakaf'. ,Od'» +«adokaf ad»»

(10)

(co kd+2U—df)((adnf nf, ad)) =(nf nf ) g Ikf( ((odnf 'ak 'af ' ad))
k, cr'

+((a„nf 'ok 'of ' ad))„), (12)

where (nf ), (nf nf ) are ground-state expectation values, and the operator identity nf nf is used. —
The higher-order Green's functions on the right-hand sides of Eqs. (11) and (12) cannot be expressed in

terms of the lower-order Green's functions, and their equations of motion lead to still higher-order Green's
functions, which do not form a closed set of equations. In order to proceed, we follow Hubbard, 's

Hewson, ' and Hewson and Zuckerman '
by decoupling the k, k' electrons from d hole and f electron in the

higher-order Green's functions resulting at the next level of the equations of motion in the following way:

((adak ~k,'ad ))„=(akaA )Gdd(to) =5kk B(ks k)Gdd(to), —~ '

«adak~k o,od &&„=&ok ak )Gdd(to) =5kk B(kI k)Gdd(to), —, ~ f

«adok' cr k of a fo d»;— &ok —ak. &« dof—Hf ad». =o-' s '

((adak Ak nf, ad )) =(a'k Hk ) ((adnf, ad )) =5kk B(k~ —k)((adnf Od ))

«adak' Ak Oft ood»—.=&Ok w—k &«adof of od».=o-
«odak' cr kHf Hf ad—» &ak—' Ak &«od—af n —f ad»—
((adak~k nf, ad ))„=(ak~k ) ((adnf, ad ))„=5kI,B(ky k)((adnf, ad ))„,—~ t

((Odak' ~kgb ~f,ad ))„=(ak ak ) ((adaf ~fg Od )) —0

%'e have used here the fact that for a nondegenerate ground state with definite total z component of spin,
we have expectation values
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&ak'rrakrr) (akrrak'rr) ~kk'e(kF

(ak ak )=(ak ak )=0, &ak Hk )=(ak ak )=0,
in the lowest-order approximation.

This method of decoupling preserves intact all the Green's functions that involve the correlation energy

U@ between the core hole and f electron and Uff between two f electrons, and makes an approximation of
order Vkf. Physically, this approximation fits nicely with the rare-earth mixed-valence compounds, where
the parameters U@, Uff (of order 10 eV) are much larger than Vif (of order 1 eV). Therefore, the effects of
correlations are expected to be much more important than the hybridization. After some algebra, this
decoupling scheme gives the following closed expression for Gdd(co):

1 61 [ (11f1+ilf1) IIkf 11fk 262( ( nf1nf1 ) 2)]
6~(co)= (15)

m —Eoo —2Ao)G )

where

Udf
GI ——

+11 (~01+A01 A12+2A1262)

62 ——
a) —E22 —2X)2

1 1
~01 g Vkf +—~k —Eoi +~k —Eio

1 1
&12= Q Vif +—Ek —E» +~1 —E»

1 1
A01= g Vif +—~k —Eo& + ~k —E&o

C. Ground-state calculations

As we can see from the above expression for
Gdd(co), we now need the ground-state expectation
values for (nf ), (nf nf ), (ak af ),
(ak~f ), (ak~nf ~f ), and (ak nf af ). The
expectation values can be expressed in terms of
various Green's functions via the Lehmann repre-
sentation as follows:

(nf~) = — I ImGff(co)dco,
s

(16)

1 p
(nf nf )= —— ImI'ff(co)dco,

(Qk~f rr ) = — f 1mGfk (CO )dCO,

A12= X Vkf
k gk~

ko

1 1+~—ek —E» ~+ok —E»

(ak~f ) —(ak nf af )
—&k —Eoi

(ak~f ) =— ImGkf(co)dco,
1 p

P
(ak nf Qf ) =—— Iml"fk(co)dco, (20)

(Qkznf ~af~ )
+

CO —kk —E12

(ak af ) —(ak nf af )

+&k —Eto

& akrrnf rrafrr )—+
N +E'k —E2]

,
(ak~nf Af~ ) (ak~nf Af~)——

="2=+ Vkf
' +

~k +12 ~+~k +21

This result gives the correct limiting form Eq. (4)
as Vkf ~0. It may be seen that our principal re-
sult, Eq. (15), contains denominators which lead to
enhancement of the spectrum at the virtual transi-

tion energies [Eq. (7)] as discussed above.

(ak nf ~f ) =— ImI'kf(co)dco, (2

where p is the chemical potential (the Fermi ener-

gy EF in this case). Equations (18)—(20) result
from an assumption that

and are not generally true.
The above Green's functions are defined as

Gff(~) =—&(Qf.,a,' ))„,
Gfk(CO)

—= «Qf. ,ak ))

Gkj (~)=&(ak,af.))—
I'ff(CO)=((af nf,'af ))„,
I fk ( CO ) —« Qfrrn f Q k ~ ))~

I kf(~)=—&&Qk nf
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To get these Green's functions GJf(co), Gfk(co),
I ff(co), I fk(co) in the ground state, we again use
the equation-of-motion method, this time in the
absence of the core hole [n~ ——1 in Eq. (1)] so that
the U@ term does not enter. We follow the same

decoupling scheme as in Eq. (13), leading to
neglect of correlations between k, k' states and f
states. This decoupling scheme was used by
Hewson and Zuckermann ' in studying the
ground-state properties of the Anderson-model
Hamiltonian, and they showed that it gives a non-

magnetic ground state. In addition, this decou-

pling scheme is consistent with the assumptions

[Eq. (22)] used above.
This approximation gives the following simple

expressions for the Green's functions:

where

2

Xo(co)= g
&k'

(27)

We note that Gkf (co) =Gfk(co) and
rkf(co)=rfk(co) as assumed above.

The density of states of the f level in this ap-
proximation gives a very intuitive interpretation.

pf(E) = ——ImGff(E)

(1—(nf ~) )6
(E ef A—) +—5

)~
+

(E ef Uf—j A—) +5—

Gkf(co) =Gfk(co) =

rkf(co) =I fk(co) =

1 —(nf )
Gfj(co)=

co ef ——+o(co )

(nf )
+

co Ef Uff Xo(co )

~kf crGjj(co),—~k

(nf )
co Ef Uff +Q(co)

Vyk rff(~),
CO —6k

(23)

(24)

(26)

(28)

where we have set

Xo(co) =A(co) i b (co)—. (29)

This simply describes the two f levels ef and

Ef+ Uff broadened and shifted due to the mixing
potential V~k. The respective spectral weights de-
pend on the occupation number of the opposite
spin state.

The ground-state expectation values given by
Eqs. (23)—(27) are

(nf )=(1(nf ~)) f dco+(nf ) f dco
(co —ef —A) +b, ~ — (co —ef Uff A) +b,

(nf nf ) =(nf )—f dco
(co —kf —Uff —A) +6

&uk'. & = —&~k~f. &

«k —ef —A) ~fk ~ dco=(1—(nj ) ) 8( —ek ) Vjk + f I'
(ek —ef A) +b, ~ — —(co—ek) (co ef —A—) +5
(ek ef Uff —A—)—

+& f .& e(-")Ifk
(ek —ef —Uff A) +b—

I'fk fI dco

(co—&k) (co kf Uff—A—) +5—
(ek —ef —Uff —A)

(+konf onfcr) = —(cckcrnf—n~fe )= (nf u) I fk e(——ek )—
(kk —ef —Ufj —A) +b,

(30)

1 f& + dco

(co —&k) (co ef Uff A) +jk— — —

where P(1/co —ek) represents the principal value, 8 is the conduction-band width, and we used the fact that
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b,(t0)=0 outside B. The f level occupation number (nf ) is, in general, given by the self-consistent solution
of two simultaneous equations generated by Eq. (30) for (nf, ) and (nf, ). In this case, however, we have
only one simple algebraic equation to solve since it is known that it has only a nonmagnetic solution

(nf, ) = (nf? ). Equation (15), together with these ground-state expectation values, gives Gqq(to) in this
decoupling approximation.

III. RESULTS AND DISCUSSION

We now apply these results to some cases of interest. We set Uff =6 eV and U~f = —10 eV correspond-
ing to the values obtained from XPS data on Ce compounds by Lasser et al. We also assume Vkf V for-
simplicity. Following SG,' we consider a half-filled semielliptical metal band of width B, whose density of
states is given by

p(e)= — (B e) i— (31)

Then the real and imaginary parts of the self-energy Eq. (29}can be computed from the relation

2
x+(x' —B')'" if x g9
2x . 2i (B —x—) if B&x &B—?? (x+ek)

2

x —(x —B )
2 21/2 lf x&

which gives

A(co) = c0, b(to) = (B —t0 )
2 2 i'

Jp2 g2

(32)

for —B & co &B (within the conduction band).
We also include the lifetime of a core hole by

substituting e~ ?y in place of eq—in the above for-
mulas in order to mimic the effect of lifetime
broadening due to residual Coulomb interactions
such as Auger processes. Mathematically this also
prevents the integrals from diverging. We set
B=3 eV and y=0. 3 eV in the following calcula-
tions, and we smoothed out the curves in the fig-
ures by convoluting them with a Lorentzian
broadening function of half-width 0.1 eV.

Unfortunately, we find that for Vkf & 0.5 eV,
ImG~(c0) starts to go negative for a certain range
of cu values, indicating that the decoupling approx-
imation does not conserve probability at each value
of a?. However, in each of the cases presented
below (for Vkf up to 0.9 eV) we integrated out the
total area under all the peaks as a consistency
check, and found it always comes out very close to
unity, indicating that the calculation preserves pro-
bability overall and may be expected to give a

I

reasonable estimate of the transfer of spectral
weight between the various peaks without adding
spurious unphysical peaks.

In Fig. 3, we show the calculated core-level spec-
tra for the case of ef =1.5 eV corresponding to
(nf ) &0.12 (depending on V), i.e., an initially al-
most empty f state. As we increase V from 0.1 to
0.9 ( U@ =—10 eV, Uff ——6 eV), we see that the
well-screened peak (f"+' configuration) at

8.5 eV grows as Vis increased, just as SQ
observed. However, the parameters here are such
that the unscreened peak is still much stronger.

The mixed-valence case with initial valence 0.5
is shown in Fig. 4 for values of V from 0.1 to 0.9
(again U@ =—10 eV, Uff ——6 eV). In these curves,
the parameter ef is varied for each V to find the
value for which

g((nf ) (nf?nf?) }=0.5,

((nf, nf, ) is in fact negligible for the present
cases. ) We see that for large V(V=0.7, 0.9} a new
peak at about 13.5 eV begins to show up. We as-
sign this new peak to a shake-down structure with
a f"+ final state. This comes about because the
effective energy level of the spin-up f electron
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FIG. 3. A series of core-level spectra with e~ ——&.5,
V~&

——6.0, U@ ———10.0, 8 =3.Q as V is increased from
0.1 to 0.9. We see the growth of the well-screened peak
at about 8.5 eV. Initial values of (n~) are (0.01 for
V=0. 1 and 0.3, and 0.04, 0.08, 0.12 for V=0.5, 0.7,
0.9, respectively.

when the spin-down f level is occupied is

ep+U~q+Uy~ (about 3.7 eV in the case of V=O. 9)
below the Fermi level as shown in Fig. 1, so thai
the system gains more energy by occupying both f
levels. As V is increased, we also see the transfer
of spectral weight from the unscreened peak (f )

to the well-screened peak (f',f ). In Fig. 5 we
plot the relative weight of each peak as V is varied.
As may be seen, the well-screened peak gains spec-
tral weight with increasing V. The shake-down ef-
fect gives a discrepancy of order 0.1 in the esti-
mate of the ground-state valence from the core-
level photoemission in the strongest hybridization
case we have looked at ( V=O. 9) with the present
parameters U@ ———10 eV, and U~~

——6 eV.
The fact that the shake-down effect is relatively

V«
I Udf I

c»
stood qualitatively by considering the zero-
bandwidth limit (8=0). In this simple case of two
states with hybridization V between them, we have
the initial ground-state wave function g; with

&~~) =O.5,

(
I nI ——0) —

I n~ = I ) ) .
2

(Here we neglect the contribution of the
I n~ ——2)

state, since it is of higher order in V than ihe one

I
I I I I I I
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FIG. 5. Areas under the f,f',f' peaks in Fig. 4 as
the hybridization is increased from V=0. 1 to 0.9. Ini-
tial ground-state valence is 0.5, indicated by the dashed
line.

F I NAL PHOTOELECTRON ENERGY

FIG. 4. Core-level spectra for the mixed-valence case.
Pa,rameters are Uyy ——6.0, U@.———10.0, 8=3.0 as be-

fore, and e~ is adjusted to V to give the initial valence of
0.5. Values of e~ are 0.0038, 0.034, 0.091, 0.172, and
0.27 for V=0. 1, 0.3, 0.5, 0.7, and 0.9, respectively. Fi-
nal photoelectron energy is measured relative to the un-

screened peak, i.e., eq =fico~
I Ed

I
. Th—e dip around 1

eV is an artifact of the decoupling approximation, and is
not real.
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being considered. )

In the final state, the unscreened state with a
predominantly

~
n/=0) component has wave func.

tion f/

n/=0) —
I nf 1)vZV

Ud)

Since the intensity of this peak in the photoemis-
sion spectra is given by the square of its overlap
with the ground-state wave function, we gr t the in-
tensity of the unscreened peak equal to
(I/v 2+ V/Ud/) . Hence, we see that the shake-
down effect, in the lowest order in V, is of the or-
der of

~
V/U~/

~

. For the parameters considered
with V=0.9, this gives

~
V/U~f

~

=1/10=0. 1, as
observed in Fig. 5.

Similar trends in shift of spectral weight are ob-
served in other values of initial valence (n/). In
Fig. 6 are shown the relative weights of thef,f ',f peaks for the cases of (n/) =0.1 and 0.9
as the hybridization is increased from V=0. 1 to
0.9. The qualitative trend of the s'hift of spectral
weight from the unscreened peak to the screened
peak is again evident, but we note that in the case
of (n ) =0.9 the shift i;. primarily from the f ' to
the f peak rather than from the f to the f' peak.
In general, the amoun't of spectral weight transfer
from the f" to the f"+' peak will not be the same
as that from the f" ' ' to the f"+ peak.

I-
~ 0.75—

UJ

0.5

I-

UJ 0.25—
Ct

~ 075—

LU

0.5—

~ 0.25—
Ct

&n) ) = 0.1

f peak

I I l

0.1 0.3 0.5 0.7 0.9 (eV)
V {hybridization)

&n)& = 0.9

f peak

f peak

0.1 0.3 0.5 0.7 0.9 {eV)
V {hybridization)

IV. CONCLUDING REMARKS

From the measured ratio of intensities for final
f" and f"+' states in CePd3 XPS data, we should
deduce a ground-state valence of 3.1 in the
spectator-hole limit. However, other data (e.g.,
lattice constant) indicate that the CePd3 ground-
state valence is of order 3.4.~3 From Fig. 5, it may
be scen that at V«of order 0.9 eV, the apparent
f occupation number is reduced from a ground-
state value of 0.5 to an apparent value of 0.4. It
seems likely that, on extrapolation of the curve in
F'ig. 5, a value of V/q -—1.5 eV would be sufficient
to resolve the above apparent discrepancy. This
would be in rough agreement with resonant photo-
ernission data. However, our calculation can only
be taken in a qualitative sense at such large values
of Vk/. Our principal conclusion, therefore, is that
observed final-state effects require a much stronger
k fhybridization than-the —10 meV believed

some years ago. Hence, the hybridization is strong
enough that a simple "atomic limit" estimate of

FIG. 6. Spectral weights of fo,f ',f' peaks for the
cases of initial valence (nj ) =0.1 and 0.9 as a function
of hybridization. Parameters are the same as in Fig. 4,
except that e~ is varied to give the desired initial
ground-state valence.

the ground-state valence using XPS and neglecting
final-state effects is unreliable.

Note added in proof

For the case of Celh3 mentioned in the Intro-
duction, the intensity of the f ' peak in the core-
level XPS spectra' is too strong to be consistent
with the tetravalent ground-state configuration and
our estimate of the final-state screening effect, un-

less the hybridization is anomalously strong.
Therefore it is likely that CeRh3, and some other
standard "tetravalent" Ce compounds with similar
XPS spectra (e.g., CeRu2, CeCoz), are in fact



2094 S.-J. OH AND S. DONIACH

mixed-valent, not tetravalent as previously believed.
This conclusion is supported by recent resonant
valence-band photoemission studies.

The fact that screening effect is more important
as V is increased has been confirmed by the x-ray
absorption edge measurement on Tm and Ce com-
pounds. Bianconi et a/. ' found that for Tm
compounds, where V is small, the valence deduced
from the x-ray edge structure is in good agreement
with other estimates (e.g. , volume or magnetic mo-

ment), while for Ce compounds the two valence es-
timates give some discrepancies. This is consistent
with our main conclusion that for small V a simple
"spectator-hole" limit estimate using XPS core-

level spectra may be reasonable, but for larger V
the effect of screening has to be taken into ac-
count.
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