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Study of the electronic structure of twelve alkali halide crystals
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In this manuscript we use nonrelativistic self-consistent Hartree-Fock theory to com-

pute the electronic structure of twelve alkali halides. Only compounds containing Cs or I
are excluded because the author believes that relativistic effects should be included for
such compounds. Correlation effects are included by our previously developed methods.
The calculations are performed to compare to photoemission-type data. Extensive com-
parisons to such data are made. In this calculation a new version of the local-orbitals

theory is used, and the bands are computed with the use of a modern development of the
mixed-basis method.

I. INTRODUCTION

Although lacking the intense technological in-
terest of the compound or elemental semiconduct-
ors, the alkali halides have been of intense scientif-
ic interest. This is due to their utility as targets in
scintillation detectors, for example, and as proto-
type systems for the development of theoretical
models and experimental techniques. The alkali
halides consist of the twenty compounds of the al-
kalies Li, Na, K, Rb, and Cs and the halogens F,
Cl, Br, and I. The generic alkali halide may be
symbolized as MX. These systems are highly ionic
in nature as seen from either cohesive energies and
elastic constants' or the Phillips ionicity scale, and
all form in the double interpenetrating fcc crystal
structure (rocksalt or NaC1 structure). It is noted
that for CsCl, CsBr, and CsI, the simple cubic
structure is the stable phase at STP and the rock-
salt modification occurs only at elevated pressures.
In this manuscript I concentrate on twelve of these
compounds. That is, I exclude the compounds
containing Cs or I. This is done because I employ
a nonrelativistic theory, and relativistic modifica-
tions for such Cs or I containing compounds can
modify valence or conduction levels by 1 eV or
more, an unacceptable error at this point. Thus
here we consider LiF, LiCl, LiBr, NaF, NaC1,
NaBr, KF, KC1, KBr, RbF, RbC1, and RbBr.

Due to the prototype nature of the MX systems,
many band-structure calculations exist for these
systems. However, the vast majority of such cal-
culations are not self-consistent, and furthermore,
most techniques employed have been for only one
or two materials in the sequence, making identifi-
cation of trends impossible. The only exception to
this has been the series of studies performed by the

author over a decade ago. This study was not
self-consistent and included all except the simple
cubic MX crystals. This study employed a Slater
exchange-correlation potential and a crude self-

interaction correction. Basically these results were

in good accord with other non-self-consistent cal-
culations for the same systems. Several definite
trends emerged from such studies. These were that
band gaps were usually 2 —4 eV smaller than ex-

periment and the valence-band widths were narrow
(-O.S eV for RbX, 0.67 eV for KX, 1.2 eV for
NaX, 2 eV for LiX). The narrow valence widths

accorded well with the common prejudices of this

period.
Potentially more accurate self-consistent tech-

niques were first introduced for KC1 by DeCicco.
In this calculation the Slater exchange was em-

ployed and predicted a band gap of 6.2 eV and a
valence width of 0.67 eV. Later self-consistent cal-
culations were by the author and Lipari for LiCl,
LiBr, NaCl, NaBr, and KCl, and by Mickish and
the author for LiF. These studies employed a
Hartree-Pock (HF) formalism which overestimates
the band gap by -8 ev or so. Correlation correc-
tions were incorporated which reduced the gap er-
ror to about 1 eV or less. More recent self-
consistent studies for the MX's include LiF by
Euwema et al. , LiF by Brenner employing
Hartree-Pock methods, LiF, LiC1, NaF NaC1, KF,
and KC1 by Perrot' using an approximate
Hartree-Fock with a muffin-tin approximation to
Coulomb and exchange integrals and correlation
corrections, and. for LiF by Zunger and Freeman"
employing local density plus corrections for the
exchange-correlation potential and for relaxation
and self-interaction corrections.

The early work of Lipari and Kunz used a
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primitive version of the mixed-basis (MB) method,
and likely an inadequate number of plane waves
were included to guarantee convergence of the
valence levels. The study by Perrot' is not truly
self-consistent, and the muffin-tin effects in ionic
crystals are capable of inducing 1 eV or greater er-
rors in conduction levels. ' The other cited self-
consistent studies are, to my belief, accurate repre-
sentations of their methodology.

The one striking feature of the Hartree-Pock
method calculation is width of the valence bands
(3—8 eV), in stark contrast with the older studies.
These findings were not without basis, however,
since older x-ray emission data of O' Brien and
Skinner' had suggested such widths were to be ex-
pected. Unfortunately, at the time when most
work was being expended on the MX system. ,
photoemission data was unavailable. Recent
photoemission data substantiates the idea of wide
valence bands (3—4 eV) for MX systems' and also
using angular resolved techniques provides evi-
dence of the conduction-band structures as well. I
believe it is therefore timely to present a series of
studies on the MX's which incorporates recent
technology into the calculations and is compared
with the recent photoemission data, optical data,
and other high-quality calculations.

In the next section. the techniques employed are
discussed. In Sec. III, the results are presented,
and comparisons of these results to other theory
and experiment is given. Finally, conclusions are
given in Sec. IV.

4 =(n!) ' Det[P;(x;)] . (3)

The one-electron orbitals are constrained to be
orthonormal and eigenstates of the z component of
spin (Pauli a or P dependence) and all pertinent
crystal symmetry operations. In these cases such
restrictions do not affect energy minimization for
the ground state. If the P's are chosen, optimally,
one obtains the canonical RHF equation, defining
the P's

FP;(k, x;)=e;(k)P;(k, x;),
where

(4)

2 Zre ~1 ~l
F R ~2 ~ PJ P(x, )d2m, Ir R

I

—e p(x, x')/I r —r' IP(x', x),

H% (x), . . . , x„}=E4 (x), . . . , x„), (2)

for all relevant o, and n,, but such is impossible for
extended systems, and a series of systematic ap-
proximations is necessary. My approach is to em-

ploy the Hartree-Fock method and then to correct
it in a potentially systematic way. For the MX's in
the ground state, one has filled shells, and hence
the restricted or the unrestricted Hartree-Fock
method (RHF or UHF) has the same solutions
when iterated to self-consistence, and either solu-
tion is isomorphic with a Heitler-London (valence-
bond) solution. ' Therefore one approximates 0'
by

II. THE THEORETICAL APPROACH
and

p(x, x')= ggP;(k, x)P;(k, x') . (6)

One begins with the usual nonrelativistic Hamil-
tonian for the "infinite" solid after making the
Born-Oppenheimer approximation. In this case, H
1s

ll

+2
2

In Eq. (1), one uses lower case letters to signify
electron properties and upper case letters to signify
nuclear properties. The mass of the electron is m,
its charge magnitude e, and its position r;. If spin
dependence were needed, then x; would be the po-
sition spin coordinate. The nuclear charge at site I
is Zz, and the coordinate is RI.

Ideally one wishes to solve, exactly,

In Eq. (5), P is the operator which replaces coordi-
nate x with x, and in Eq. (6) the sum is over all
occupied orbitals [i.e., those contained in the deter-
minant in Eq. (3)]. Other solutions to Eq. (4) not
contained in the trial wave function are termed vir-
tual orbitals. In the context of Koopmans's
theorem, the eigenvalue of an occupied orbital
e;(k } is the negative of the energy needed to re-
move that electron from the crystal, and the eigen-
value e, (k) for a virtual orbital is the negative of
the energy gained by adding an electron to the sys-
tem. "

In this context it is noted rigorously that the vir-
tual eigenvalues represent a transition from an n-
electron system to an (n + 1}-electron system,
whereas the occupied represent a transition from
an n-electron system to an (n —1)-electron system.
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This is because the Fock equation for occupied or-
bitals rigorously excludes the electron's self-
interaction and that equation for the virtual orbi-
tals includes the interaction of the virtual electron
with the entire n electrons in the ground state.
Therefore, energy differences between occupied and
virtual levels do not truly represent excitation ener-

gies of the system unless the self-interaction term
is negligible. This is reasonable as long as the
transition is from an occupied Bloch function to a
virtual Bloch function so that the size of the
neglected term goes as X ', X being the number
of unit cells in the crystal.

It is clear from Eq. (5) that the Fock operator is
a unique functional of the first-order density ma-
trix p. It is also clear from Eq. (6) that p depends
upon all occupied orbitals. In principle, the k is a
three-dimensional vector spanning the first Bril-
louin zone in the zone scheme used here. There
are therefore an infinite number of points to be
considered in forming p. Conventionally one uses
a numerical quadrature in obtaining p over a
three-dimensional mesh in k space. Used careful-

ly, such a procedure is accurate and acceptable. It
is also unnecessary for closed-shell systems. One
may exploit the isomorphism of the Bloch with the
valence-bond picture and rotate into a system of
local orbitals. The basic techniques have been
developed by Adams, ' Gilbert, ' and the author. '

This one solves the alternate equation

n&

p„= g P;(x —R„)P;(x —R„) . (12)

In Eq. (12) only occupied orbitals at site A are in-

cluded. One has

Pgw =PaP =Pa

for all A. This implies, however, that

P= XPA+ XPAB+XPA .
A A,8 A

and Mickish, ' a single center localization choice
for A was used. This choice imposes severe con-
straints on the basis sets used to solve Eq. (7) and
can permit nonlocal solutions to occur. The rami-
fications of this were explored by Gilbert and the
author. ' In the time since the development of the
local orbitals band method by the author and its
use for the alkali halides, the method has been
used for other systems, including FeO, CoO,
NiO, and TiO. ' In the cases of FeO, CoO, and
NiO, proper localization occurred, but in the case
of TiO, a partially delocalized self-consistent solu-
tion was obtained which time has proven to be un-
satisfactory. In order to ensure against delocaliza-
tion, the choice of A has been modified in this
series of studies.

One modifies here the prescription given by the
author some time ago. Let us define a site local
part of p called p~

and

and

A =pAgp

A. w I Af ) -+
P= g Q;(x —RA )SA;BJQJ(x —RB),

Ai
Bj

SA;BJ Jp';(x —RA )p——j (x —RB )d x,

(F+A )P;(r R~)=e;P;(r—R~), —

where

(7) As in the past, we divide I' into two parts: Fq, the
part containing only A site terms, and Uq, which
contains the balance of I'. Uz is then decomposed
into terms for each pz and pq~. Consider here

only p~ terms now and let V~ be the part of Uq

which contains only 8-site contributions. That is

8 Zg pB(x', x')
Vg ——— + I

dr'
B

ePB(x, x')/l r —r' lP(x', x) —.

and (most importantly)

p(x, x')=P(x, x') .

Thus solving Eq. (7) provides the unique values of
p needed to obtain the Fock operator I', for any
Hamiltonian choice of A in Eq. (8). Ideally, one
picks a set of A's to produce localized atomiclike,
orbital solutions as implied by the four p;(r —RA).
The method used to choose A is given in general
by Gilbert. '

In the prior studies of the author with Lipari

Then further split Vz into a Madelung or long-
range part Vq and the rest or non-Coulomb part
Vz. Pick Az using the following prescription:

~A PA g I BPA QPB ~BPB
8+A 8

Thus A becomes

PA g ~BPA g PB ~BPB
p S S

8+3 B

(14)

This formalism is so far exact and has full multi-
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center localization. In addition, in keeping with
the ideas of Ref. 23, all four-center integrals are
eliminated in solving both the local orbital equa-
tion and in projecting energy bands using a linear
combination of atomic orbitals (LCAO) technique
in which the local orbitals are the basis set. This
result is exact in the local orbital Hartree-Fock for-
mulation. This procedure has been followed here
for the first time, and well-localized solutions have
been found for all 12 systems separately. In this
case, Na, for example, is found separately for NaF,
NaC1, and NaBr. The same applies to all ions
here. Thus one has here solutions for 24 ions. It
is unreasonable to use journal space to publish
solutions for all 24 ions, but the author will pro-
vide any or all solutions to any interested party
upon request.

It is worth making a few comments about the
solutions. Basic observations are, the positive ion
solutions in crystal differ by typically one part in
10 from free-ion solutions in terms of charge den-

sity. The negative-ion crystal solutions differ by

up to one part in 10 in terms of charge density
from the fry-ion solutions. This deviation for the

negative ion is significant; and in all cases con-
sidered here, the negative ion in the crystal is more
compact than the same ion in free space. This is a
strong indication of the efficacy of the multicenter
localization used here. The other comment of
practical nature is that the equations with multi-
center localization converge much more rapidly
than when single-center localization is employed.
The enhancement is between a factor of 2 and 10.
This is fortunate in that the need for fewer itera-
tions helps offset the extra effort in performing the
multicenter localization. In all cases the self-
consistence in terms of charge density was two
parts in 10 . A Slater-type basis set was used
throughout of triple-zeta accuracy.

The output of the local orbital procedure is the
first-order density matrix p which uniquely defines
the Fock operator E [Eqs. (4)—(6)] and a set of lo-

cal orbitals, P;(x —Rq) which exactly span the oc-
cupied part of the Fock space. That is, one can let
a Fock occupied orbital PJ.( k, x) be given as

m

PJ(k, x)=(N) '~ Q gaij(k)
l=occ A

(16)

The coefficients a&J(k) are determined by diagonal-
izing the nz &m matrix for the Fock operator in

terms of the basis of Bloch projected local orbital
solutions. Here one has m occupied orbitals per
unit cell. That is, in terms of the local orbitals,
the occupied Fock space is exactly determined by a
minimum basis set.

This procedure does not provide for the virtual
(conduction) bands at all. One may remedy this by
adding additional tight-binding orbitals to the basis
set. This was done by Mickish and Kunz and is
commonly done by others as well. ' " However,
economic considerations compel one to use a small
set of such additional orbitals, and obtaining accu-
rate conduction bands is difficult but not impossi-
ble. It is the opinion of this author that plane
waves form a much more natural basis set for the
conduction levels. This was formally developed a
long time ago into the mixed basis (MB)
method. 2 That is, a LCAO basis, Eq. (16), and
plane wave are used. The plane-wave set here is
simply,

x(k, K&, r)=(NQ) '~ exp[i(4+K&) rj . (17)

In Eq. (17), 0 is the unit cell volume, k a vector in
the first Brillouin zone, and K& a reciprocal-lattice
vector. In order to keep the number of K& small
(say 100 or less), it is essential to include all occu-

pied LCAO orbitals in the basis set. If this is not
done, one is facing a problem similar to that faced
by orthogonalized-plane-wave practitioners. For
the alkali fluorides, one would need -6000 plane
waves for convergence and for the rest, 400—800
plane waves. If one solves general points in the
Brillouin zone as the author does, this is far too
many plane waves.

Past attempts to use valence tight-binding func-
tions and plane waves have resulted in numerical
instabilities which limited the utility of such a
method. In the previous work the problem
was recognized and corrected by eliminating dif-
fuse LCAO functions from the basis set and en-

larging the plane-wave part. This solution elim-
inates accuracy problems but also limits ones abili-

ty to evaluate energy bands efficiently to points of
high symmetry. It was assumed that the overcom-
plete nature of the basis set was responsible, and
no successful attempt to circumvent the problem
was reported. The author has investigated these
problems in this study and concurs that the basis
set is potentially overcomplete, but for the few
plane waves used, this is not the source of the
problem. The problem is entirely in evaluating the
trivial overlap integral between a plane wave and
an atomiclike orbital P;(x). That is,
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Sg(k, K„)=f exp[i(k+Kp) F]P;(r—R„)dr
is often in gross error. The error in numerically
evaluating this integral may be in the first signifi-
cant figure. This can cause the overlap matrix to
become singular. Even if it is not singular errors
of several eV are possible in energy eigenvalues. In
all crystals studied the eigenvalues of the S matrix
were never less than 0.1 using accurate evaluation
of the overlap integral. Other ways of evaluating
this integral are possible as well and also potential-
ly accurate. The problem stems from using a
linear or exponential mesh which, although accu-
rate for the exponentially decaying P;, resonates
with the oscillatory complex exponential, generat-
ing substantial errors. The solution is to go either
to a very dense mesh which is too costly or to
evaluate the overlap analytically. Since our LCAO
basis is simply a contracted Slater-type orbital set,
the analytic evaluation of the relevant integrals is
trivial. Doing so eliminates completely the numer-
ical instabilities, and this method is employed
throughout in these studies. Thus all occupied lo-
cal orbitals are used in the basis set. The number
of plane waves was also explored here. I desire to
obtain conduction bands for the first 20 eV above
the conduction-band edge. The number tried was
varied from one to 89. The net result is that in go-
ing from 15 to 27 plane waves, the conduction lev-

els shift by about 0.25 eV over the first 20 eV,
whereas in going from 27 to 89 plane waves, the
shifts are 0.1 eV or less. Since errors of 0.1 eV or
so are far less than the uncertainties in the physical
model used, for this study a set of 27 plane waves
was used.

It is well known that Hartree-Pock calculations
overestimate the optical band gap by sizeable
amounts. ' The inclusion of correlation correc-
tions is essential if one is to compare the experi-
ment. Correlation corrections are therefore in-

cluded here. The basic method is an update of the
method described by Pantelides et al. A
molecular-cluster calculation is used to evaluate the
relaxation or short-range correlation, and the
electronic polaron, the long-range, or polarization
corrections. This is fully described in the literature
and needs no elaboration here. There is a point of
interpretation, though, which is not well known.
If one considers the formation of hole states, for
example (i.e., the valence bands as defined for
photoemission measurements), the presence of
strong relaxation effects imply that the hole state
in the best single determinant UHF model is a lo-
calized hole. In this event, the constraint of Bloch

symmetry applies to the entire many-electron state,
not the individual orbitals. This point was recog-
nized after the necessity of including relaxation
corrections was discovered and hence merits em-
phasis here. All results here include these corre-
lation corrections. Probably the earliest recogni-
tions of this point in a calculation was for the core
hole states of Oz by Bagus. '

The actual calculation of the k-dependent corre-
lation (polarization corrections) corrections for the
valence band was carried out using the actual
valence local orbitals to describe the valence wave
functions and the formalism of the electronic po-
laron as derived for hole states by the author in
1972. The computation of the k-independent
correlation correction for conduction electrons was
carried out using the electronic polaron formalism
as originally derived by Toyozawa. A discussion
of the k independence for conduction electrons has
been given by the author. The relaxation correc-
tions are evaluated by computing the difference in
total energy for a molecular cluster embedded in a
self-consistent environment potential simulating the
remainder of the solid and then taking the differ-
ence by the binding energy of that electron ob-
tained by the total energy difference and subtract-
ing from it the equivalent Koopmans's theorem
binding energy. This technique and its derivation
has been given by Kunz and Klein. The relaxa-
tion correction is k independent provided the hole
state is represented by a local hole in the best
single-determinant approximation and provided
there is not substantial k-dependent hybridization
between bands originating from different atomic
energy levels. It is noted that if the relaxation
corrections for differing atomic energy levels are
the same then hybridization considerations become
irrelevant. In the current systems all bands are
narrow in the sense that relaxation corrections are
as large or larger than a bandwidth, thus making
the local hole description viable in the best single-
determinant case. In these cases except for the
RbL system and a lesser degree the KX systems
the various valence bands do not strongly hybri-
dize. In the case of RbL and KX some outer-level
hybridization is present. However, the relaxation
energy of the outer levels is comparable enough so
that the neglect of k dependence is minimal. The
author believes this effect is less than 0.2 eV here
at worst. In principle the conditions for k in-
dependence of relaxation are not satisfied by the
conduction bands. In this case however the small
size of this correction is sufficient to allow one to
ignore the k-dependent part of the effect.
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There is another point worth making here. This
concerns the self-interaction terms in the Coulomb
potential. As is well known, this term should not
be present, and in the Hartree-Pock model it is ex-
actly cancelled by a like term in the exchange po-
tential. This is not true in local density ap-
proaches, and much effort is being expended in
making such corrections to these models. ' The
tight-binding Hartree-Fock method based upon the
local orbitals method can provide a model upon
which to structure such a self-interaction correc-
tion. For simplicity consider a tightly bound solid

such that at least initially one may neglect local or-

bital overlap. Thus, here

p(x, x') —= g p„(x, x') . (18)

Consider a basis of local orbitals P;(x —Rz). The
effect of self-interaction is most pronounced for
the diagonal element of I' with this basis set.
Therefore, consider here this element, Fz;q;, where

+AiAi (0i( x—R~ )
I
F

l
A(x —RA ) ~

Again neglecting overlaps, this reduces to

2
e Zz 2 p (x', x')

Eg;g; —— ; x —Rg — V — +e dx

—e p„(x,x')/~ r —r' ~P(x', x) i;(x —R„)) . (19)

It is clear that the self-interaction part here
behaves exactly as in the atomic case. That is, for
the diagonal element, the Fock operator behaves
like that for n —1 electrons and the "hole" is
atomiclike. This may be generalized for cases in

which overlap is not to be ignored by simply in-

cluding the overlap correction in forming F. The
effect of this is to reduce the strength of the self-
interaction correction. Nonetheless, for tightly
bound systems such as MX in which the greatest
overlap is 0.05 or less (1.0 would be the maximum
possible overlap), one may expect the self-
interaction correction to be atomiclike to great pre-
cision.

III. RESULTS OF THIS STUDY

The self-consistent Hartree-Fock energy bands
were computed for LiF, NaF, KF, RbF, LiCl,
NaC1, KC1, RbC1, LiBr, NaBr, KBr, and RbBr.
Correlated energy bands were also computed for
these 12 systems. The energies of selected points
in the first Brillouin zone for all 12 systems are
given in Table I. The Hartree-Pock and the corre-
lated energy bands are shown in Figs. 1 —12. In
Table II„ the theoretical and experimental band

gaps and valence-band widths are given. Finally,
in Table III, the band structure for NaC1 as deter-
mined by angular resolved photoemission is also
given and compared to present results as well as
other band calculations. Since only' NaC1 has had
angular resolved photoemission data available, I

I

begin the discussion with NaC1. In Table IV the
lattice parameters used are given. In Table V sam-

ple RHF, correlation, and relaxation correction
data are given for NaC1 and KC1.

A. NaC1

Optical absorption experiments determine a fun-
damental band gap for NaC1 of 9.0 eV, and
photoemission data finds a valence-band width of 3
eV. The present calculation predicts a band gap
of 10.0 eV and a valence-band width of 3.0 eV.
The bands are seen in Fig. 1. These predictions
are in reasonable agreement with prior correlated
Hartree-Pock results. ' ' It is noted here that the
valence bands found by Lipari and Kunz were a
bit wider. I interpret this problem to be due to the
MB method used then in which valence local orbi-
tals were excluded and insufficient plane waves
could be used to insure complete convergence of
the valence states. This criticism is consistent with
the absolute energy of the valence levels found by
Lipari and Kunz which is somewhat too high.
The inaccuracy here is —1 eV or less. Similar cri-
ticism may be leveled at the other early MB
Hartree-Fock studies.

There are other high-quality NaC1 calculations
using local density corrections ' or empirical
pseudopotentials. The local density calculation
of Ref. 34 has the muffin-tin potential adjusted to
produce the experimental band gap as does the em-
pirical calculation of Ref. 36. The not adjusted lo-
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TABLE I. Partial list of energies for some valence and conduction levels in the 12 alkali halides. Energies are in Ry
and include correlation. Upper valence levels and lower conduction levels of a given symmetry are given.

Level LiF NaF KF RbF LiCl
System
NaCl KCl RbCl LiBr NaBr KBr RbBr

I 1s

Xs'

X4'

L1
I 1

—0.77
—0.85
—1.00
—0.80
—0.94

—0.69
—0.74
—0.82
—0.72
—0.89

—0.60
—0.62
—0.67
—0.62
—0.76

—0.51
—0.50
—0.52
—0.53
—0.56

—O.S5
—0.62
—0.82
—0.59
—0.79

Valence
—0.63
—0.70
—0.85
—0.67
—0.81

States
—0.63
—0.67
—0.78
—0.66
—0.72

—0.61
—0.66
—0.71
—0.67
—0.72

—0.46
—0.60
—0.70
—0.51
—0.75

—0.64
—0.75
—0.86
—0.69
—0.91

—0.56
—0.57
—0.65
—0.60
—0.69

—0.44
—0.44
—0.45
—0.45
—0.46

Conduction States

0.26
1.56
0.87
0.92
1.34
1.53
0.41
1.20

0.19
1.20
0.83
0.72
1.08
1.16
0.54
1.31

0.20
0.85
0.68
0.51
0.87
0.77
0.58
1.11

0.30
0.76
0.61
0.46
0.76
0.73
0.49
0.95

0.16
0.77
0.20
0.40
0.94
0.96
0.16
0.53

0.11
0.65
0.30
0.34
0.75
0.76
0.20
0.61

0.11
0.52
0.40
0.27
O.S8
0.53
0.29
0.70

0.15
0.49
0.46
0.27
0.59
0.36
0.48
0.71

0.16
0.64
0.16
0.33
0.93
0.35
0.27
0.74

0.10
0.52
0.18
0.25
0.69
0.64
0.17
0.46

0.08
0.45
0.33
0.23
0.52
0.23
0.48
0.59

0.08
0.33
0.29
0.22
0.36
0.11
0.43
0.26

cal density calculation of Ref. 35 predicts a band

gap of 5.0 eV. The older HP + correlation result
of Lipari and Kunz is 10.0 eV, and the muffin-
tinned Hartree-Fock result of Perrot is 8.4 eV.
The effect of muffin-tinning the Pock exchange is
to reduce exchange and thus to underestimate the
self-interaction correction. Therefore, the smaller
band gap obtained in Ref. 10 is understandable as
are other deviations from a non-muffin-tin calcula-
tion.

The valence-band width of I.ipari and Kunz is

3.8 eV with the criticism leveled earlier, and Perrot
predicts a width of 1.5 eV, again subject to the
above criticism. The present result was stated ear-
lier as 3.0 eV. The local density results are 0.6 eV
from Ref. 34 and 1.7 eV from Ref. 35. The em-
pirical potential result is 1.0 eV. Clearly here the
adjustments made to match the band gap in Refs.
34 and 36 have a deleterious effect on the valence-
band structure. The detailed results for NaC1 may
be seen in Table III, comparing all calculations to
the angular resolved photoemission data. It is

TABLE II. Theoretical band gap and valence-band width, including correlation correc-
tions for the 12 alkali halides, is presented along with pertinent experimental data. Results
are in eV.

System

LiF
NaF
KF
RbF
LiCl
NaC1
KCl
RbCl
LiBr
NaBr
KBr
RbBr

Theoretical
band gap

14.0
12.0
10.9
11.0
9.7

10.0
10.0
10.3
8.4

10.0
8.7
7.1

Quantity

Experimental
band gap

14.2
11.5
10.8
10.3
94
9.0
8.7
8.5
7.6
7.1

7.4
7.2

Theoretical
valence width

3.1

2.7
2.2
1.7
3.6
3.0
2.4
2.2
3.9
3.6
2.5
1.3

Experimental
valence width

3.5 —6.0

5 +0.5
3.0+0.3
2.3+0.3
1.6+0.2

3.5+0.5

1.6+0.2
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TABLE III. Internal band transitions for NaC1 as given by angular resolved photoemission data, compared to the
present calculation and to other calculations. Energies are in eV.

This
Transition Expt. paper Ref. 36 Ref. 34

Valence Levels

Ref. 6 Ref. 10 Ref. 35

I 1s I 15

I )s —Xs1

I &s
—X4

0.0
—1.4+0.2
—2.4+0.2

0.0
—1.1
—2.9

0.0
—0.2
—1.0

0.0
—0.2
—0.6

0.0
—1.3
—3.8

0.0
—0.6
—1.5

0.0
—0.5
—1.7

Conduction Levels

I ) —I")
X) —I )

X3—I )

A~min —I l

X4 —I )
1

Xs —I )

I2s —I l
1

Iiz —Ii

0.0
2.4+0.S

3.0+0.5
4.7+0.5

8.0+0.5

12.0+P

8.2+0.2
9.7+?

0.0
2.6
3.1

5.2
8.7

11.7
7.3

11.1

0.0
1.0
1.0
3.6
8.8
7.3
3.7
4.2

0.0
3.1
4.0
5.0
5.2
9.0
6.9
8.4

0.0
2.9
3.0
6.0
74

11.3
7.6

10.0

0.0
3.4
2.0

5.2
10.3
5.6
8.1

0.0
3.4
2.6
5.2
5.7

6.0

quite clear from this table that the correlated
Hartree-Fock models overall provide the best fit to
this data and the empirical potential model is the
worst. The local density models are of intermedi-
ate success, although the nonadjusted calculation of
Ref. 35 fails to order the levels at X correctly.
This failure is in common with the author's own
nonempirical local density results. The author
feels that the present calculation is the one to be
preferred based upon these comparisons.

The difference between present results and those
of Lipari and Kunz or Perrot are not unreasonable,
given the numerical expedients employed by the
older work. As was seen in Sec. II, this current

LiF
LiC
LiBr
NaF
NaCl
NaBr
KF
KC1
KBr
RbF
RbC1
RbBr

7.600
9.700

10.380
8.723

10.620
11.260
10.083
11.858
12.424
10.650
12.349
12.953

TABLE IV. Lattice parameters used for the present
study are given. Units used are a.u. (1 a.u. = 0.53 A).
Bands are not sensitive to small variations in lattice con-
stant.

System

calculation employs much better technique in solv-
ing the Fock equation. %e will also see in the next
discussion that for LiF, for which other very high
accuracy Fock results are available, the present re-
sults agree very well indeed with other calculations.

B. LiF

In recent years, LiF has received the most
theoretical attention of all the alkali halides. Un-
fortunately, the basic experimental data is not yet
as well developed as for NaC1. Hartree-Fock or
studies beyond Hartree-Fock are reported by Mick-
ish et al. , Euwema et al. , Brenner, and Perrot. '

Self-consistent local density studies are reported by
Menzel et al. and by Zunger and Freeman. "

The calculation by Menzel et al. is a conven-
tional LCAO self-consistent-field (SCF) local den-

sity calculation. In this calculation, a prediction of
10.6 eV is made for the fundamental band gap.
This result is somewhat smaller than the currently
accepted value of 14.2 eV. This calculation also
obtains a valence-band width of about 2.45 eV.
The calculation of Zunger and Freeman" obtains
similar initial results. However, much effort is ex-
pended in this study to transcend the limitations of
the local density model. Long-range correlation
corrections are included, as are self-interaction
corrections and relaxation effects. The inclusion of
these corrections raise the computed band gap to
13.9 eV, which compares favorably with experi-
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TABLE V. RHF energy eigenvalues, the correlation corrections, the relaxation correc-
tions, and the final correlated band energies are given for both NaC1 and KC1. Since correc-
tion terms to RHF for the conduction band (c.b.) are k independent, only the I

&
conduction

level is given. For occupied levels several selected symmetry points are given for the outer-
most valence band (v.b.). Results are in Ry (1 Ry = 13.6 eV).

System

NaCl
NaC1
NaCl
NaC1
NaCl
NaC1
KCl
KCl
KC1
KCl
KCl
KC1

c.b. I )

v.b. I )5

X5
X4,

L3
L2

c.b. I )

v.b. I )5

X5
X4
L3
L2

0.33
—0.84
—0.92
—1.09
—0.88
—1.04

0.30
—0.82
—0.86
—0.94
—0.85
—0.91

Correlation correction

—0.17
0.10
0.11
0.13
0.10
0.12

—0.16
0.08
0.08
0.09
0.08
0.08

Relaxation
correction

—0.05
0.11
0.11
0.11
0.11
0.11

—0.03
0.11
0.11
0.11
0.11
0.11

Correlated
energy

0.11
—0.63
—0.70
—0.85
—0.67
—0.81

0.11
—0.63
—0.67
—0.78
—0.66
—0.72

X L

NaCI

CL

0.0

Lp'

Lg
LLI

Xp&

Lpi X4&

Hartree —Fock

-2.0
k Corietated

FIG. 1. Hartree-Fock and correlated energy bands
for NaCl are seen.

ment. The valence-band width is essentially un-
modified by this set of corrections.

The Hartree-Pock level calculations are all in ex-
cellent agreement with one another. That level of
agreement includes the current calculation. The
Perrot calculation is a muffin-tin one and is in
general in poorest agreement with the other three.
The Mickish et al. and the Euwema et al. calcula-
tions both employ a SCF LCAQ method, whereas
the current calculation employs the updated MB
technique. At the Hartree-Fock level, these latter
three calculations agree within 0.1 to 0.2 eV

throughout the valence range and the first 15 eV
or so of the conduction structure. The Hartree-
Fock band gap is, for example, 22.8 eV, according
to Mickish et al. , 23 eV according to Euwema
et al. , 22.5 eV according to Perrot, and 22.7 eV in
the present study. Valence-band details also com-
pare well with a theoretical width of 3 eV being
obtained by all but Perrot. The Perrot value is
about 1 eV less and probably reflects the effects of
muffin-tinning the exchange. Agreement within
the conduction bands is also good. Therefore,
based upon LiF, for which many high-quality re-
sults are available, we conclude the current tech-
nique is highly accurate.

The inclusion of correlation substantially reduces
the Hartree-Fock band gap. In the present case a
band gap of 14.0 eV is obtained, which compares
well with the prediction of 14.1 eV of Mickish
et al. and the experimental value of 14.2+0.2 eV.
The computed valence width is 3.1 eV. In this
case the experimental width is not well established.
Early x-ray emission data of O' Brien and Skinner'
suggests a width of 3.5+0.5 eV. Other x-ray
photoemission spectroscopy studies predict a width
of -6 eV. ' Photoemission studies find a nar-
rower width of about 4.5 eV. These results
strongly suggest that all calculations, except
perhaps the Pock ones, underestimate the band-
width by significant amounts. These results, ambi-
guous as they are, also establish the broad nature
of the valence levels in the alkali halides. The LiF
results from this study are seen in Fig. 2.
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X4&
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k

x
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FIG. 2. Hartree-Fock and correlated energy bands
for LiF are seen.

FIG. 4. Hartree-Fock and correlated energy bands
for LiBr are seen.

C. LiCl and LiBr D. NaF and NaBr

The results for LiCl and LiBr are given in Figs.
3 and 4. The only other available self-consistent
calculations are early ones and are subject to the
type of errors previously discussed and are not fur-
ther discussed. In these calculations, band gaps of
9.7 and of 8A eV are obtained for LiCI and LiBr,
respectively. The experimental values respectively
are 9.4 and 7.6 eV. ' The computed valence-band
width is 3.6 eV for LiCl and 3.9 eV for LiBr. The
author is not aware of any experimental values for
this parameter for LiBr but LiCl has a width of
5+0.5 eV. '

The current bands for NaF are seen in Fig. 5
and for NaBr in Fig. 6. Again, only early self-

consistent results are available and a comparison is
not useful. The computed band gaps are 12.0 eV
for NaF and 10.0 eV for NaBr. The experimental
values are 11.S and 7.1 eV, respectively. ' The
computed valence width is 2.7 eV for NaF and 3.6
eV for NaBr. Unpublished SCF results for NaF
due to Mickish and available to the author agree
well with the current study. NaBr has an experi-
mental valence width of 3.5+0.5 eV. '~

X I X L

LiCI

K
~\

CL

h
LLi

0.0

-I.O-

X4~

x5'

X4I

NaF
cD

C l p'
LLI

x4'

0.0

Lp' Xg'

X4I

Hartree -Fock
-2.0

k Correlated Har tree -Fock
-2.0

k Correlated

FIG. 3. Hartree-Fock and correlated energy bands
for LiC1 are seen.

FIG. S. Hartree-Fock and correlated energy bands
for NaF are seen.
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FIG. 6. Hartree-Fock and correlated energy bands

for NaBr are seen.

FIG. 7. Hartree-Pock and correlated energy bands
for KF are seen.

E. KF, KC1, and KBr IV. DISCUSSION AND CONCLUSIONS

KC1 has received a high quality SCF
augmented-plane-wave local density band study by
DeCicco. This study finds a valence-band width
of 0.67 eV and a band gap of 6.2 eV. The corre-
sponding experimental values are 2.75 (Ref. 42)
and 8.7 eV. ' This study finds a valence width of
2A eV and a band gap of 10.0 eV. This case
points out an often found feature of local density
calculations for insulators. That is, very narrow
valence widths are found except for I.iF. This was
seen in early studies by this author and others. '

For KF and KBr the valence widths are 2.2 and
2.5 eV, and the band gaps are 10.9 and 8.7 eV.
The experimental gaps are known and are 10.8 eV
for KF and 7.4 eV for KBr. ' The bands are seen

in Figs. 7—9.

In this paper a comprehensive study of the ener-

gy bands for the 12 fcc alkali halide crystals con-

taining neither Cs nor I has been presented. The
calculations are fully self-consistent in the RHF
limit. Self-consistency has been achieved using a
newly developed version of the local orbitals tech-
nique in which full multicenter localization is em-

ployed. This method has been found to converge

rapidly and to produce orbital rotations usually
more compact than those for the equivalent free
ions. The degree of change from free-ion to crys-

X
I.p

F. RbF, RbC1, and RbBr

KCI
(0
I9
ZZ

0.0

The current calculations are the only self-
consistent ones for these substances. The predicted
band gaps are 11.0 eV for RbF, 10.3 eV for RbC1,
and 7.1 eV for RbBr. The corresponding experi-
mental values are 10.3 eV, 8.5 eV, and 7.2 eV. The
theoretical valence widths are found to be 1.7 eV
for RbF, 2.2 eV for RbC1, and 1.3 eV for RbBr.
Experimental determinations of the valence widths
are 1.6+0.2 eV for RbC1 and RbBr. The bands
are shown in Figs. 10—12.
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FIG. 8. Hartree-Fock and correlated energy bands
for KC1 are seen.
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FIG. 9. Hartree-Fock and correlated bands for KBr
are seei&.

FIG. 11. Hartree-Pock and correlated energy bands
for RbC1 are seen.

tal orbitals was small. This is in keeping with the
original local orbital philosophy of Gilbert' in
which atoms in a crystal were postulated to be
merely weakly distorted atoms in free space. One,
however, finds Cl in RbCl, say, to differ enough
from Cl in LiC1 so that it is not advisable to use
the same set of Cl orbitals for all chlorides. This
is unfortunate and forces one to obtain each ion in-

dividually in each system.
Energy bands were then computed at 256 points

in the first Brillouin zone using a newly revised,
highly efficient version of the mixed basis method.
Owing to the better basis set possible with the new

code, results are not fully comparable to the older,
not well converged, results of Lipari and the au-

thor, This was fully developed in the text. How-
ever, the riot quite as sensitive conduction bands
are in reasonable agreement for the cases of LiC1,
I.iBr, NaC1, KC1, and NaBr. This is seen here in
Table III for the case of NaC1.

The agreement with experiment for the band gap
is usually quite reasonable as is seen in Table II.
Similar comments apply to the width of the upper
most occupied valence bands. In general, local
density studies are not as successful on either band

gap or valence width. The gaps are usually sub-
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FIG. 10. Hartree-Fock and correlated bands for RbF
are seen.

FIG. 12. Hartree-Fock and correlated energy bands
for RbBr are seen.
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stantially underestimated and the bandwidths are
often especially poor. The calculation of l.iF by
Zunger and Freeman which includes corrections

beyond the normal local density method is a sub-

stantial improvement over the usual local density

result. It would be nice to use the Zunger-Freeman
method on a more difficult case like NaC1. NaC1

has other properties to commend it as well. I refer
to the excellent angular resolved photoemission
data for this systein. This set of measurements

provides quite a bit of detailed information for
NaC1 valence and conduction bands. As is seen

from Table III, the current calculation is in fine
agreement with this study as was the earlier com-

putation of I.ipari and Kunz. The same comment
does not apply to the other studies for NaC1.

As is always true, Hartree-Fock band gaps are

far too wide. Correlation corrections have been in-

cluded using standard techniques. In this paper,
no attempt at detailed comparison to optical ab-

sorption data is attempted. This is because much

of the absorption strength comes from exciton ab-

sorption lines "' and such effects are omitted in

traditional band theory. Work on the optical ab-

sorption, including excitons, is under way, and
some preliminary studies by Kunz, Boisvert, and
Woodruff on these systems are in hand. This
series of calculations will be extended and present-
ed subsequently.

Nonlocal exchange methods are often avoided
due to presumed expense and difficulty of calcula-
tiop. This avoidance may be unnecessary. All
these studies were performed on a DEC system
1 li23 microcomputer using 64K bytes of core, 5M
bytes of disc, and Fortran IV using the RTI I
operating system. The total computational time
varies with system, but a medium-sized calculation
such as NaC1 takes about 8 h on this system. A
very large system such as AgBr takes 22 h. Solid
Ne requires 1 h. This is a modest cost in reality
and points to the practicality of such non-local-

type calculations.
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