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Systems with two interfaces (sandwich ABC, planar defect, film) are considered. A
symmetrization scheme is used to obtain the symmetrical (S) and antisymmetrical (A)

modes of the planar defect and the thin film for arbitrary thickness. When medium B is

very thin (hk~~ &&1), we obtain the eigenmodes of the planar defect in analytical form,
clarifying some discrepancies previously existing in the study of such a system. The in-

teraction energy of point defects is obtained in closed form. The particular case of two

adatoms is considered.

I. INTRODUCTION

Interface waves' are of great interest from an
experimental and theoretical point of view. Sys-
tems with several interfaces introduce interesting
theoretical problems and must be studied with so-
phisticated experimental techniques. ' ' The sur-
face wave spectrum can differ significantly from
that of a single surface and its study is not trivial.

A sandwich A-B-C (the particular case A-B Ais-
called the planar defect} can be used to guide elas-
tic surface waves in an analogous way to the case
of systems with overlayers. ' If the thickness of
medium B is arbitrary the problem is very compli-
cated and the equations must be solved numerical-

ly." ' The purpose of this paper is to present an
alternative approach which can reduce the compu-
tational work considerably.

The planar defect has been studied both in elas-

ticity theory' ' and lattice dynamics' with differ-

ing results. For example, an equivalent membrane
model' does not yield a localized sagittal mode for
the planar defect in contrast to the results of refer-
ences. ' *' This appeared as a surprise, as the
models used in Refs. 14 and 15 were thought to be
the same. We shall show that the case considered
in Ref. 14 is different from the equivalent mem-

brane model, and that both can be obtained as par-
ticular cases of the more general result obtained
here.

The key feature of the planar defect case is that
it has mirror symmetry (A-B-A). This allows us to

use a symmetrization scheme which yields the
symmetric and antisymmetric eigenmodes for the
arbitrary thickness, h, of medium B. This is not
possible for the unsymmetric case (A-B C},but-
then the problem can be fairly simplified for
hk~~ && 1, a condition often met in practice. Both
these cases are studied in Sec. II. The eigenmodes
are obtained from the poles of the Green's function
of the system and this is constructed using an ap-
proach recently developed. " ' In Sec. III we
consider the problem of the thin film in which we
use symmetrical and antisymmetrical Green's func-
tions in order to simplify the problem. We discuss
there the elastic waves of such a system and also
the elastic energy of interaction of defects. This
has been discussed previously for surfaces, ' inter-
faces' and systems with overlayers, ' and is treat-
ed here for the first time for the thin film. The
conclusions are discussed in Sec. IV.

II. ELASTIC WAVES
IN A SANDWICH A-8-C

The three media A, B, and C are assumed to be
isotropic, with the following elastic constants and
densities: C», C44,p (for A), Cii, C44,p' (for B),
and C'ii C44,p" (for C}. For each medium we also
have sound velocities C, =(C44/p}', Ct =(Cii/
p)'~ (for A}, etc. The eigenmodes of the sandwich
can be obtained from the poles of the Green's
function of the system.
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For isotropic media, as is well known, there is a
factorization in modes polarized in the sagittal
plane (X3,k~~) and those polarized perpendicularly
to this plane (direction x2), if we take k~~ along
x]). As a result, the sagittal IA-B-C J localized

eigenmodes are the roots of an (8)& 8) determinant,

instead of a (4&(4) determinant as for a plane in-
terface AB (it is this that in general requires nu-
merical solution}.

Let us now study first the symmetric case.

A. Planar defect (A-8-A)

In this case it proves convenient to define x3 ——0 as the mirror symmetry plane bisecting medium B. The
two interfaces are at x3 ——+i]/2 and we define the symmetrical (S) and antisymmetrical (A} states in the fol-

lowing form:
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where 1, 2, and 3 stand for the Cartesian direction indices (1=—x, etc.) and x3 for the coordinate normal to
the surface of a point of the system. In this way it is easy to show that for x3 )0,

6]] (X3 X3 ) —G]](X3X3 )+6]](—X3 X3 )
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where the upper sign corresponds to the symmetrical Green s function and the lower sign to the antisym-
metrical one.

The boundary conditions in Green's-function form are

SA ~ ~ ~SA6)) —+O,x3 ——6 ))' ——O,x3

S,A k i ~S,A63] +0 x 3 =63~ ' —0 x 3 (2.3b)

6]I"(x3,x3 )+ik~~63]"(X3,X'3)
x3 =h/2+0

=C44, 6']]'"(X3,X3)+ik~~631'"(x3,x3 )
dX3 x3 ——h/2 —0

(2.3c)

k~(c]2611 (X3~X3 }+el]d
631 (X3ix3 }

dx3
kllc]2611 (X3&X3 )+Cll 631 (X3&X3 )

x3 ——h/2+0 dx3 x3 ——h/2 —0

(2.3d)

(and similar equations for the elements G»", 633", 6'»'", and 633'" for the sagittal modes, and

622 —+O,x 3
S,A

2
h=622 ——O,x 3 (2.4a)
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C~ G22 (x3 X3)S,A

dx3
~S,W=C44 622' (x3,x3)

x, =h/2+0 d&3 x3 ——h/2 —0
(2.4b)

for the transverse modes.
Owing to the symmetry of the problem there is a separation between the (S) and (/I) modes. These can be

obtained by searching for the general solution of the Green's functions in the form

and
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where G~"(x3,x3 ) (ij =1,2, 3) has been previously calculated, ' ' and

(k2 2/( 2)1/2 a (k2 2/C2)1/2

(2.6d)
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Introducing these expressions in Eqs. (2.3) and solving for the coefficients IA1,B1,D1,E1[ and

IA2, B2,D2, E2 I, we obtain the secular equations for the (S and (/I) modes, respectively. This yields the

dispersion relations
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check on our analysis. For example, a thin film is
obtained if A is the vacuum, i.e.,

p —C44 —C12 —C11 —0 .

Then, Eqs. (2.7) and (2.8) reduce to

respectively. These are indeed the dispersion rela-
tions for the (S) and (A) modes of a thin film.

Now we can discuss the planar defect. It can be
seen that for hk~~ && 1, Eq. (2.8) admits as a solu-
tion a localized mode given by

(kll+a,' ) tanh a', —=4k~~cia', tanh a'i—
with

cg =C, king[1
—A(hkii) +0(h )], (2.11)

and

(2.9) I

2C44 2p
(2.12)

302

Ct(Ni)

(a)
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QJ
ij)
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Ct(AL)

2.9-

2.8
0 8 hk))

(k~~+a, ) tanh ai ———4k~~aia', tanh a', —2 r 2 , h , h

(2.10)

The frequency. of this mode differs from that of
the transverse bulk band only by terms of order

kI~. The result given in Eq. (2.11) was obtained
previously in the particular case p=p' from elasti-

city theory and from the elastic limit of Rosenz-14

weig's model. ' The reason for the discrepancies
mentioned above would now be clear. The dif-
ferent results are all correct by themselves, but14—16

entail different approximations based on h finite,
when hk~~ && l. If one takes the limit Ii ~0 ac-
cording to the prescription of Ref. 15, then one ob-
tains the equivalent membrane model as it will be
seen in the case of the sandwich ABC. Thus, ac-
cording to Ref. 15, we have hp=hC;J =0, and
hp'=p„hC =C,', when h~0. In this way the
displacements are continuous at the interface and
the conditions on the stresses are modified with
respect to the case of Ii finite. This amounts to a
different approximation and has a different solu-

tion. '

The transverse modes of the planar defect can be
obtained in a similar way. The dispersion relations
for the (S) and (A) modes are given by

(3
tD
in

E

C3

Ct(Ni)

(b)
, h . . . h

C44a, cosh a', —+C44a,'sinh a,' —=0'2 (2.13)
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TABLE I. Input values for the calculation of the
velocities given in Figs. 1 and 2.
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3.10
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FIG. 2. Same as Fig. 1 for planar defects: (a) Al-
Ni-Al and {b) Ni-Al-Ni.

W
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5.120
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0.929

5.231
6.422
5.894

2.860
3.110
3.219
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B. Sandwich ABC

respectively.
A similar method call be used for hk~~ && 1 [Eq.

(2.13)], if C,
'

& C, admits the localized mode given

by Eq. (2.11) as a solution, with

2

(2.15)

This result differs from that of Ref. 14 in which
no transverse mode was found. However, the ex-
istence of this mode in the present analysis admits
no doubt.

C44a, sinh a,' —+C44aIcosh a', —=0, (2.14)'2 ' '2 We shall now consider three different elastic
media separated by two planes at x3 ——0 (8/A) and

x3 ——h (C/8), fol slmpllclty s sake.
The eigenmodes of the sandwich ABC can be ob-

tained, as usually, from the poles of the Green's
function of the system. The method for obtaining
this Green's function for hk

~~
&& 1 has been

described elsewhere. ' We shall discuss here only
the results obtained from this method.

For the general case of arbitrary h the problem
must be solved numerically, but for hk~~ &&1 con-
siderable simplifications result by developing the
boundary conditions in powers of hk~~, reducing
the (8X8) determinant, for example, to a (4X4)
one. The boundary conditions are given in this
case by'

GII(+O,X3)—6'» ( —h —O, X3)=lhk~~ —1 631(+O,x3)+h 611(x3,x3)
cIX3 x3 ——+0

C» —2C44 —C'» +2C44 C11
63I (+O,x3 ) —63I ( —h —O, x3 ) —lhk~~ GII(+O,X3 )+h— 6»(X3,X3 )

BX3 x3=+0

(2.16b)

I
C44 6„(x3tx3)+I'k~~631(x3)x3 )

BX3 x3 ——+0
'„'(, ', )+', "(, ')

()X3 x3 ——h —0

=h p5(X3 —X3)+(C»kii —pea ) II( 3, 3)—'

ii G3I(x3,x3 )
BX3

( C I 1 2C44 )(Clz —2C44 —C 12 + 2C44 )
+ k() Gll(X3, X3 )

x3 ——+0
(2.16c)

I 8 I
I (Cll 2C44)k~~611(x3~x3 )+Cll 63I(x»x3 )

BX3 x3 ——+0

l(C11 C44 )k~~611 (x3&x3 )+Cll 631 (x3~x3 )

l
BX3 x3 ———h —0

—h (C44k
ii p CO )63I(X3px3 ) IkiiC44 II 3p 3 )

BX3 x3 —+0
, (2.16d)

for sagittal polarization (similar equations hold for GI3 633 6 I3 and 633).
The equations for the transverse polarization are given by

C
622(+ ~x3 ) 622 ( h O~x3 ) Gzz(x3, x 3 )

BX3 x3 ——+0
(2.17a)
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C44 G22(x3,x 3 )
Bx3 x3 ——+0

—C44 622(x3,x3)
Bx3 x3 ———h —0

P @x3 x3 )+(C44kll p rti )G22(x3 x3 ) +o . (2.17b)

Introducing the expressions for G and G" (Refs. 11 and 12) in Eqs. (2.16) and (2.17) yields the correspond-

ing eigenvalue equation (secular determinants). For sagittal modes,

C„—C„' kll C,„
1+h —+, a,

C44 a, C'

C)1 —Cl2+ C'
ikll —+h

C()

kll+a'
Cw

ar

z C&2 q C&)C12
+h Cl)k ll +, (C12 —C12)k ll

—Kll, —p'rr~

C)&

—ikll 2C~+h(C„kll p'u )—+hC„ar1

ar

ha(l+ (2C~ —C44)
C44

2
al C12 —C 12 aI C

i ——hkll, +h
kll C)1 kll Ct)

2C~aI+h C»kll
L 2, 2 l2 11+—,(Cu —CI2)k

II aI—p

2 2
kll +ar 2 2al—ikll C44 2 +h(C44kll prr» )—2+C

II Il

ik
ll

t Ia,

kll+ar—C44
a', '

2ikll C44

iaI'

kll

—2C4rI aI

C44 (k ll+aI )
rk

I I 2
kll

=0

(2.18)

When no medium 8 exists this equation reduces to
the usual Stoneley wave equation for an interface.
However, even for hkll && 1, it is not possible to
obtain from Eq. (2.18) the frequency of the eigen-
modes in closed form, in spite of the great simpli-
fication achieved. The gain is in a substantial
reduction of the computational work.

The equations for the eigenmodes of the planar
defect when medium 8 is very thin are readily ob-
tained from Eq. (2.18), thus recovering the eigen-
modes obtained previously. It can also be seen

from Eq. (2.18) that if one takes the limit h ~0 as
prescribed in Ref. 15, then one obtains the
equivalent membrane model.

It is now clear that we can treat the planar de-

fect for arbitrary thickness of medium 8 in a
simpler way making use of the symmetry of the
system. When medium 8 is very thin we can par-
ticularize the general equations to this situation or
use the method developed previously' to treat
such a situation. The more general case of the
sandwich ABC is more complicated and we cannot
simplify the general equations due to the lack of
mirror symmetry. Even for a very thin medium 8
we have seen that it is not possible to obtain the
eigenmodes in closed form in spite of the great
simplification achieved.

III. THIN FILM

As we have just seen the spectrum of systems
with two interfaces differs substantially from that
of a single interface. We shall now study the sim-

plest system with two interfaces, i.e., the thin film.

I

The simplification in this case arises from (i) the
fact that A is the vacuum, so that we need only
impose stress-free boundary conditions, and (ii)
there is mirror symmetry. Thus, we can use the
classification in (S) and (A) modes, as for the
planar defect. The eigenmodes of the thin film
(Lamb modes), of course, have long been
known. ' The mean-square displacements have
also been obtained elsewhere. Our main interest
here will concern the interaction energy of defects
in a thin film. This has been investigated for a
single surface' or interface' and now we propose
to study such interaction energy for the thin film
as the simplest system with two interfaces. The in-

teraction energy of defects in systems with over-

layers has been studied elsewhere'; the corrections
introduced were small and so was the range of va-

lidity of such corrections. The sandwich ABC and
planar defect also constitute interesting systems for
this study but the calculations involved are very

heavy and it is difficult to obtain analytical results

even for a very thin medium B. The thin film, on
the other hand, provides an interesting system ex-

hibiting two interfaces, which introduces appreci-
able changes with respect to a single surface and
interface, and for which analytical expressions can
be obtained.

We shall consider as our system a material A

with density and elastic coefficients p, C~~, C~2,
and C44, respectively, and bounded by two planes
at x3 ———h/2 and x3 ——h/2, with mirror symmetry
about x3 ——0. Using the above symmetrization
scheme the boundary conditions can be expressed
as
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C44 G11"(x3,x3 )+ikllG31" (x3,x 3 ) =0,
BX3

(3.la)

ikllC12G11 (x3~ 3 )+C11 G31 (x3&x3 )
Bx3

r

S,A
C44 G 22 (x3» 3 )

Bx3
r

C„G13(x3,x3)+ikllG33" (x3,x, ) =0,
BX3

(3.1b)

(3.1c)

(3.1d)

lk!IC12G 13 x3'x3 +Cil G33 x3'x3
BX3

(3.1e)

at x3 ——Ii/2. We shall search for the general solution of this Green's function in the following forms:
T

cosh cosh
G, ',"(xi,x3)=[611(x3,x3)+611(—xi,x3)]+&X ';„h '(a&x3)+&X ';„h '(aix3), (3.2a)

r

sinh slnh
G', ;"(x„x',) =[G31(x„x',)+G31(—x3,x3)]&X, „(a,x3)— »&

II

(3.2b)

cosh
» 3 ) [G22(x»x3 )+G22( x3&x3 )1+CX „„h (a&x3) i (3.2c)

sA, &&~ cosh cosh
G13 (x3 x3 )=[GP3(x3 x3 )+G13( x3 x3 )] D X ' . '(agx3)+ — EX '

h '(aix3),
k~~ sinh sin (3.2d)

sinh slnh
[G33(x3 x3)+G33( x3 x3)]+DX h (atx3)+EX '

h '(aix3) .cos cosh (3.2e)

Introducing the expressions Eqs. (3.2) in Eqs. (3.1), we obtain the coefficients AP, Cg)Q of the Green's func-
tion. Its poles yield the eigenmodes of the system, which have already been given in (2.9) and (2.10). How-
ever, we need the Green's function to study the elastic energy of interaction of impurities embedded in the
film. The knowledge of this energy can be useful in phenomena such as segregation or diffusion near sur-
faces. In the case of a film the phenomenon of interest is the competing effect of the two surfaces and its
possible consequences on the interaction energy. It is known' that the elastic energy of interaction of point
defects can be obtained as an integral over the two-dimensional wave vector kll of combinations of the ele-
ments of the Green's function and its normal derivatives. But, in fact, we only need the knowledge of the
static Green's function (co=0).

For the film problem the Green's function can be obtained by the symmetrization scheme developed
above. Taking into account that

G J(x3,x3 )+GJ(x3,x3 )
GJ(x3,x3 ) =

2
(ij =1,2,3), (3.3)

we obtain, after a lengthy but straightforward calculation, the following expressions:

GJ(x3 x3)=GJ"(x3,x3)+GJ(x3,x3) (ij,=1,2, 3), (3.4)

where G,J" is the static Green's function of an infinite crystal, ' and G;1 is the term due to the presence of
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the two surfaces. We find

6]](x3 x3)=M( C+ j sinhkllh[2kllh(C» —C44) —2(C]]+C44)—kllh (C]i —C4&) ]

+2k llh exp( —hk l()(C» C44 )

—C j kl(h[2kllh(C]] —C44) —2(C]]+CD)—h kl((C]] —Cw) ]

+2sinhkllhexp( —hkll )(C]]—C44} j

+ II, 3+x' )S+ j sinhkllh[ —C]]+C44+hkll(C» —C44& )

+hk((exp( —hk(()(C]] —C44) j

—2k(((x3 x3)S j sinhkllhexp( —kllh)(C]1 C44)'

4-hkll[ —C]]+C44+hkll(C]] —C44) ] j

3k

((xi'

(C]]—C44) (C+sinhk((h +C hk(l )), (3.5a)

622(x3,x3 ) =
2C k

.
h

[C++C exP( —kllh}],
((alii

6 is(xz, xz ) = —M(C+ j sinhk lib [2(C]]+C44)+2kllh(C]] —C44)+(C]]—Cw) h k
II ]

+2hk((exp( —hkll )(C]]—C~) j

+C- j 2s]nhkllhexp( —hkll )(C» —C44}+hkll[2(C»+C~)+2hkll C» C44

+(Ci] —C44) h k(l] j

—2k(((xi+xi )S+ j sinhkllh[C]] —Cw+hkll(C]] —Cm) ]

+hk
I I

exp( —hk
II

}(C]] —C~ ) j

2k(I xi xq )S j sinhkllhexP( —hkll)(C» —C44)

+hkll[C'„—C'„+Ikll(C„—C )'] j

+4k((x3kllx3(C+sinhkllh —hkl(C )),

Gi](xst xi ) =iM j (S+sinhk(lh —S hkl(&[ —4CI]C44(C]1 —C44}+h k(((C» C44) ]

—2k(((xi+xz )C+kllhcoshhkll(C]] —C44)

+2k(((xs —x z )C [sinhkllh exp( —
hkll )+h

@ (( ](C]]—Cq4)

+2(C]]—Cm)[kll(x3 —x3 )sinhkl(hC+ —C k(lhkll(xi+xi )]

+4kllx, kllx'i(C]] —C44) (S+sinhkllh+S kllh) j .

(3.5b)

(3.5c)

(3.5d}

where

1

8C C, ](C]]—C &kll[sinh (kllh} —k (lb ]

C-+=coshkll(xi+xi ), S+-=s]nhkll(xi+xi )

(3.6}

I

exchanging x3 and x 3 and taking the complex con-

jugate.

A. Elastic energy of interaction
of one point defect vnth a film

(3.7}

6]i(xi,x z ) can be obtained from 63](xi x 3 ) b)

We shall consider point defects represented by
the superposition of three mutually perpendicular
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double forces without moment. For such a point
defect centered at the point xp, the distribution of
the body force is

In order to demonstrate the differences between
the film and the free surface we can consider
tungsten, which is nearly isotropic. In this case,

F~(x)= —A~ 5(x —xp), a=1,2, 3 (3.8)
X~

/I v 1
UF(xp3) =—

3 I(xp3)
1677 C44 1 g ~ o3

(3.9)

(xp3 is the distance from the center of the film to
the defect side), where

where A~ is a constant with the dimensions of a
force times a length. Moreover, we limit ourselves
to the case of an isotropic impurity:
A ] —A3 —A3 =/I. The elastic energy of interaction
of such a defect with a film is found to be

kD —— ——1.23 )& 108,
ao

in units of cm
In Fig. 3 we have represented —I/(2kDxp3) for

two values of kDh, i.e., of the thickness h. It can
be seen that this function increases very swiftly
with the thickness. in order to clarify the analo-

gies and differences with the case of the free sur-
face, we have studied the former function versus
kDh for several values of xp3. In Fig. 4 we
represent —I/(2kDxp3) vs kah for xp3 0 5h.
Now the defect is on the surface of the film. Thus
we see that when kDh » 1, we recover the results

of the semi-infinite medium, indicated by a dotted

I(xp3) =—
2 2 2 2(sinh gh/2xp3 —g h /4xp3)

&&
—sinh cosh/

gh . h

2xp3 2xp3

&0)

-0.5h -03h-0.1h0 0.}h Mh G5h
I I I

-I/(2 kp Xos)'

-0.0'}—

gD ——2kaxp3 . (3.10)

We take ka 2n. /(3/4m—)—'/ ap as defined else-

where. ' %hen xo3 —+0, we obtain

I(xp3)/(2kDxp3) =(4—
2 )/(ki]h)

[2/kph +4/—(kDh) —4/(kDh)']

—0.03 -.
(a)

)& exp( —kDh)+ -0.05—

This result is in qualitative agreement with the
trends found for the vacancy relaxation energies in

metal crystal slabs. Equation (3.9) must be com-

pared with that obtained for a free surface':

v 1
Us(xp3 )=—

. . 3 I3(gn ),
77 44 V Q p3

(3.1 la)

with

-05h -Q3h-0;}h 0 0.]h 03h 0,5h

-I/(2 ko Xo3)'

-G01-

I3(gD)= f g e ~dg . (3.11b)
-0.03

If we set xp3 ——h /2 in Eq. (3.9), and then take the
limit h~ oo, we obtain

(3.12)

which gives the interaction energy of a point defect
at the free surface. '

-0.05-

FIG. 3. Behavior of the interaction energy of a point
defect with a film: —I/(2kDxp3) vs xp3 for (a)
kDh=20, and (b) kDh=50.
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I/(2kp X.o~P

-0.1

20
I

40 60 eo
I

K h

100
I -4(%n)/K'.

-0.1

20

-0.3- -03 i

-0.4-
—0.5-

' vs k h for xQ3
——0.5h. WhenFIG. 4. —I/(2kD Q3 D Q

kDh &g 1, we recover the value fofor a free su ace o e

line). For details see text.

-01'h,h.,
'

h 1' Fig. 4, explained above. In Fcg. 5

we give the same representation for xo3 —
~ a

is, for a defect inside the film. The function in-

creases very steep y
w't ly with the thickness and for

k It 1 it oes to zero as 1/xos, i.e., the same
behavior obtained in the case of the free suiiace.

for two surfaces at distances xo3 and h —xo3,
respectively, for two values o D . can
that the existence of the second surface produces a

li ible effect when the thickness is great. The
o be noticeableeffect of the second surface begins to be

15. This gives the value of h for which
the effects of the finite thickness of the film g'be in

Thus, the behavior of the elastic energy o in-

teraction o a poin ef ' t defect is very different from
the case of the free surface only when the t ic-

FIG. 6. Free surface: —Iq(gD)/g'D vs gD.

0I+I' 20
5'o

40
I

-0.1

—0.2

-03 .

-0.4 i'

that theness of the film is small in such a way t
point defect is strongly affected by the two sur-

. As the thickness increases and kg) h )y 1,
e case of the freethe behavior tends to resemble t e case o

more strongly by only one of the surfaces.

-V(2kp XogP

20 40 60 80
kp h

100
I

-0.1

40
1

80 4
I T'

-2X10 4—
-0.2

-4X10-4— -0.3-

-0.4-
-SX10 4—

FIG. 5. Same as Fig. 4 for xQ3 ——.=0.1h. When
k h && I —I/(2k&xQ3) goes to zero as 1/xQ3 in the
same way as a free surface.

3
FIG. 7. I +I'= I2((D)/gD I2(gD—)/ gD, —

[fD 2kD(h —xone)j vs——(D for two surfa prfaces laced at dis-

tances xQ3 an —xQ3,d h — respectively, for (a) k&h =20,
and (b) kah=50.
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B. Mutual interaction energy between two impurities and a film

The mutual interaction energy of two point defects is defined as the energy of the system minus the sum

of the energies of each impurity alone. Following the method of Ref. 17 we obtain

k'dk

[sinh (k~~h) —Ii k ]

+[sinhk)(kcoshk[((x03+x03) k()hcoshk~[(xoi —xone)1 (3.13)

where R[[= I "o[[—xo[( I

If we consider a very thick film (Ii ~ oo ) and the two impurities very close to one surface, Eq. (3.13)
reduces to

kD k X

p II II II II
(3.14)

where h, h
X03 X03~ X03 X032 '

2

If we take the limit ka —+ oo, we obtain

(3.15)

(3.16)

(3.17)

2AA' v 1

~c~ 1 —v (R'+R', )'" (R'+R')'"
where Ri ——Xoi + Xoz and Pz is the Legendre polynomial of second order. Equation (3.16) is the energy of
interaction of two defects in the case of a free surface. '

Let us return to Eq. (3.13) for a film. The general discussion of this equation is very difficult and we

shall consider only the case of two adatoms, that is x03 —xQ3=Ii/2. Thus, Eq. (3.13) simplifies to

AA' v 1

y
&"

l~

~2d~& (~)
sinhagcoshag ag-

e.C44 1 —v R3!l sinh a(—a g

with a=h/R~~.
Consider the dimensionless integral

D"II 2 J sinha cosha —a
3 ls

sinh ag —a g

This can be decomposed in the following way:

I) ——Ip+I',
where

kgR
I/Io= f, ACJo(k)

z sinhagcoshag —ag
0 sinh a/a g

(3.19)

(3.20a)

(3.20b)

Ip is related to a single surface exhibiting oscilla-
tory behavior with the upper limit kDR II, such that

Io= lim d Jp e @=—1,
p~p 0

and it will not be considered here.
We shall study the term I' which has regular

behavior. If we take h &R~~, I' does not depend
appreciably on the upper limit k~RII. Thus, we
can take kD~ ao. The dependence of I' on
a=h/R

~~
is given in Fig. 8. In contrast, if we

take h &R II, the integral I' depends on a and
kDR II. The dependence on k&R

II gradually disap-
pears when RII grows.

IV. SUMMARY AND CONCLUSIONS

We have studied the dynamics of systems with
two interfaces by using a Green's-function method.
For symmetric systems (planar defect or free film)
and arbitrary thicknesses of a medium, B, it is pos-
sible, by using a symmetrization procedure, to ob-
tain the (S) and (A) modes of such systems. We
thus find that the planar defect exhibits interface
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O.S—

waves even for materials in which Stoneley waves

are forbidden (Ni-A1-Ni, Al-Ni-Al). When medi-

um 8 is very thin it is possible to obtain analytical
expressions for the eigenmodes of the planar defect
and to clarify the discrepancies between the results
so far obtained in different treatments of this prob-
lem. For the unsymmetric sandwich ABC, when

medium 8 is very thin, the general equations can
be simplifed by developments in powers of hk
but it is not possible to obtain the eigenmodes in
closed form. Using the symmetrizat'ion procedure
we have been able to study the interaction energy
of point defects with a film obtaining the results in
closed form.

Using the symmetrization procedure we have

been able to study the interaction energy of point

defects with a film obtaining the results in closed

form.

FIG. 8. Interaction energy of two adatoms on one
surface of the film. I' vs a=h/R~~.
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