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Phonon spectrum of a model of electronically excited silicon
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With a view to clarifying the process proposed in the plasma-annealing hypothesis for
laser-induced recrystallization, we have performed a simple calculation of phonon fre-
quencies in electronically excited silicon. We make assumptions most favorable to the
plasma-annealing hypothesis, i.e., we assume that the laser energy remains in the electron-

ic system. We use a one-parameter interpolation of the electronic dielectric constant be-

tween the bond charge and the free-electron models in a computation of the phonon spec-
trum. The calculation yields a softening of the [111]zone boundar-y transverse-acoustic

phonons. Typically, such a softening would be thought to lead to a structural phase tran-

sition. The excited electron densities needed for this softening are in the range {6—10)

)&10 ' cm ' which seems unreasonably large to us. Thus, on two counts, we have

grounds for rejecting the plasma-annealing hypothesis.

I. INTRODUCTION

In this paper we calculate the phonon spectrum
of silicon containing a high density of excited
electron-hole pairs. Our purpose is to clarify the
process proposed in the plasma-annealing hy-
pothesis for laser-induced recrystallization in semi-
conductors.

Laser annealing is an established technique for
obtaining high-quality crystalline and defect-free
material from radiation-damaged silicon samples.
Laser beams with typical pulse lengths of 10—20
ns and energy densities 1 —2 Jcm are used in
this process. The majority of pulsed laser ex-
periments provide evidence for a thermal melting
process in the semiconductor followed by recrys-
tallization into a relatively defect-free structure.

The plasma-annealing hypothesis has been pro-
posed as an alternate explanation of these phenom-
ena. In this hypothesis, the laser pulse creates a
dense (y 10 ' cm ) electron-hole plasma, and it is

proposed that the bulk of the excitation energy
remains in the electron system during the anneal-

ing process. ' Under these conditions of high
electronic excitation it is proposed that the crystal
loses its resistance to shear because the transverse
acoustic (TA) phonon modes become unstable.
The material then enters a "cold fluid" phase
where the ions are soft against shear and defects
can easily diffuse away. Comparatively little basic
work has been done to elucidate the mechanism of
the proposed plasma-annealing process.

Some motivation fol the plasma-annealing model

stems from an earlier calculation by Martin of
phonon frequencies in silicon. " There the elec-
trons were first described by a free-electron gas
(with free-electron screening) only to obtain un-

stable TA phonon modes. Then the effects of the
covalent binding were included, through bond
charges, to obtain stable phonon modes in reason-
able agreement with experiment.

We calculate the phonon spectrum of electroni-
cally excited silicon within a simple model. We as-
sume that the excited electron-hole plasma retains
the major portion of the excitation energy, with
negligible energy transfer to the lattice. This as-
sumption permits a simple calculation of phonon
dispersion curves. More sophisticated models
would contain many additional parameters. More
importantly, we note that the above assumption is
the most favorable for the plasma-annealing hy-
pothesis. If the predictions of the plasma-anneal-
ing hypothesis are untenable in these circurnstan-
ces, they should be untenable in any physical situa-
tion.

Within this framework, the adiabatic approxima-
tion still holds, allowing a description of the elec-
tronic response by a static dielectric function. In
our model the electronic dielectric function is a
one-parameter interpolation between the bond-
charge and the free-electron models.

The results of our calculation show that up to an
excited electronic density of 10 ' cm there is
essentially no change in the phonon spectrum.
Beyond 10 ' crn ' the TA phonon modes change
dramatically, with the zone-boundary TA phonons
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going soft. It is the zone-boundary TA phonon in
the [111]direction which becomes unstable first,
i.e., its frequency becomes imaginary, the transition
occurring at the large density of E,=9)& 10 '

cm
The proponents of the plasma-annealing theory

imply that the entire TA mode becomes unstable, '

leading to a fluidlike phase. In this hypothesis, the
sound velocities (or the slopes of the phonon curves
at q~0) would decrease to zero at the transition.
This does not happen in our calculations. In short,
even when we accept the notion that the electronic
system retains the excitation energy during much
of the annealing process —a notion that is hard to
justify —we do not obtain the postulated fluid

phase.
This paper is organized into five sections. The

following section discusses the main features of our
model. First the relevant time scales in the prob-
lem are discussed and then the electronic dielectric
function of the excited semiconductor is construct-
ed. Section III deals with the dynamical matrix
calculations within the framework of the bond-

charge model. Section IV presents the results of
our calculation of the phonon spectrum. Section V
contains concluding remarks, including comments
about the relevance of the calculation to structural
transitions in other diamond-structure crystals.

II. THE MODEL

A. Microscopic time scales

In our calculation of the lattice dynamics of
electronically excited silicon we will implicitly as-
sume the validity of the inequalities

1
COD] Q Nph Q

e-ph diff

Here co~& is the plasma frequency of the electronic
system, typically 10' s '; cosh is a typical phonon
frequency (-10' —10' s '); r, ~h is the electron-
phonon relaxation time (quoted to be in the range
10 ' —10 ' s (Refs. 13—15); and rd;ff is approxi-
mately the time for a carrier to diffuse one absorp-
tion depth. The inequality cosh & 1/r, „h, I/rq;rr
implies that any typical electronic state remains
coherent and is not scattered in a few time periods
of the lattice vibration.

We emphasize that it is difficult to justify these
inequalities under highly excited conditions. As al-
ready mentioned, we are suspending judgment on
this question in order to give the plasma-annealing
hypothesis its best chance. Assuming the inequali-

ties permits us to treat the electrons as following
the ionic motion adiabatically. The response of the
electron system is then described by the static
dielectric functions e(q, co =0) and

e(q +G,q+ G', co =0).
Under the stated assumptions, the carrier tern-

peratures become comparable with the band-gap
energy, i.e., k~T, =Eg. Then the Auger and the
inverse Auger processes have equal probabilities,
with detailed balance maintained between them.
The Auger process, and the electron-electron in-
teraction in general, are then thermalization pro-
cesses for the e-h plasma, redistributing energy
within the electronic system.

Other authors, in particular Combescot, ' have
considered the opposite point of view where the
electron-phonon interaction is strong enough to
maintain thermal equilibrium between the electrons
and the lattice. Then the Auger process is the
dominant mode for recombination of the carriers
and it limits the total excited electronic density
possible in the semiconductor. '

The electron-phonon relaxation time ~, „h has
been stated to be -10 ' —10 ' s, being uncertain
to an order of magnitude because of the inaccu-
rately known electron-phonon coupling strength.
Yoffa' has examined the effect of high excitations
on this time '7& &h. She finds that up to 10 —10 '

cm there is no appreciable decrease in the pho-
non emission rate, though screening effects do de-

crease this rate at higher densities.
Carrier diffusion reduces the density of excited

electrons. Times of ~diff 100 ps=10 ' s have
been estimated' for a carrier to diffuse over one
absorption depth (-1 pm).

B. The dielectric function

Much of the following procedure, especially the
phonon spectrum calculations of Sec. III, closely
follows the analysis of Martin. "

To describe the response of the electronic system
we note that the dielectric function in a semicon-
ductor is a tensor E(q+G,q+G'). 's'9 The off-
diagonal components of the dielectric function are
essential for charge neutrality in the semiconduct-
or. The diagonal dielectric constant remains finite
in the long-wavelength limit e(q) =e(q, q) —+ eo, in-

q —+0

dicating that the ionic charge is incompletely
screened. The remaining charge may be associated
with the covalent bonds in the semiconductor is —20

In a first attempt to compute phonon dispersion
relations in silicon, Martin, in applying the well-
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known formalism of phonons in metals, treated the
electrons as a free-electron gas, described through a
metallic dielectric function: e(q) —1+k, /q .

q —+0

This produced unstable transverse-acoustic (TA)
phonon modes with all the TA frequencies ima-

ginary. " Then the effects of the off-diagonal
charge screening were approximated by the bond-

charge model. This model introduces static bond

charges, lying midway between the ions. These
charges are localized point charges which are al-

ways constrained to lie midway between the ions,
even when the ions are displaced. Along with a
semiconductorlike dielectric function, the bond-

charge model produced stable phonon modes, in

reasonable agreement with experiment.
We are modifying Martin's calculations in this

paper, and interpolating between the two-limits-
the bond-charge model which describes the
ground-state semiconductor and the free-electron
model which describes the state with all the elec-
trons excited. In particular, we investigate the way
in which a stable TA phonon mode is destabilized

by excited carriers, and is transformed into the un-

stable mode of the free-electron limit.
The diagonal part of the dielectric function e(q)

is expressed within the random-phase approxima-
tion (RPA) as

.(q)=1+',' yy. '"' "+'+ '((k~." (k+q+G) ('
q2 k G E(k+q+G) —E(k)

(2)

in the extended zone scheme of the semiconductor,
fp(k) being the distribution function of the Bloch
state ~k) of energy E(k).

For the ground state T =0 semiconductor (filled
valence band), the dielectric constant in the long-
wavelength limit has been estimated using (2) and
a two-band model of a semiconductor to be '

T

4~%0e fi fiCOpI

e, (q) = 1+,=1+
g p m (Eg p) Egap

(3)

k, 4a(Np —N, )e fi
e(q) = 1+

g p q m(Eg p)
(4)

where k, is a screening length, discussed later in
this section. We have an approximate analysis to
support Eq. (4). However, for the purposes of the
following calculation it suffices to note that this
form is a one-parameter linear interpolation of the
long-wavelength dielectric function between the
bond-charge model and the free-electron limit. For
the ground-state semiconductor, N, =0, k, =0, e(q)
reduces as it should to e0, while for the highly ex-
cited case (N, =Np), e(q) approaches the free-

X0 is the total electronic density and Eg p a
parameter approximating the average difference be-
tween states in the two bands lying vertically above
each other.

For Si, the parameter we use are X0——2.00X 10
cm, E&,p-5.01 eV, which yield the experimental
value of e0-12.0.

We have constructed a dielectric function that
describes the semiconductor Si with N, e-h pairs
excited in it. In the long-wavelength limit, we gen-
eralize (3):

k,
e(q)=1+ ', +[eg(q)-1]

q

X0—X,
X0

I

electron limit,

k,
e(q) =1+

q

Physically one might expect a linear interpola-
tion between the two limits rather than a more
complicated functional form since whatever charge
X, is excited out of the bonds is distributed uni-
formly as a free-electron gas of the same density
N„maintaining charge conservation. Further,
sum rules restrict the interband dielectric constant
to be proportional to the number of filled valence-
band states [which is (Np —N, ) here].

We extend the dielectric function in (4) to finite
wave vector q as follows. First we note that the
third term in (4), 4~(Np N, )e h /m (E—g,p),
arises from the virtual interband transitions of the
general expression (2). The analogous term in the
ground-state semiconductor, 4nNpe h /m(Eg, p),
also arises from these same virtual transitions from
the valence to the conduction band. For finite
wave vectors these two interband terms should
have the same q dependence. In particular, we
make use of the known dielectric function eg(q)
(Refs. 11 and 23) for the ground-state semicon-
ductor and scale the magnitude of [eg(q) —1] with
the factor (Np —N )/Np to obtain the interband
form when N, +0.

The k, /q form of the screening of the e-h plas-
ma is retained at finite q. This procedure provides
the dielectric function:
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go(E)dE

1+exp[(E p)/ks—T,]

Defining the Fermi integral

x'"dx
Fi/2(a)= f0 (x —a)

(6)

and
' 3/2

2m,*kg T,n'(T )=—0 e

we obtain (noting that there are six equivalent
conduction-band minima in Si)

As expected, e(q) —+1 at large q. We have also
tried slightly different functional forms for es(q)
and found that the phonon frequencies are not
sensitive to these changes.

To complete the specification of the dielectric
constant (5) we must express k, in terms of N, .
One way of doing this, which is in the spirit of our
basic assumption of electron thermalization, is to
characterize the plasma by a temperature T, . We
can then relate the temperature T, to the density

N, of excited electrons through the equation

(N, =Ns) to obtain

3/2
m~

&i/2(a) =+I/2(P)m* (10)

with

a+P=
B e

Eg is the energy gap which we assume does not
vary much with X, or T, . This is justified since at
high temperatures T„k&T,)Ez, and the above
equations are then not so sensitive to Eg.

Solving the two coupled equations (10) and (11)
we obtain the chemical potential p and the density
N, as a function of T, which is plotted in Fig. (1).
This is the same curve as was obtained by Yoffa.

Further we plot ks T~, the Fermi energy of the
e-k plasma treating it as a free Fermi gas, against
ksT, in Fig. (2). The graph shows that T, & T~
for all ranges of N„so that the dense e-h plasma
can be treated as a classical gas obeying a Boltz-
mann distribution of temperature T, .

The screening in the dielectric function e(q) can
then be described by the Debye Huckel formula

X,(T )= i/~ no(T )6Fi/2(a)
4n(2N, )e

S (12)

with

p Ev —pa=kT andP=

We equate the number of holes to that of electrons

the screening of a hot classical gas of temperature
Te 0

The dielectric constant (5), with k, determined
by Eq. (12), has been used to obtain the results
presented in Sec. IV. It may be worth mentioning
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FIG. 1. Temperature of the excited carriers k&T, as a function of the excited electron density N, .
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The phonon dispersion relations in our model
are obtained by diagonalizing a 6g 6 dynamical
matrix D(q) in different directions in the first Bril-
louln zolle to obtalll tile fleqllellcles cg~ (q).
Translational invariance implies that

D„P(q)=—,C„P(q)—6„+C„(0)

D„P(q)eP(q)=co, (q)e, (q) .
(13)

(14)

o.oi o. ~ I.O
(eV}

IO

that the calculated phonon curves do not depend
crucially on the assumption of a hot classical plas-
ma as in (12). Qualitatively similar results are ob-

tained on the assumption that the screening is due
to degenerate electron and hole plasmas.

FIG. 2. Fermi energy of the excited e-h plasma k~TF
(treated as a free Fermi gas) as a function of the carrier
temperature k~ T', .

Here a,P( =-1,2, 3) are the Cartesian components
s,s' (= l, 2) the labels for the basis atoms, and M is
the mass of the Si ion.

We calculate the dynamical matrix by generaliz-
ing Martin's analysis" to include the screening ef-
fect discussed in the last section. The first contri-
bution to the matrix C„(q) is analogous to that in
a metal. It contains the electronic contribution to
the dynamical matrix where the electron-ion in-
teraction is described through an ion-core potential
U (q), and screened by the dielectric function e(q)
from (5). The ion-core potential is the same as
used by Martin. " Also, the "Madelung" energy of
the bare ions (Z =4) is added to the electronic con-
tribution. So "'C„p(q;E,) is

'"C„p(q;X,)= 1 g(q+6) (q+6)piq+6
i i

u(q+6)
i

— —1 e
4m 6 eq+6

2+- Z 6 p(q, R, —R, )

k, go —&,
e(q +6)= 1+— + [es(q) —1]

I q+6
I

' (16)

G.p(q, R, R, )=- —g'f —p(R, —R, —R, )exp[ —Iq.(R, —R,
' —Rl)] „

1

1f p(r)=
dr Brp

Here f p(r) describes the Coulomb interaction;
(I,s) denotes the sth basis atom in the 1th unit cell
and 9 is the volume of the primitive cell. Further,
R,' = —,a (1,1,1), where a =5.43 A.
6 p(q, R, —R,') is evaluated by the Ewald transfor-
mation.

The contribution that the off-diagonal dements
'(q +G,q+6') make to the dynamical matrix

are approximated within the bond-charge model, by
the Coulomb interactions between bond charges
aIld 1ons.

In the ground state since Z/eo of the electronic
charge is not used in linear screening, charge con-
servation provides the magnitude of the bond
charge Z~. Counting the total electronic charge
per atom,

(Z —Z/eo)+2Zb =Z,
Z 1

Z$ — — o

2@0 6
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The interaction between the static charges is pure
Coulombic [u (r}0: 1/r ].

Exciting a density N, of electrons depletes the
magnitude of the bond charge. We rewrite the
dielectric function (4) as

(Z Z—/ep)+ +2Zi', =Z, (22)

using charge conservation, and counting the elec-
tronic charge per atom,

kg 4n(Np N, )—e h
e(q) = 1+ +

e p q m(Es, ~)

k,= 60+
q~o q

(21)

eo describes the semiconductorlike dielectric con-
stant which linearly screens the ions. Once again

ZZb-
2&o

Here Z~ is the new bond charge and Nz is the
atomic density of Si (=Np/4).

The contribution of the bond charges to the
dynamical matrix ' 'C~~(q;N, ) is then

(23)

5

'z'Cg(q;N, )'= —e~ g (WZ)" [exp{iq.[R;(s)—R (s')]IG' p(q R +R;(s) R, R—(s'))—

—(1—5~ )(1—5; 5)e '
G~&(O,R;(s)—R (s))], (24)

where i =j =5 is excluded and where

W; = —,, Z; =epZs (i (4)
W;=1, Zi —4 (i =5) .

(25)

R;(s) are the bond-charge positions about ion s for
i (4 and R~(s)=0. R;(s}are

R i(1)=—R, (2)= —,a (1,1,1),

R2(1)= —R2(2) = —,a (1,—1,—1),
R3(1)=—R3(2)= —,a ( —1, 1,—1),
R&(1}=—R4(2)= —,a( —1,—1,1) .

G'ii in (24) is defined through

(26)

G'ii(q, r)= g f'~(r Ri)e — ' . (27)
I

Here the density N, of excited electrons provides a
screening medium of wave vector k, . fly is the
screened Coulomb interaction,

1 1 —k,'rf' p(r) =——e
r

(28)

(29)

C ~(q;N, )= ' 'C ~(q;N, )+' 'C ~(q;N, )

The q =0 part of the dynamical matrix is well

(30)

G'
p was-also calculated with an Ewald sum for the

screened Coulomb interaction. Finally,

I

behaved as is evident from the above formalism,
ensuring the charge neutrality of the system.

The dynamical matrix D„~(q;N, ) was construct-
ed and then diagonalized to find the dispersion
curves at different excited densities N, .

More sophisticated schemes to calculate phonons
in semiconductors are available. ' However we
choose the present scheme because it allows an in-
tuitively appealing way of adding excited carriers,
which the more elaborate bond-charge models do
noi.

IV. RESULTS

The phonon dispersion relations were calculated
along the [100], [110],and [111]symmetry direc-
tions, for a range of excited electronic densities, as
plotted in Fig. (3). The results are summarized by
the following points.

(1) For the ground-state semiconductor, i.e.,
N, =0, our calculations agree with the earlier re-
sults of the bond-charge model for Si." The flat
TA modes are a characteristic feature of group-IV
semiconductors [See note added in proof. ]

(2) Increasing N, up to 10 ' cm 3 resulted in
negligible changes in the phonon frequencies. At
10 ' cm the TA mode was slightly raised due to
the change in e(q) affecting the electronic contribu-
tion in (25).

(3) Raising N, beyond 10 ' cm produced
dramatic effects in the TA modes. The zone-
boundary TA frequencies decreased rapidly with
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increasing X„although the long-wavelength pho-
non frequencies were not altered much. It is the
zone-boundary phonon at the [111]zone boundary

[co&A(L)] which first becomes unstable. A graph
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FIG. 4. Zone-boundary TA phonon frequency at I.
as a function of the excited electronic density, shoveling
the zone-boundary mode softening. The frequency goes
to zero at N, -9X 10 ' cm and becomes imaginary
beyond this density.

of corA(L) vs N„Fig (4), s.hows that the transition
is a very sharp one, the instability occurring at a
density X,'"' 9X10 ' cm which corresponds to
=4.5% of the total electronic charge. Most im-
portantly, we note that at the transition point, on1y
one phonon mode, the [111]TA mode at L, is un-
stable, while all other phonon modes are stable.

(4) Beyond the critical density ¹"',the calcula-
tion has no obvious meaning but we did check that
we obtained agreement with Martin's free-electron
limit. For N, greater than E,'"' a larger portion of
the TA mode, from the zone-boundary inwards, is
unstable, until the entire TA mode destabilizes in
the N, =%0 free-electron limit.

(5) Examining the different contributions to the
dynamical matrix, we find that the rapid decrease
in the zone-boundary frequencies above N, -102'
cm is due to the depletion of the bond-charge
magnitude Zb, which occurs significantly only
when X, is some macroscopic fraction of Xo, the
total electronic density. This happens roughly
when X, exceeds jI0 ' cm . According to Eq.
(26) which expresses the functional dependence of
Zb on N„ the bond-charge magnitude Zb vanishes
for N, & 1.8)&10 cm . However the instability
occurs well before we reach this point.

(6) With increasing N„ the optic modes become
more free-electron-like with coro(q) increasing, as q
increases from the zone center towards the zone
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boundary.
(7) Calculations were performed with different

choices for the ion-core potential u (q) and the
dielectric function es(q). It was found that the
relevant physical features of the phonon spectrum
and the TA mode softening remain the same,
though the actual numerical value of X,'"' changes
with different u(q) or different es(q). From these
calculations a reasonable value of X,'"' could lie in

the range (6—10)&(10 ' cm . For definiteness we

show the results of a particular set of calculations
in Fig. (3) which produced ¹"'=9)&10 ' cm

V. CONCLUDING REMARKS

We undertook this calculation because we were
intrigued by the plasma-annealing hypothesis of a
nonequilibrium solid in which the lattice loses
shear resistance because of electronic excitation.
Our calculations do not support this idea, giving a
zone-boundary mode softening instead. This
mode-softening effect might, if at all, occur in

highly transient situations or on very short time
scales (=1 ps), where the nonequilibrium condi-
tions of our model could be realized. We doubt
very much that this effect occurs in photoexcited
silicon with the usual annealing pulses.

Our calculation has the merit of being complete
and well defined. The key ingredients for the
transverse-acoustic mode softening are the weaken-

ing of bond charges and a corresponding metallic
screening. The assumptions of small electron-
phonon scattering and electron thermalization are a
way of achieving these ingredients.

It is tempting to speculate that our calculation
contains some of the physics of the well-known
temperature-induced transition in tin—from the a
(i.e., diamond structure) form to the P-tetragonal
metallic phase at 13' C. A superposition of [111]
shears has been identified as the displacement
needed for this structural change. Since o,-tin is
a semimetal with a zero direct band gap, electronic

excitations are energetically inexpensive. The pro-
cess we have calculated can, however, only be part
of the explanation of this transition because (i) the
transition is first order with a 21% increase in
density in the P phase, and (ii) though the shear
modes of a-tin are already quite soft, further mode
softening near the transition has not been reported.
It is possible that our process signals a second-
order transition which is overtaken by a first-order
one, in which case the mode softening should be
evident in superheated a-tin. We intend to study
further both this transition and other structural
"metallization" transitions in diamond-structure
crystals. ""

Note added in proof Sma. ll differences between

our X,=0 curves and the modes calculated by
Martin in Ref. 11 are due to slightly different in-

puts. The results shown in our Fig. 3 above do not
include an "exchange correction" to the dielectric
function, with the consequence that our TA modes
are somewhat softer than Martin' s. Since the two
calculations bracket the experimental [111]zone-

boundary TA frequency, the refinement has no ob-

vious advantages for our purposes. However, in

recent calculations, we have closely matched
Martin's results for the unexcited system. On exci-
tation, the characteristic mode softening described
above again results, with X,'"'

being somewhat

higher, presumably because one starts with stiffer
modes.
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