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The changes of the vibrational amplitudes of molecules in a crystal lattice, due to in-

teraction between the optically induced dipoles, are shown to account for the nonlinear re-

fractive index of a crystal. The general expressions for the fourth- and sixth-rank ten-

sors, X;Jkl( —co, co,~, —co) and X;JqI~„(—co, co,~, —co, co, —co), for a crystal lattice, are de-

rived. The results of numerical calculations for diamond and benzene lattices are report-
ed to prove that the contribution to the susceptibility tensors of the effect presented is

comparable with the electronic effect of hyperpolarizability.

I. INTRODUCTION

In previous papers of Piekara' and of Piekara
and Ratajska, the mechanism of mutual interac-
tion of dipoles induced by a strong optical field in
crystal lattice or quasicrystal lattice in liquids was
shown to lead to vibrational amplitude and fre-
quency changes and thus to nonlinear refractive in-
dex of the medium. The assumption of short-lived
(r-10 ' s) quasicrystallic structure of liquids in
the region of action of short-range forces can be
justified by x-ray experimental results. ' Hence, in
the case of picosecond excitation in liquids, when
the mechanisms with the response time longer than
the pulse duration (e.g., orientational effect) are to
be almost neglected, ' the effect proposed by
Piekara' should play an important role. In
liquids composed of spherically symmetric mole-
cules it remains the sole reason, aside from hyper-
polarizability of molecules, for nonlinear refractive
1ndex changes.

The same mechanism of vibrational amplitude
shifts due to induced-dipole —induced-dipole in-
teraction of an individual molecule with its nearest
neighbors should also contribute to nonlinear re-
fractive index of crystals, whereas in the former
considerations of this problem only the clearly
electronic effect of hyperpolarizability was taken
into account.

In the present paper the theory presented in
Refs. 1 and 2 for a one-dimensional crystal lattice,
is extended to the three-dimensional crystal lattice
(Secs. II and III). In Sec. IV one derives the ex-
pressions for optical susceptibility tensors

&ijkt( Oj~aj~aj~ CO) and &ijklmn(

—co,co, —co), related to nonlinear coefficients n2
and n4 in the expansion of refractive index n with
respect to the optical field E:

n=no+n2[E( +n4/E/

by the formulas
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where the index p denotes a chosen direction in
which the refractive index is measured; e,z is a
cosines direction between axes i and p and

rj; =E;/
~

E
~

. The results of numerical calcula-
tions performed for diamond and benzene lattices
are reported and compared with the results due to
electronic effect (Sec. V).

II. MOLECULAR FIELD IN CRYSTAL

We are considering a crystal lattice composed of
identical, rigid, nondipolar molecules or atoms per-
forming translational and rotational vibrations
around their equilibrium positions. Small displace-
ments of the (ln)th molecule, where l is the number
of elementary cells and n is the number of mole-
cules in a cell, are denoted by u(ln) and 8(ln) for
translational and rotational vibrations, respectively.
%e use an assumption, often used in molecular
crystals, ' ' that the rotational vibrations take
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place around the molecular symmetry axes. Hence,
the vector

8(ln) =[8 (ln), 8„(ln)8„(ln)]
is defined in a coordinate system of molecular
symmetry axes (w, u, v), whereas the vector

u(ln) = [u„(ln),u~(ln), u, (ln)]

is defined in a system of crystallographic axes,
x,y,z.

The polarizability tensor of an isolated molecule,
determined on crystallographic axes, denoted by
[a;~(ln)] and dependent on small rotational dis-

placements, is given by':

a J(ln) = W;„(ln)R„„(8~(ln))R„t„(8„(ln))Rx„(8„(ln))a„+,z'(8„,ln))R~ '(8„(ln))R,'(8 (ln)) W,J'(ln), (3)

where

~ ~

19J =X9y9Z 9Y)9K99P9V9P90 9g= N9Q9U ~

E f(ln) =f;(co)E; +g AJ(ln, l'n')EJ f(l'n'),
jE'n'

(4a)

where f;(co) is a local-field factor, which in this

paper is assumed to be a Lorentz factor
f;(ro) =[@;(co)+2]/3 and

akj (l'n ')
A,J(ln, l'n') =g

r (ln, l'n')

rk(ln, l'n')r;(ln, l'n')
X —5k

r (ln, l'n')

(4b)

is a 3¹rank tensor (N is the number of elementa-

ry cells, s is the number of molecules in a cell) of

[W(ln)] is a transformation matrix from the
(ln}th molecular axes to crystallographic axes,
[R (8 )],[R (8„)],[R (8„)]are matrices of rotation
around w, u, and v molecular symmetry axes,
respectively, and [a»] denotes a polarizabihty ten-
sor of an isolated molecule, determined on molecu-
lar axes. If the crystal is subjected to an external
electric field E=E(co)coscot of a light wave, the to-
tal electric field acting on each (ln)th molecule is
not only a macroscopic local field, F; f;(to)E;, =
but also a field of dipoles induced in adjacent mol-
ecules:

I

dipole-dipole interactions.

r(ln, l'n') = ro(ln, l'n')+ u(ln) u(l—'n')

is a vector between molecules (ln) and (l'n'),
whereas ro(ln, l'n'} is a vector between their equili-
brium sites. The summation in (4a) is taken only
over the nearest neighbors (l'n') of a given mole-

cule (ln) The. molecular field acting on a molecule
embedded in a crystal lattice is obtained as a gen-
eral solution of the Eq. (4a):

E f(ln) =g T,J(ln)FJ,

where TJ(ln}=gt,„,Ttj(ln, l'n'), and TJ(ln, l'n') is
the [iln,jl'n']th element of matrix (I —A), the
inverse of (I —A).

III. VIBRATIONAL FREQUENCY
AND AMPLITUDE SHIFTS

According to (5) the Hamiltonian of interaction
of a crystal with an optical field,

Ht ————,g a,j(ln)E f(ln)EJ f(ln),
Inij

has the form

Ht ————, g at~(ln)T~k(ln)TJP(ln)FkF~ .
Enijpk

If we denote a small displacement of a molecule by
w„(ln), where

v m u„(ln) for translational vibrations r =x,y,z
w„(ln)= '

~I„8,(ln) for rotational vibrations r =w, u, v

(m is the molecular mass, I„is the molecular moment of inertia with respect to the rth axis), then the equa-
tion of motion for the (ln)th molecule with accuracy to the third-order terms in small displacements w„(ln)
has the form:
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w„(ln)+g Ho (In, l'n') g—A tk (In, l'n')FIFk w (I'n' )
1'n'r' pk

=g 4 tz'„'(In)FIFk——, g Ho ' „-(ln,l'n', I"n" )

pk 1'n'1"n "r'r"

—g A tk '; (In, l'n', I"n")F&Fk w„(l'n')w„-(I"n" )
pk

1t l1tt tt1III III t tt ttl

—g 4 tk
' „-„-(In, l'n', I"n",I'"n"')FIFi, w„(l'n')w„-(I"n")w„-(I'"n"'),

pk

(9a)

where

(j) Ho

Bw„(ln) Bw„.I n

are the succeeding derivatives of the Hamiltonian Ho of an undisturbed system, whereas the corresponding
derivatives of the interaction Hamiltonian HI ———g k A zkF&Fk,pk

A~pk =
2 gaq(ln)T;k(ln)Tip(ln),

lnij

(9b)

are given in Appendix A.
Taking advantage of translational symmetry of a crystal, we introduce normal coordinates Q-, defined

by the relation':

w„(ln)= g Q- e„(ni
qa)e'q

qa
(1Oa)

where q is the reciprocal lattice vector, a is the number of vibrational modes corresponding to q, and the
vectors e"(n

i
qa) fulfill orthonormality relations:

g e (n
i
qa)e; (n

i q 'a') =5(q —q ')5

g e (n
i qa)ei (n'

i qa) =5;15„„.
qa

Substituting (loa) into (9a) we obtain:

Q-„+(w-„)Q- =+~ k (a)FIFk
pk

(lob)

q q q
0 a a' a

~t +II
I(3) q q q

a a a FIFk Q~, .Q~ i

pk

~ I ~ tl ~ frl
1 q q q q

X 0 I tt rrr
tt~ ttt t tt+ttt

~ I ~ tt + III

~~pk a a a a FIFk Qq Qq- -Qq--
pk
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where

~pk '(a}=VXP ~pk'r'(n}er (n
I qadi(q}

+ ~ I +II
()
0 a a' a

1

+ lnl'n'l"n "rr'r"
Ho~, (ln, l'n', I"n" }

Xe, (n
~
qa)e (n'

~ q 'a')e (n"
~ q "a")e'(" ' ""+q ' '" '+ q

~ I ~ II ~ III
()

a a' a" a"'
1

nn n n rrrrll Ill
~ ttltll III I II ttl

Ho ';.„-(In,l'n', I"n",I'"n"')e„(n
~
qa)e, (n'

~ q 'a')

&&e„(n"
~ q "a")e„(n"-'

~ q
"'a'")

i[ q r(l)+ q
' ~ r(1')+ q

".r(l")+ q
'" ~ r(l"')]

and analogically for

I ~ II
q q q4 pk I II

and

~ I ~ II ~ 111

P r(4) q q q q
a a' a" a"'

I

If we consider only one monochromatic wave incident on a crystal, E=E(co)coscot, our interaction Hamil-
tonian is time independent because

Ep(t)Ek(t) = , Ep(co)Ek(c—o)(1+cos2cot), (12)

and the term oscillating with frequency 2' can be neglected because it is very quick in comparison with vi-
brational frequencies of a crystal lattice, to- —10" s ' &geo-10' s '. co-„ in Eq. (11) denotes the fre-

quency of normal vibration a of a crystal lattice in the presence of a light-wave electric field and is to be
found as an eigenvalue of a secular equation:

r

(co- ) e„(n
~
qa)=g Ho~ (n, n', q) gA pk ~—(n, n', q)FIFk e„(n'~qa),

r'n' pk

where

Ho ' (n, n', q ) =Q Ho~ (On, ln')e' " ' ' ',
l

4 pk ~(nn', q)=+A pk(On ln')e'q ' ' '.
l

This equation can be solved by the perturbation method because

~

P pk ~ (n, n', q )FIFk
~

— E =10 E esu,
dr; dr& 1 —(a) /r 3

[(a) is molecular polarization] whereas

~HO~ (n, n', q)
~

-neo —10'" esu (m —10 g, co -10' s '},
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which means

k
' (n, n', q)F~Fk ( && (Ho (n, n', q) (

even for E2-1()'0 esu. Thus the vibrational frequency, changed by the optical field, is obtained from (13) in
the form:

(14)

where co- denotes the vibrational frequency of a mode a, with the eigenvector e(n
~
qa) in the absence of

an external field, being an eigenvalue of (13) after putting E=O, and

with

qa pk q a pkms

g'k2'(q~)= —g e„'(n
~
qa)Mg, ~(n, n', q)e„(n'

~
qo.'),

1 I
n, n, r, r

g'&~'„(q~)=g g g [e„'(n
~
qa)P~k~(n, n', q)e, (n'~ qa')]

t~ I II +Ill rl It rill Q7~ Q)~ P P
7 7 9 t 7 qa qa

X [e„*(n"
~

qa')4 Ik,' „-(n",n"', q)e„(n"'
~
qa)] .

Equation (11), in turn, has the following solution:

Q- (t)=Q- (0)cos(ro- t+y- )+d- —
z g Ho

Nqa q q *aa

~l ~II
q q

I II d + I ld~ II IIa a

q
'

q "a'a"
i+~ ti

P q I+I+f q
ll+II+f

q +

q q' q"
a a' a"

L

X Q-„(0)Q-, -(0)
cos[(ro-. , +co-„„)t +y, , +y „„]

2 2Q7-i —( Qj ~, , +Qj-i„„)qa q a q a'

+2Q
q ~ -, (0)d-„-„

cos(co~ ir +y~ i, )

2 2
CO~ —CO~ Iqa q a'

q
I

q
II

q
I I Ia Ia I IaI

t+~ ii n+~ terqa q a q a qa
+ i t+g~ ai nt+g~ stt neQj~

q q q q
0 a ai all all l

~ I ~ II ~ lil
q q q q

XQ- .(0)Q . (0)Q -. -.(0)

c[o(st~ +co~» +co~ )I +y~ +y~ ii+iy~iii ]q a
2 s2

CO ~ ( CO ~ I J +CO + tt tt +CO ~ tll Ill )qa ~ qa q a q a

where we have introduced the denotations ~
q
a= —cu

q a, and the sum is over —Oo & qa & 00.
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~l +II ~I ~ ff
q q q, , q q q g(3)

pk

q q q q q

ttta

~ lfl

III d~ III tlta

whereas

d- = gA „"'(qa)FF
CO~

(16)

with

determines the change of the equihbrium position for a vibration a. In the case of rotational vibrations it
corresponds to the change of the equilibrium angle between the molecular and crystal axes. co is the vi-

brational frequency of a mode a in the presence of an electric field:

CO~q

a

I ~ ff

a a' a"

Q- .(0)Q-- -(0)
5(co-. , +co-, „—co- )+4d-, .d-, -

Q q. (0)

q
t

q
II

q
tll+t+If+ttl

q q' q" q"',
, q q' q" q"'

O I If III ~ pk I II III p
pk

g'-, .(0)g'-,„.(0)g'-, „,.„,(0)

Q- (0)

The vibrational amplitude of a mode a,g (0),is found from the initial conditions:

Q-, (I =0)=Q -,='(I =0),

Q-,.(r =0)=Q-,. (I =0) .

We are interested only in a mean amplitude and a mean-square amplitude, as will be shown in the next
section. Hence, we have obtained the following expressions: (i) for the mean amplitude:

((g'-, .(0)», =d-,.—, g a,'"
2' a

q a q
'

q "a'a"

~l ~lf
q q

I If d + t td~tt tla a

f

( I
g='(0)l'&

4~2 a a' a'
qa q 'u'

and (ii) for the mean-square amplitude:

(( I
g'-, .(0)l'»„= (

~

g'-, =.'(0)I'&~i ——,
'

~'-,".(I -g'-,".)

(18)

+ —,(q'q' )'(1 —g'-" ) ——,rl'-' (1—g'-" )j+2d'- (1—g'4' ),
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where the anharmonic terms g'-",g'-', g'-„',g'-' are

given in Appendix B.
(

I
Q: I ) denotes a mean-square vibrational

amplitude in the absence of an external electric
field, while averaging is performed according to
the formula:

p; (In ) =g af'(ln )FJ.
J

=g a,j(In)EJ'~(ln), (22)

which leads to the following definition of a crystal
polarizability, dependent on molecular displace-
ments:

—Ho/kT
Tre

with a Hamiltonian

(20)
Htj ——g a(k(ln) Tkj(ln) .

ln, k
(23)

taken in a harmonic approximation. Such an ap-
proximation is sufficient to get (18) and (19) with

accuracy to the terms linear in anharmonic coeffi-
cients. The sign (( )r)denotes that the result has
been averaged over all possible phases of a vibra-
tion at a moment t =0, when the field E appears.

IV. SUSCEPTIBILITY TENSORS

We assume the polarizability of a crystal to be a
sum of effective polarizabilities of the molecules

composing it:

Such a model of crystal polarizability is a good ap-
proximation in molecular crystals, where inter-
molecular forces are much weaker than intramolec-
ular forces. It justifies treating molecules as being
rigid and neglecting their internal vibrations.

The similar model has been used by Schettino
and Califano' in molecular crystals. They intro-
duce the molecular electric field acting on an indi-
vidual molecule due to dipoles and quadrupoles in-

duced in adjacent molecules by an external electric
field. It allows them to find the dependence of ef-
fective polarizability on rotational and translational
displacements of molecules and to determine
Raman-active modes.

The polarizability [Eq. (23)] can be expanded in

power series of small vibrational amplitudes':

H;I =g a,'f(ln),
1n

(21) ~(0)+y ~(i)( )Q&

the effective polarizability being a polarizability of
a molecule embedded in a crystal lattice. Then, ac-
cording to the definition [Eq. (5)] of an effective
electrical field acting on such a molecule, the di-

pole moment p, (ln) induced in a (ln)th molecule
can be determined in two ways, where

q aa'

E EQqQ-, +

(24)

H'J"(a) =V XQ g [a'k', (On, In')
Tkj

'(n)+ a'k~'(n) Tkj"„(On,ln')]e, (n'
I
qa)5( q),

inn' kr

g [a';k' (On, l ',n' In) Tz'k~(n) +a'(k)nT 'kj(On, ln', I'n" )
lnl'n'n" krr'

+a,'k'„(On,ln')Tkj"„(On,l'n")+a,'k'„(On,l'n")Tkj", (On, ln ')]

)&e„(n
I
qa)e,*(n'I qa')e'

and the displacement derivatives Tkz'„(On,ln'), Tkj' (On, ln', I'n" ) are given in Appendix A.
Substituting (24) into the definition of the polarization vector P(t), which is a mean dipole inoment M(t)

of a crystal per unit volume (V is the volume of a crystal),

P, (t) =—(M;(t) ) =—g (Htj )fj(co)EJ(co)coscot,
1

V ' V
(25)
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and taking its Fourier transform yields:

P;(co)= g—+,',"+g&,',"((x)«g », + —,g ~,'," && l g-, I'&r&+
j a qa !'

where «g &z& and « ~
g-

~ &z& are given by (18) and (19).
Comparing (26) with the phenomenological formula for P;(fo),'

P;(!gal)=Xj(fgf)&~(fg/)+3Xfjkf( f0 )Ej()Ek(~)~l(

+ toxg k/mn( ~,fo—,~, ~)fog ~)Ef(k()&f( »&—m(&)&n( —~) g

(26)

(27)

we obtain the optical susceptibility tensors of fourth and sixth rank, connected with nonlinear refractive in-

dex coefficients n2 and n4 by (2),

1
X,jk/( co,fo—,fo, —~)= f (co)ff(co)fk(~)ff(~)

g [9";;"(a)8kf"(a)+&,'k'(~)&,'("(fr )]

(2) ~ (2)

+f' (qG) 2 [1 gkl (q~)]+ +/k (qfr) [1—kjf (qf )](g) +k! ( q+ ) ()) (2) Jl q (1)

qa N~qa ~qa

(28)

X,jkf .(—.. .—» — )

f;(a) )f, (co)fk(~)ff() fm (fo)fn (~ )
1

9",J"(a)[Bk/' „((r)+&knmf(&)+&mnki(&)+&mfkn(&)]
a

+ +fin(+)[~kljn(fx)+~knjl(f )+ink/(+)+~jlkn(+)l

+ —,g t+'~j"(q~)P4/"'. (q~)+&k»" f(@fr)+&"'k/(q&)+& fk. (q )1
qa

+Hg'(qa)[&jf'mn(qef)+&~nmf(q/X)+&' njf(q~)+&mijn(q+)]

+ +;'"(q~)[&kf'f'. (q~)+&k jl(q&)+~j kl(q~)+&~Va'. (q~)] J (29)
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where

ak'I'(a) =IIIk"(a)

~kI "«) 1

I +
CO~ 4N~

ak",.'„(qa)=ak",„'.(qa) =a,k2.'„(qa)=&,k„' (qa)

, I—I,—.. . It (q ')
& ~g-,

(3) q q (2) ~ l 2

0 0 0 ~k'1"(a')~ '„"(a")
H I II0 I II

I III CO+ &&1

q, a'Qa

~kl (qa) ~kl (qa) ~lk (qa)=~1k m( la)

I
'&(I —4i'. (qa)]+&ki".(qa) &

I Q-, I

'&(I —4~'. (qa)]
qa

I(1) I(1)
+2-

4 (1—ski .«)]&(q»
~ki (a)~mn (a) (4)

CO~

and kkl ( la) Pkl (qa) ski (qa) gkl (qa) are
given in Appendix B.

The assumption of neglecting the term oscillat-
ing with frequency 2' in interaction Hamiltonian
(Sec. III) Hl corresponds with neglecting the terms
of the order co /co-10 in Eqs. (28) and (29).
On the other hand, while treating the molecules or
atoms in a lattice as rigid, we do not take into ac-
count temporary dipole moments arising as a func-
tion of their small displacements. This simplifica-
tion does not influence Eqs. (28) and (29) because
the terms connected with the dipole moment would
a,lso be of the order co /co.

The results obtained in this paper for the tensor
X,ski( —co,co,co, —ar) may be compared with the
general expression for the phonon part of the sus-
ceptibility tensor Xlikl( —(2col —co2),col, co1, —coq),
responsible for four wave mixing in crystals, ' '
after putting ~& ——co2. The outline of the approach
to this problem is similar. Substituting the solu-
tion of the anharmonic equation of motion for nor-
mal vibrations in crystal to the expansion of crys-
tal polarizability, with respect to the amplitudes of
those vibrations, Flytzanis and Bloembergen' find
the foHI1 of tile teIlsol Xllki( —(2601—N2),
~1,co1, —co&). They do not take into account the
change of the vibrational amplitudes, which is a
function of an external electric field. Hence, they
obtain only the term corresponding to the first

I

term, —H,'i"(a) in Eq. (28). The problem of
dispersion of the mechanism discussed in this pa-
per has already been treated and will be published
elsewhere.

V. NUMERICAL RESULTS AND
DISCUSSION

Using the Eqs. (28) and (29) we have calculated
the susceptibility tensors due to the optical-field in-
duced vibrational amplitude shifts of q =0 optical
modes in diamond and benzene lattices. Acoustic
q =0 modes do not incur any shifts. The structur-
al forces acting between the molecules (or atoms)
in the lattice are assumed to be of a Lennard-Jones
type.

A. Diamond

In diamond, the optical field cancels the triple
degeneration of the only optical q =0 mode of a
frequency ~0——1332 cm '. Table I shows the fre-
quency shifts [see (14)] obtained for three different
directions of an optical-field vector E towards
crystallographic axes. It can be seen that the opti-
cal field necessary to cause the frequency shifts of
1 cm ' has to be as strong as E —10 esu. Simi-
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TABLE I. bco =co c—oo r——oot1' ', bv=vo[ —,rl' '+ —,(r1' ') ]; g' '=0 for diamond. The signs
~~

and l denote the vi-

brations parallel or perpendicular to field E direction.

IIEACO YJ
~ hv IIE he@

Direction of E lE
2 E2 E2 E2

( 1016 s
—2) ( 10—10) ( 1p

—10 m
—1) ( lp16 —2)

IIE l E lE
E2 E2 E2 E2 E2

( 10—10) ( 1Q
—10 m 1) ( 1Q16 s 2) (1Q

—10) (1Q
—10 m

—1)

E=E[1,0,0]
E= [1,1,0]

E= [1,1, 1]
3

2.15

—5.3

—8.5

0.004

—0.008

—0.014

2.3

—9.3

—6.25 —0.01

0.55 0.001

—0.93 —0.0015

—6.5

0.6

—6.25 —0.01

—6.25 —0.01

—0.93 —0.001

—6.5
—6.5

lar results were presented by Ganesan, Maradudin,
and Oitmaa for a dc electric field interacting
with a diamond crystal. There are differences in
the signs of the shifts due to the other model of
polarizability assumed by the authors which is a
sum of the electronic polarizabilities of bonds be-
tween the pairs of atoms.

Table II shows the fourth- and sixth-rank sus-

ceptibility tensors, respectively, calculated from
Eqs. (28) and (29). In the last column of Table II
are the results: (i) theoretically calculated as due
to electronic hyperpolarizability of diamond crys-
tal, " (ii) obtained in the experiment of four wave
mixing ' and interpreted by the authors as a non-
resonant part of the susceptibility tensor arising
from the redistribution of electronic density. How-

ever, on the basis of the theory presented in this
paper, we suggest that the experiment (Ref. 21)
should show the contribution to susceptibility ten-

sors from both mechanisms clearly electronic and
connected with the changes of lattice vibrational
amplitudes. The very good agreement of the order
of magnitude of the numerical results of Table II
with experimental results ' confirms this sugges-
tion.

Table III contains the nonlinear refractive index
coefficients n2 and n4, , obtained from the Eq. (2)
for three optical-field directions. They fulfill the
conditions required for the self-trapping of light
beams to occur, which has been observed recently
in diamond crystal.

B. Crystallic benzene

In this case we have to consider 21, q =0, opti-
cal vibrational modes, which means 12 rotational
and 12 translational modes. The frequency shifts,

TABLE II. Nonvanishing, different components of fourth- and sixth-rank susceptibility
tensors in diamond.

The results
obtained in
this paper
for

A, =6328 Ref. 11 Ref. 21

( —CO, CO, CO, —CO)

gxxyy( —CO, CO, CO, —CO)

+xyyx ( —CO, , a), —CO

+xxxxxx (

+yyxxxx( i~&p pp —~)
+yxxxxy( ~ & & & ~& —~ )

Xxxyyxx ( ~y CO~ CO~ Q)s CO~ —CO)

+xxxyxy( ~~~~~ && ~)
+xxyxyx ( s & & ~&~& —~ )

Xxxggyy( —~,~,CO, —CO, CO, —CO)

Xxgxgyy( —~~, CO, —CO, Q), —CO)

2.58)&10 ' esu
1.42&10 ' esu
3.31)&10 '" esu

—6. 11g 10 esu
—2.99)& 10 esu
—7.00)& 10 esu

0. 13&(10 esu
1.91)&10 esu

—1.73)& 10 esu
2.21&(10 6 esu

—0.51)&10 ' esu

4.3)&10 ' esu 4.6& 10 ' esu
1.84)&10 '" esu
1.72&10 ' esu
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TABLE III. Coefficients n2 and n4 in the direction
of a field E for diamond.

Direction of E

E=E [1,0,0] 2.0X10 ' esu —1.55X10 esu

E= [1,—1,0] 4.32X10 ' esu —0.82X10 esu
2

E= [1,1,1] 5. 1X10 ' esu —0.86X10 esu
3

X;;ki( ro, co,ar—, co)= f; (—co)f, (co—)fk(co)f~(co)

X gy,p (n)&~J'(n)

X T„"'(n)T,"'(n), (30)

shown in Table IV for an electric field directed
along each of crystallographic axes, appear to be
also of the order of 1 cm ' for E —10 esu. The
susceptibility tensors are due to two mechanisms
[see Eq. (15)]: (i) the change of the equilibrium po-
sition for rotational vibrations, which can be treat-
ed as quasiorientational effect, (ii) the change of
the vibrational amplitudes. The results of calcula-
tions for both effects are shown in Tables V and
VI. In the last column of Table V there are the
susceptibility tensors due to hyperpolarizability of
benzene molecules, calculated by the author from
the formula:

axes, and the tensors T&J '(n) are defined by (5) for
molecular displacements equal to zero. Compar-
ison of the results contained in Tables V and VI
proves that both effects discussixi above are of the
same order of magnitude. The nonlinear refractive
index coefficients n2 and n4 [calculated from Eqs.
(2) and due to the effect of elastic lattice vibra-
tions] are presented in Table VII.

The general conclusion of this paper is that a
nonlinear refractive index change in crystal is due
to two comparable effects: distortion of electronic
clouds and the shift of vibrational amplitudes of
molecules (or atoms) in crystal lattice. Accom-
panying vibrational frequency shifts are too small
to be observed in dc electric fields, but they should
be observed in the area of a focused light beam,
where E —10 —10' esu.

C. Liquid benzene

According to the theory of the quasicrystalline
structure of liquids in the region of action of
short-range forces, we make an assumption that a
liquid is composed of very small, randomly situat-
ed, short-lived crystals. If we ascribe to each of
them the susceptibility tensor X;jkI calculated for
the crystal lattice of a given substance, then the
susceptibility tensor of a liquid can be obtained by
isotropic averaging of X;Jki over all possible dirix:-
tions of crystallographic axes with respect to the
frame of reference connected with the optical field.
Let E=E i i be an electric field vector expressed in
a new frame of reference (1,2,3), then

where yi~„(n) is the hyperpolarizability tensor of a
benzene molecule, shown on crystallographic

6'p~= Fjj ejpej~ (31)

TABLE IV. The vibrational shifts Lv/E =—vo(q' '/E ) in benzene. The denotations of the vibrational modes are
explained in Ref. 24. (a) Translational vibrations along x, y, z axes; (b) rotational vibrations around u, v axes. The vi-
brations around w axis are not shifted in the model applied in this paper.

Direction of E
W„(x) W„(y) A„(z) B[.(y)

Vibrations
B)„(z)

10—10 —1

B2„(x) B2„(z) B3„(x) B3„(y)

E=E[1,0,0]
E=E[0,1,0]
E=E[0,0, 1]

(b)

—1.02
—3.60

1.78

0.09
1.30

—0.72

—0.20
0.70
0.12

0.16
—0.92

0.14

1.84
—2.30
—0.60

0.05
0.40

—0.08

1.96
—2.30
—2..16

—1.47
0
1.08

—1.07
0.25

—0.05

Direction of E
At( u) Ag(u) B]g(g) B)g(U) B2g{u)

10-" cm-'
B2g(U) B3g(u } B3g(u)

E=E[1,0,0]
E=E[0,1,0]
E=E[0,0, 1]

—0.98
1.41

—1.49

—0.64
0

—0.28

—0.05
0,26

—0.48

—0.52
0
0.35

—0.41
1.19

—0.41

—1.75
0

—0.70

—0.23
0.72

—0.26

0.56
0
0.35
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TABLE V. The fourth-rank susceptibility tensors for crystallic benzene; pijki denotes a
quasiorientational mechanism of the change in the equilibrium position for rotational vibra-

tions; fiji denotes the effect of vibrational amplitude change.

10 '3 esu

Total

~ijkl

Effect of
hyperpolarizabihty

g~( —COsNsCOs —N )

g~yy( —
CO~ N, COs

—CO)

~x~( —CO, N

( —N, N, CO, —N)

gy~( —COs N, COs —CO)

P)@gal ( —CO~ CO, CO»
—CO )

( —CO, CO, CO, —CO)

g~( —N, CO, CO, —CO)

X (--',-',-,'-N)

3.910
—0.404
—0.807
—0.135
—0.270

0.842
—1.338

0.036
—2.431

0.036
0.253
0.507
0.253
0.507

—2.697
—4.925

3.340

0.0318
0.835

—0.104

—1.255

—1.288

3.040

1.213
—5.329
—0.807

3.205
—0.270

0.0318
1.677

—1.442
0.036

—3.686
0.036

—1.035
0.507
3.293
0.507

0.434
0.830
0.830
0.970
0.970
0.662
0.429
0.030
0.030
0.033
0.033
0.960
0.960
1.012
1.012

+pvpgr g +gj7gl & eipej4rpeiz &

ijkl

&ijlmn &sip jalap is mHns& ~

ijklmn

(32)

(33)

where i,j,k, I are crystallographic axes, p, v,p, 0.,8
= 1,2,3, are laboratory frames of reference, and

e;& is the cosines direction between i and p axes.
Numerical results obtained from Eqs. (31)—(33)
are shown in Table VIII. The picture of liquid
presented here is a very rough approximation.
However, it allows one to appreciate the order of
magnitude of nonlinear refr'active index changes
due to the effects discussed in this paper. It ap-

pears to be of the same order of magnitude as hy-

perpolarizability of molecules and 1 order of mag-

nitude smaller than the orientational Kerr effect.
However, in the case of spherically symmetrical

molecules it can play an important role. As the re-

sults of Table VIII show, the mechanism discussed
ensures the self-trapping effect.
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APPENDIX A.

The succeeding displacement derivatives of interaction Hamiltonian (9b) are of the form:

&'[a;j(LN) Tik(LN)Tjp(LN))

iihj Bw„(lnQw„(1'n') Biij,.(ljn j)
0

(Al)

where, according to (S),

Tgj+ (LN)= Tj~j~ (N)=g (I A i)ij (N N )—
N'

(A2}

Ti'„'(LN,In) =Ti'„'(ON,1 —Ln)

(I A');i, (NN')Akp'„(L—'N', ON", 1 Ln }Tpj '(N" }, —
L'N'N"pk

(A3)
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TABLE VI. The only different components of sixth-rank susceptibility tensors in crystal-
lic benzene.

10 esu 0
Xijkmn

A
Xijklmn

Total

Xijklmn

Xzxxzzx{ —CO, CO, N, —NqCOq —Co)

Xy~zz( —
CO~ CO~CO, —N~CO~ —Co)

Xyxxyxx( —Co, CO~N, —N~N, —CO)

Xzzxzzz( —Co, N, CO, —CO, CO, —Co)

Xzxxzxx{ N~N, N, —N, N, —Co

Xyyyyyy(
—CO, N, CO, —N, CO, —Co)

Xzxyyyy(
—Co, N~CO, —CO~CO, —Co)

Xzyyzyy(
—CO, CO, N, —CO, CO, —CO)

X~~(—CO, CO, N, —CO, CO, —CO)

Xz&~( —CO, CO, N, —CO, CO, —N )

X.—.—.—.—.—{—CO~ CO, Co, —N, N, —CO )

Xzxzzzz {—Co, N, CO~ —CO~ N ~
—Co )

Xzzzxzz( —N, N, CO, —CO, N, —Co)

( —N, CO, CO, —CO, CO, —Co)

X~(—CO, CO, CO, —CO, CO, —Co)

Xzzxzyy ( —COq COq N q
—

COq Co) —Co )

Xzxxyzy( CO& CO& N& CO& N& Co )

Xzzyzyz ( N y CO/ CO
& N7 CO y N )

Xzzzzzz( —CO, CO~ CO, —N, Co, —Co)

Xzxz~( —CO, CO, CO, —CO, CO, —N)

Xzxzxzx ( —Co, N, CO, —Co, N, —Co )

Xyyy~( —CO, CO, N, —CO, N, —Co)

X~z( —co, co,co, —co, co, —co)

( —CO, CO, CO, —CO, CO, —Co)

Xyyyyxz(-NpCO, N, -N, CO, —CO)

Xyyyxyx{ N~N~N~ —N&N& —N )

Xyyzyzy( N&CO&CO& N&CO& N )

X~~(—N, CO, N, —CO, CO, —CO)

Xz~( —co,co,N, —co,co, —N)

Xzzxzxz( N~NyN~ —N&N p
—N )

Xzzzzyy(
—CO, N, CO, —CO, CO, —N )

X

Xzxzgyy(
—NpNpNq —N, CO, —CO)

Xxxzyzy{ N~N~Np NpNp —N)

Xzxyzyz ( —CO~ CO~ CO~
—N, Co, —N )

Xzzxzyy( —N&N&N, —CO, CO, —Co)

Xzzxyxy{ N~NyNy NyNy N)

X~xyx {—N~N~N~ —N&N& —N )

Xyyxxzz{ N~N~N~ —N~Np —N)

Xyy~( —N~N~N~ —N&N& —N )

Xyy ~{—N~N~N& —N&N& —N)

—0.35
0.011
0.071
0.070

—0.0109

—0.008
—0.023
—0.029
—0.088

0.0497
—0.025
—0.004

0.006
0.017
0.012

0.023
0.114

0.017
—0.015

—0.029
—0.004

—0.007
—0.018

—0.016
—0.075

—0.089
0.005
0.014
0.003
0.016
0.020
0.011
0

—0.001
0.007

0.026
—0.003

0.011

0.227
0.040

0.0003

0.027
0.018

0.006

0.088
0.133
0.044

—0.036
—0.055
—0.018
—0.0002
—0.001
—0.0001

0.028
0.042
0.014
0.026
0.035
0.013
0
0
0
0
0
0
0
0
0
0.005
0.005
0.005

—0.324
0.007
0.071
0.081

—0.0109
0.227
0.032

—0.023
—0.029
—0.088

0.077
—0.007
—0.004

0.012
0.017
0.100
0.133
0.067
0.078

—0.055
—0.001
—0.015
—0.001
—0.029

0.024
0.042
0.007
0.008
0.035

—0.003
—0.075

0
—0.089

0.005
0.014
0.003
0.016
0.020
0.011
0.005
0.004
0.012

TJ., (LN, ln, l'n')=TJ „'„(ON,l Ln, l' Ln')— —

(I —A ' ');k'(NN')A—I '~ (L'N', ON", l Ln, l' Ln')— —
permutations L 'Pf 'Q "pk

P, P

(I —A' ') (NN')A"'(L'N' ON'" l Ln) (I A' '—) (N'" N'~)—
I &&+&&&+IV

g A(') (L"Nrv ON" li —L i) T(0)(N
lp, f (A4)
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TABLE VII. Coefficients n2 and n4 in the direction of the electric field E for benzeme.

1955

Direction of E
Pl 2

(10-" esu)
n4

(10 ' esu)

E=E [1,0,0]
E=E [0,1,0]
E=E [0,0,1]

1.64
0.04
2.22

—1.33
0.88
0.33

= T~
' „-(ON,I Ln, l' —Ln', I"—Ln")—

6 (I A);k —(NN')A~&'~, (L'N', ON", I Ln, l'—Ln', l——Ln")
permutations L'N'N "pk '

P, l', 7'

[(I—A );k (NN')APj ~ (L'N', ON'", I Ln, l' L—n')—
L ic~rii~ IVI

X(I A' ')(~'(N—"' N'~)A'~'„,.(L"N'" ON" l" Ln")mp, r

+(I —A );k (NN')Ak( '„(L'N', ON"', l" Ln ")—
X(I—A'"),.(N'" N")A"' (L"N",ON", l L,n, l —L.n )]—

L L N NivNvNvilmns

(I —A ' ');~'(N, N')Akl"„(L'N', ON"', l —Ln)

X(I A' ')(~'(N'", N' —)A'" (L"N', ON, l' Ln')—
X(I A' ') '(N, N—')A"'-(L"'N 'ON" l" Ln" T( )(N—")

SP, I'

(A5)

TABLE VIII. Numerical results from Eqs. (31)—(33).

Mechanism n (10 ' esu) Ref. n4(10 24 esu)

Orientational
effect
Hyperpolariz ability

Discussed
effect
Experimental
results

7.58
1.4
0.34
0.33
0.45

1.95
2.25

26
27
26
27

—2.4
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=T~
' „-„-(ON, / L—n, l' L—n', l" L—n", l"' L—n"')

~ „(I——A' ');k'(NN') Ak '~;., -(L'N', ON", / Ln—,l' Ln—', l" Ln—",L"' Ln—"')
pe~utations L'N'N"pk .

p pt hatt
pttt

I tt~ttt~ pf~

[(I A' —')gk (NN')Akl tt, -(L'N', ON"', / Ln,—I' Ln'—, /" Lnii)

1+—
2

X(I—A'") '(N"'NIv}A(I) „,(L-NII ON L. ,
7NP9 l'

+{I A }'k {N N }Ak(I, - (L'N', ON"', I
) (N N )A .„(L"N ON" / Ln /i Lni l«L i, }

9

+ 2 (I A' );k—(NN')AVi, n'{L N', 0N"', l Ln, / —Ln'}—

X(I—A ) (N'" N )A (L"NIv pN» /i' L ii l«i L iu)~

[{I A' ') k—'{NN')Ak)', (L'N', ON" l
L»I »t~t»~IVNVNV

X(I—A' }I (N'" NIv)A(I) „(LNIv ONV /„

X(I A' ') '(N—,Nv')A „,(L'"NVI pN i l«i L «i}

+{ A } {NN )Akl t-{L'N', ON"', l" Ln")—

X (I A (0))—1(Niii NIV)A (2) (L„NIV
9

X (I —A ) (N N }A „,(L 'iNvI pN« l»i L iii)
sp, r

+(I A "}k (NN')—Ak(",,-{L'N',ON", /- L,-}

X(I—A ) (N"' N )A „,(L N pNv /»i

X(I—A' ') '(N N )A
' (L NvI pNii l Ln li L i}]

+ )ik {NN )Ak(, t(L'N', ON"', / —Ln)
L ttL t»L IV~ttt~fy~y~yy~yn ygg

X(I—A(0)) '(N'", N'")A('), (L»NIV ONV /. L„,)
9

X(I—A ) (N N I)A( )„(L'"NvIONvII l«L ii}

X(I —A ) '(N N VIII }

and the matrix A;~(LN, L'N') is given hy {4h}.

„,(L NvBI pN i
/ Lni T(0){N

NP9 t' pj (A6)
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APPENDIX 8
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q 'a'+ qa

(4)
'q q q q

9 a a a a0
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qa

()
'+-
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0 a a a
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q
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