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We present a theory of the total magnetic susceptibility P) of interacting electrons in

solids. We have included the effects of both the lattice potential and electron-electron in-

teraction and constructed in k space, using the Bloch representation, the effective one-

particle Hamiltonian and the equation of motion of the Green's function in the presence
of a magnetic field. We have used a finite-temperature Green s-function formalism

where the thermodynamic potential 0 is expressed in terms of the exact one-particle pro-

pagator G and have derived a general expression for p by assuming the self-energy to be
independent of frequency. We have calculated the many-body effects on orbital (P, ), spin

g, ), and spin-orbit g'„) contributions to g. If we make simple approximations for the

self-energy, our expression for P, reduces to the earlier results. If we make drastic as-

sumptions while solving the matrix integral equations for the field-dependent part of the
self-energy, our expression for g, is equivalent to the earlier results for exchange-

enhanced spin susceptibility but with the g factor replaced by the effective g factor, a re-

sult which has been intuitively used but not yet rigorously derived. An important aspect
of our work is the careful analysis of exchange and correlation effects on p„, the contri-

bution to susceptibility from the effect of spin-orbit coupling on the orbital motion of
Bloch electrons. Although g„ is of the same order of magnitude as g, for some metals

and semiconductors, its contribution has been hitherto completely ignored in all the

many-body theories of magnetic susceptibility. We have also shown that if we neglect
electron-electron interactions our expression for g agrees with the well-known results for
noninteracting Bloch electrons.

I. INTRODUCTION

The many-body theory of magnetic susceptibility
of solids, in which the effects of both the lattice
potential and electron-electron interactions are in-

cluded, is one of the basic problems of solid-state
physics that have not yet been satisfactorily
resolved. Owing to the enormous complexity of
the problem, the Hamiltonian is usually separated
into orbital and spin components (thus neglecting
spin-orbit interaction), and attention is focused on
one of ihe two parts.

The many-body effects on the diamagnetism of
free electrons have been studied by many au-

thors. ' The more recent calculations all

agree in the high-density, low-temperature limit.
However, these calculations are carried out in the
limit of very low or very high electron densities
and are not appropriate for Bloch electrons.
Fukuyama ' calculated the orbital magnetism of

interacting Bloch electrons, neglecting the current
vertex corrections, and has shown that the inter-
band effect between two bands separated by the
Coulomb interaction has properties similar to Van
Vleck paramagnetism. " He also included the ef-
fect of correlation in the framework of a random-

phase approximation in the one-dimensional weak
cosine-type periodic potential model. Philippas
and McClure' established the validity of the
Sampson-Seitz prescription' applied to the
Landau-Peierls formula and obtained the quasipar-
ticle prescription that the diamagnetism of in-

teracting Bloch electrons is to be calculated using
Misra-Roth theory, ' i.e., by treating the self-

energy operator as a nonlocal pseudopotential, ig-
noring the change of the transformed self-energy
with the magnetic field. They have also shown
that the explicit many-body corrections to the orbi-
tal paramagnetism is, in general, small. Mohanty
and Misra' showed by using Bloch representation
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that the transformed self-energy in the effective
one-particle Hamiltonian has the same translation-
al properties as a nonlocal magnetic pseudopoten-
tial. ' ' However, their expression for free energy
contains only the quasiparticle term, and the vertex
corrections have been neglected. Fukuyarna and
McClure' derived an expression for the orbital
magnetism of an interacting free-electron gas, tak-
ing into account the exact functional form of the
self-energy. Their result yields a generalized form
of the Landau-Peierls formula. Thus the effects of
exchange and correlations are not fully understood
for orbital susceptibility 9', ), but their contribution
has been shown to be small. '

However, it is well known that electron-elec-
tron interactions lead to an enhancement of the
Pauli spin susceptibility. Sampson and Seitz' first
calculated paramagnetic susceptibility (X, ), includ-

ing the effects of exchange and correlation.
Pines ' carried out a calculation similar to Samp-
son and Seitz, ' but his results differ remarkably
from theirs because of the use of the Bohm-Pines
theory for correlation energy. Brueckner and
Sawada derived an expression for the magnetic
susceptibility of an electron gas at high density us-

ing the exact theory of Gell-Mann and Brueck-
nef.

Silverstein calculated the paramagnetic suscep-
tibility by a similar method with the addition of a
momentum transfer interpolation procedure
designed to obtain relevant information in the re-

gion of metallic densities. Hamann and Over-
hauser calculated the wave-vector-dependent spin
susceptibility taking dynamically screened electron
interactions into account, and their calculations
agree with that of Dupree and Geldart and Piz-
zimenti et al. Lobo et al. used a generalization
of the random-phase approximation, which takes
into account short-range correlations between the
electrons, to obtain X, for an electron gas at metal-
lic densities. Yafet has calculated g, for a two-
band model with 6-function interactions between
the conduction electrons using a random-phase ap-
proximation. Isihara and Kojima calculated both
7, and 7, of an electron fluid at low temperature
by considering the free electrons, first- and
second-order exchange, and the ring diagrams.

In a real metal, the background potential and the
electron density are far from uniforIn. Kohn and
Sham ' have used the density-functional formal-
ism to derive an expression for 7, valid for slow-

ly varying density. The Hohenberg-Kohn-Sham
theory of inhomogeneous electron gas has been

generalized to include the spin-dependent in-
teraction. Recently, Vosko and Perdew (VP)
have calculated 7, of metallic electrons based on a
variational principle within the density-functional
formalism. "3 This variational expression allows
one to simultaneously treat band and exchange-
correlation effects among the conduction electrons
and also includes the infiuence of the core elec-
trons on the lattice. Vosko et al. calculated 7,
for the alkali metals, and there is good agreement
with the experimental results. Using the theory of
VP, Janak calculated X, of a number of metals
(including the transition metals) to study the
enhancement of response which leads to ferromag-
netic instability. His results are in good agreement
with the results of Gunnarsson but differ from
those of Vosko et al. ' because of the use of a
different approximation for the exchange-correla-
tion functional and because of the use of a dif-
ferent lattice parameter. However, the density-
functional formalism works well for systems where
the density varies slowly in space. Thus its validi-
ty is limited to nearly-free-electron metals with
only one occupied band.

It may be noted that in all these derivations the
entire effect of spin-orbit coupling was ignored. In
fact, it has been hitherto assumed that the effect of
spin-orbit coupling can be accounted for in g,
through the modification of the Bloch functions
and in g, by replacing the free-electron g factor by
the effective g factor. However, recently it was
shown by one of us ' that there is an additional
contribution from the effect of spin-orbit coupling
(X„)on the orbital motion of Bloch electrons. It
has also been shown that even in the absence of ex-
change and correlation effects the contribution of
X„is of the same order of magnitude as g, for
some metals and semiconductors. From these
earlier results ' a priori one cannot say anything
about the effects of exchange and correlations on
+SO'

It is evident that the many-body effects on the
spin-orbit contributions (both in X, and X„)to X
can be calculated by using the total crystal Hamil-
tonian including the spin-orbit interactions. Buot
recently attempted to derive an expression for the
total magnetic susceptibility (X) for interacting
Bloch electrons. However, because of the compli-
cations due to the use of the lattice-%eyl trans-
form, he was not able to obtain a meaningful ex-
pression for g except for the two simple cases of
Fermi liquid and Hubbard limits.

It is clear from the foregoing remarks that there
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remains a need for a theory of total magnetic sus-

ceptibility (I) of solids (including spin-orbit in-
teraction) that will take into account both inter-
band effects and many-body effects. In this paper
we derive a theory for X of interacting electrons in
solids using a finite temperature Green's-function
formalism where the thermodynamic potential Q
for an interacting electron system in the presence
of a periodic potential, spin-orbit interaction, and
external magnetic field is expressed in terms of the
exact one-particle propagator G. We constructed
in k space, using the Bloch representation, the
equation of motion of the Green's function in the
presence of the magnetic field and evaluated Q. In
our theory the effects of exchange and correlations
on each of the three components of X have been
explicitly calculated. If we make a simple approxi-
mation for the self-energy, the first term of our ex-
pression for X, reduces to the earlier results. ' If
we make drastic assumptions while solving the ma-
trix integral equations for the field-dependent part
of the self-energy, our expression for 1, is
equivalent to the earlier results for the exchange-

enhanced X, but with the g factor replaced by the
effective g factor, a result which has been intuitive-
ly used but not yet rigorously derived. An impor-
tant aspect of our work is the analysis of exchange
and correlation effects on g„ that are more subtle
and cannot be included in an intuitive way. We
note that our expression for X agrees with the ear-
lier results ' ' for noninteracting Bloch electrons
if we completely neglect electron-electron interac-
tions.

The plan of the paper is as follows. In Sec. II,
we construct in k space, using the Bloch represen-
tation, the effective one-particle Hamiltonian and
the equation of motion for the Green's function in
the presence of a magnetic field. In Sec. III, we
derive a general expression for X using a finite
temperature Green's-function formalism and ex-

panding Q in terms of the exact one-particle pro-
pagator G. In Sec. IV, we carefully analyze the ex-

change and correlation effects on each component
of X and compare our results with the earlier re-
sults. In Sec. V, we summarize and discuss our re-
sults.

11. EQUATION OF MOTION IN THE BLOCH REPRESENTATION

We use a finite-temperature Green s-function formalism to express the thermodynamic potential
Q(T, Vp, B) for an interacting system in the presence of a periodic potential V(r), spin-orbit interaction,
and external magnetic field B in terms of the exact one-particle propagator G. G satisfies the equation

(g —H)G(r, r ', gi)+ J dr "X(r,r ",gi)G(r ",r ',gi)=5(r —r '), (2.1)

where X is the exact proper self-energy operator, gi is the complex energy,

gi =(2l+1)i II/P+p, , (2.2)

(2.3)

and H is the one-particle Hamiltonian given by

H = p+ +» 0 VV&& p+"+V(r)+, , 7 V+ —,gp, ,B.o. .j. eA A eA A'

2P2l c 4yyg g c Sm c

In Eq. (2.3), A(r) is the vector potential, o is the Pauli spin matrix, po is the Bohr magneton, and g is the
free-electron g factor. In the absence of the magnetic field, both G and X have the symmetry

and

G(r+R, r '+R, gi)=G(r, r ',gi) (2.4a)

X(r+R, r '+R,gi) =X(r, r ', gi) . (2.4b)

(2.Sa)

and

The vector potential in the Hamiltonian destroys this symmetry, but both G and X can be written as the
product of a "Peierls phase factor" and a part which has the above symmetry. In the symmetric gauge
(A = —,B)& r ), we have' '

G(r, r', gi, h)=e'"''"' G(r r'g h)
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X(r, r', gi, h)= '"'' ' X(r, r', gi, h),
where

(2.5b)

eB
2fic

(2.6)

cr VVX[p+A'h X(r —r ')]

Substituting Eq. (2.5) in (2.1) commuting the differential operator through the Peierls phase factor, and then

multiplying the left-hand side by e ' " ' ' "', we obtain

[p+h'h X(r —r ')]-
2m

—V(r}— V V—2gpoB cr G(r, r ', gi, h)
8m c

dr «ei'h (r'xY+ & x & "+P'x r )y(r r» g h)G(r" r '
g h)=5(r —r ') . (2.7)

~r e
I ~I ~I ~ ~ ~II ~I I

~

~ ~ ~r 9

~r ~ ~ ~

~ ~ ~r 9

~r t I t

~ ~~ ~r ~~r I ~

We can write the equation of motion in the Bloch representation, i.e., in terms of the basis functions

tt(r)=e' " ' ' U„kit(r), (2.8)

where U„-„(r) is a periodic two-component function, n is the band index, k is the reduced wave vector, and

p is the spin index. Using the Bloch representation, Eq. (2.7} can be written as

fd r d r 'd r "e ' " " U„'k ( r ) gi — [p+))ih X ( r —r ')]
II II k I k Il

IP I

2 2
o'V VX[p+))lh X(r —r ')]—V(r)—,, p'2V —,'gii, oB (T

4m 2c2 8m c

Xe'" '' ' 'U„-k.z-(r)U„*„k.,z„(r")G(r",r', gi, h)U„, k, ,(r')e'"'"

d d d d
—sk-r + sh (r')(r+rxr "+r")&r')

~tt tt kt ktt

Xy(~ ~sr) i k" ( r "—r '.")
U (~ )iUi4 (xiii)n" "p"

XG(r "',r ', gi, h)U„, k, ,(r ')e'" (2.9)

By introducing change of variables R) ——r "—r ', and R2 ——
z (r '+ r ") in the first term, R) ——r —r ", R2

= —,( r+ r "), R3 ——r "'—r ', and R& ———,(r '+ r "') in the second term, and by using partial integration of
the type

Pl)ei k ".
( r —r ') i k" ( r ' —r ")U (P)Ut'

k"

= pe'""'"—''iV-„e'""''' '"'U„„-., „(r)U„'„-„„(r").(2.10)
k"

Equation (2.9) can be written in the form

k'= k

=~nn'~pp' ~ (2.11)
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H(k', g/)= (p+«) +V(r)+, 2
cr fVX(p+AK)+-, , V'&+ —,gpoB. 0+X(K',g/), Q.13)

2m 4m c Sm e
~ +f + ~/

Xn kpn" , kp"(K '~i)= dr dr '
U„'-kp" ( e X ' ~/ U "kp" (2.14)

G„„k „„,k,(k', gi)= f dr dr'U„'„-„„(r)6(r,r', gi)e '" '' ' 'U„, kp(r') . (2.15)

(2.16)

We note that similar Green s-function equations for the orbital motion of Bloch electrons were derived by
Phillippas and McClure' in the Luttinger-Kohn representation and Mohanty and Misra' in the Bloch
representation. However, our equation of motion is more general and includes both spin and spin-orbit in-

teraction.

Since the U„k s form a complete set for periodic functions, Eq. (2.14) can be written in an alternate form:

[gi H(v—,gi)]G(k, gi) =I .

III. DERIVATION OF GENERAL FORMULA FOR g

The magnetic susceptibility (X) is calculated from the expression

v 1 ~QX""=——lim
v ~-o as~aa

(3.1)

The thermodynamic potential 0 is evaluated using the Luttinger-Dard expression

0=—[Tr ln( —Gg, ) —TrX(Gg, )Gg, +$(Gg, )] .1 (3.2)

Here G~,
—=6 (gi ), Tr is defined as g& tr, where tr refers to summation over a complete one-particle set, and

the functional $(6~, ) is defined as

$(6~, ) = lim Tr g — X'"'(6&, )6&, .A (g) (3.3)

Here X'"'(Gg ) is the nth-order self-energy part, where only the interaction parameter k occurring explicitly

in Eq. (3.3) is used to determine the order. In fact, $(Gg, ) is defined through the decomposition of X'"'(6& )

into skeleton diagrams. There are 2n Gg, lines for the nth-order diagrams in p(6& ). Differentiating p(6~ )

with respect to 6& has the effect of "opening" any of the 2n lines of the nth-order diagram and each will

give the same contribution when Tr is taken. From Eqs. (3.1)—(3.3), it can be easily shown that44

BXg BogX"'= — Trln( —6 )+Tr G +Tr
I 13 aapaa" ' aapaa" " zap aa

(3.4

The first term in the right-hand side of Eq. (3.4) has exactly the same form as that of the noninteracting
Fermi systems, except for the replacement of the "noninteracting G~,

"
by the exact Gg, for the interacting

Bloch electrons. Thus we denote this term as Xqz (qp represents quasiparticle} and the sum of the second
and the third terms as g„,which is the contribution due to exchange and correlation effects, and we have

X XqP +XCOIT (3.&)

(3.6)

In order to evaluate X from Eq. (3.4), we expand X(k,B,(i), which is a (2X2) matrix, is an operator in k
space, and has both explicit (through inc and implicit 8 dependence,

BX(k,B,gi)
X(a,B,gi}=X(k,B,(i}—ihip gka 2 ~ ~ gkagky

Vk ——,h~phyg -VkVk+. . .
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and

X(k,B,(()=X (k,g()+B"X'"(k,g()+B"B"X'""(k,g()+ (3.7)

where

Pl ~((=e~((y /l

eN((„ is the antisymmetric tensor of the third rank and we follow Einstein summation convention. From
Eqs. (2.12), (2.13},(3.6},and (3.7},we write

H(a, g() =Hp(k, g()+H'(k, g(), (3.9)

Hp(k, g()= (p+Rk) +V(r)+X (k,g()+ V V+ ~ i (7 VVX(p+A'k) (3.10)

and

BX'('
H'(k, g()= ih —pII Vj~+ gppB"(r—('+B"X'"(k,g() ih~((B"— Vf.

Bk

g2y0
, h ((hrs——5r+ V[Vk+B"B"X'""(k g )

where we have retained terms up to second order in the magnetic field. Here II/fi is velocity operator

(3.11)

g2
11(k,g()=—(p+ir(k)+ o X V &+VkXP(k, g() .

m 4m 2c2

We make a perturbation expansion

(3.12)

G(k g()=Gp(k, g()+Gp(k f()H'Gp(k, g()+Gp(k f )(H' Gp(k, g )(H'Gp(k, g()+

where

1
Gp(k, g() =

k Hp(k k}—
and we retain terms up to second order in magnetic field. It can be easily shown that

V & Gp(k, g() =Gp(k, g()II Gp(k, g()

and

(3.13)

(3.14)

(3.15)

Gp(k g()= Gp(k g() & +& Gp(k g() +Gp( k g()II Gp( k f()II Gp(k g( )

+Gp(k, g()IPGp(k, g()II Gp(k, g() . (3.16)

We obtain from Eqs. (3.11), (3.13), (3.15), and (3.16)

G(k, g() =Gp(k, g() —Gp ih~((II GpII~ , gppB
"F"——

+h.~h„,G,B.P~+(G, II('G, IIs—II('G, G,II'+ ll('G, IisG,
2@k

+-,'X&G, + -,
'
G,X(N) "+-,'X &G,(X( + II('G, II'+IisG, II(()
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+n 6,(n~G, nrG, n'+ nrG, n~G, n'+ nrG, nsG, nt'+ nrG, X&

—g&6 IP) + , ih —pB"[gp (n G n~G F"

+II 6 F"6 II +F'6 II 6 II )+2(F "6 II —II 6o& ')]

g"'P~G P g2,~ G +. . .
4

(3.17)

where

(3.18)

PV ~V+ pl V2

gPo
(3.19)

A. Evaluation of Pqp

We shall calculate X~q~ using Eqs. (3.4) and (3.19). We assume the self-energy to be independent of fre-

quency, an approximation valid in the statistically screened exchange approximation. To carry out the fre-

quency sums appearing in X~qz, we use the identity"

1 1—ginP~ H —gi

1 dg 1

2nt c &~« ii+1 H-—g,
(3.20)

where the contour C encircles the imaginary axis in a counterclockwise direction. We define

y (g)= ——ln(1+8 @& ~') .1 (3.21)

From Eqs. (3.2), (3.20), and (3.21), we obtain

ddo(4)
Qqp —— . tr f ln(H —g)dg,

where tr is taken over one-particle states only. By partial integration, we obtain from Eq. (3.22)

n,„= . tr yo(k)in(H —g) —f 4o(g)
1 1

(3.22)

(3.23)

Since the first term is zero, we have

Qqp
———— . tr f $0(g)6(ghg . (3.24)

The advantage of using Eq. (3.24) is that after substituting the perturbation expression for 6(g) [Eq. (3.17)],
the thermodynamic potential is easily evaluated. The results are precisely the same as obtained by using the
inverse Laplace-transform technique, but the present technique is simpler.

The one-particle trace is evaluated over the periodic part of P„ 1, , which are eigenfunctions of Hp(k). In

this basis Go is diagonal and is given by

Go
' =(4—Enk) (3.25)
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After evaluating the trace, we perform the contour integration as prescribed in Eq. (3.24). We use the iden-
tity4'

hailhyS(Ml MZMI3M4+M, M(M3M4) =haphySM, M/M3M4

where Ml, M2, M3, and M4 are any matrix elements and

np, np

(3.26)

(3.27)

where p is a spin state conjugate to p. We also adopt the convention that the running index means that the
sum over all the bands and all the spin indices shall be taken except that all band terms equal to n have been
explicitly separated out. After considerable algebra we obtain

k

f(E„) 2/0(E„)
mp, np

21 p5 a y+haphys ~p6++np, np llnp, nplinp, npf (En )

4 2fi ay & ay p5

4m 2 5ayspS+
2 Xnp, npbpS 4 Xnp, npnp, np f (En )2'

f"(E„) 2f'(E„) 6f(E„) &$0(En )
+~np p~ p p~ p p'~ p', p + 2 + 3 + 4

a~mn Emn Emn Emn
L

f'(E„) 4f(E„) ggp(E„)
+ Q p p 0 p p5p5 E + 2 +

m ' '
Emn E „

p s f'(E. ) 6f«n) g4'0(En) 440«n)
np, mp' mp', np" np", qp"' qp"', np E E E2 E E3 Emn qn mn qn mn qn mn qn

2f (E„) Qp(E„) Qp(E„)
+ np, mp' mp', qp" qp", Ip"' Ip"', np E E E E2 E E E2 ~

ln qn mn mn ln qn le 'mn qn

+ np, np np, mp' mp', qp" qp", np

2f (E„) 2f (E„) 4/0(E„) gp(E )
+ 2

—
3 +

Emn Eqn mn qn Emn Eqn EmnEqn

pI
+ P038 ~" +np, np'+np', npf'(En )

mn

1 p, p, a p ay p 5+( 2 lhapgPP +np, np linp', mp ll'mp ,np+"haph"yPnp, npllnp, mp'~mp', np)

f'(E ) 3f(E ) Qp(E )
X + 2 +

mn Emn Emn

a p p—( 2 lhapgl p Hnp mp Amp qp'Pqp" n

f(E„) 2P (E„)
+h ~h~y ~"p, p'~ p ', qp "Xqp","p ) +

Eqn Emn Emn Eqn
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~ 2 apgPo- np, mp'- mp', qp' qp, np "aphys' ~ np, mp mp, qp' Irqp, np)

f(E„) 2$o(En ) 2$o(En )XEE + 2 + 2
mn EmnEqn Eqn Emn

appH
2

~"apWu np, mp'yrmp', qp"+qp", np

f(E„) 2go(E„)
+h ph„sX„n ~ - -„)

EmnEqn E nEqn

1 p, a p P P ay 5+( 2 lh @gap'(P llnp mpFmp qp llqp np haphysllnp mp'Xmp qp IIqp np)

f(E„) 2$o(E, )
X 2 + 3 ( 2lhapfijo8 Fnp mp IImp', qp'IIqp ;np'

Emn Emn

f(E, ) 2$o(E„)+ ap ysXnp, mp'limp', qp"IIqp", np) +E „E,n E nE,n

a np, mp mp, np np, mp mp, np (3.28)

where, as indicated earlier, sums will be taken over all indices n, m, q, I, p, and p', but n+m, q, l. In the
above, we have also used the notation

E „=E (k) —E„(k) .

In Appendix A, we derive the following identity:

(3.29)

2h phys
71

~ np, np' np, mp' mp', qp" qp", np '~np, np' np, mp'~. mp', qp" qp", np
2 2

FmnEqn EmnEq.

np, np np, np' np, mp' mp', np
3

II II~ F& ~ Ilnp, np np, mp mp, np np, np np, mp mp', np+~ ayfPO

rr rr& o~ 2 II II~ ~

4h h
~np, np~np, np~np, mp'IImp', np 2' Ilnp mp IImp np

k mn mn

a ~y P 1
"np, mp mp', np" ~np", qp"'Dqp"', np 3 +

EmnEqn EmnEqn

+II .II&. „II~, 1
np, mp™ p', qp" qp", 1p"' 1p"',np

mn 1n qn 1~mn qn
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p g 1 1
~np, np Inp, mp'~mp', qp" ~qp", np 3 3

EmnEqn EmnEqn

2'h +~+pFp II, p. ,ll~p, p+4h
+ E3

mn

a p p p 5 ay
&hapgP08 IInp, mp'IImp', qp"Fqp", np+ haphys~np, mp'~mp', qp"+qp", np

2
EmnEq.

(Eh.p—gpPPII.p,.pFP p, qp-IIqyp-, .p 2h.p-hysrIPP, .PX.py, qp-IIqp-, .p)

1 1
X 2 +

Emn Eq. EqnEmn

p p, a p ay p 5
&hapgPP Fnp, mp'IImp', qp"~qp", np+2haphysxnp, mp'~mp', qp ~qp ",np"

2
Emn Eqn

p a p p p ay 5
&hapgpoa IInp, npFnp, mp'+mp', np haphys~np, ngnp, mp'IImp', np+ E3

p a p p p 5 ay
&hapgPsa IInp, np+np, mp'Fmp', np+2haphyslInp, npIInp, mp'+mp', np

3
Em.

—2ih p

IIp V y —V'y rrp
np, mp' mp', np np, mp' mp', np

2
'I('0&

mn

(3.30)

In Appendix 8 me show that

gh phys.
k

1 II IIy rIP
xp' n rry np, np np, np np, mp' mp', np

6 p5+ np, np np, np np, np+ n
Nl 3~mn

np, mp' mp', npay & ay p5 ~ p5
2 2

L

4m 2 ~ay )qS+ Xnpnp~p5 4, Xnp, ngnp, np 5p5+Xnpnp,
2ppl Pl

a y p

+np mp mp, np np, qp qp, np

2EmnEqn

np, m p' m p', np" np", qp"' qp"', np
n~

2Em. Eqn

1= —
iz ap ys g VkV/EnVkVkEnf'(En) . (3.3l)

k

It can also be shown by a partial integration similar to that shown in Appendix A for Eq. (3.30):
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H Hy H Hnp, np np, np np, mp' mp ,n'p «(@aP y5 ~ E2 J n

k mn

,Hr, HP „H5 „Ha,Hr, H5 „IIP„
np, mp' mp', np np, qp" qp", np np, mp' mp', np np, qp" qp", np

=haphy5 ~ 2 '
'2

' ' +2
E .Eqn

H Hy .H' . ri~-
np, np np, mp' mp', qp" qp", np Ha Hy Hp

np, np np, mp' mp', qp" qp", np
mn qn qn mn

2
EmnEqn

np, np np, mp' mp', qp" qp", np Anp, np np, np np, mp'A mp', np

2 3
EmnEqn En

p 5 ay P 5
2A' Hnp, mp'Hmp', np &np, npHnp, mp'Hmp', np

5w, —2
'

2m Emn E

H~ y H5 ' P X y

+ '
'q

' + ',' ' f(E„) .np, n np, mp' mp', np np, np np, mp' mp', np

mn Emn
(3.32)

It can be easily shown from time-reversal symmetry ' that

Ilnpmp(k)+limp np(k)
and

(3.33)

F„„(k)= F-(——k) .

Using h p
———h p and the above, we have for nonferromagnetic crystals

(3.34)

f(E„) 2gp(E„)
~aplInp, mp ~mp ,n'p '+

E
n, m, p,p', k mn Emn

n+m

+ , gpoB "F„"p„g—(E„)=0 . (3.35)

From Eqs. (3.1), (3.28), (3.30), (3.31), (3.32), and (3.35), we obtain

XPqp= g (1+5„,) ''

k

2e a P 5

48k cg eaPp&ySv~k ~f~n ~k ~kzn

2

+
~2 2 &aPp, &y5v

VLnp mp'Hmp' np" »np", qp'"»qp"', np

E nEq.

2 2 p ~ legI 0
8

g' Po np, np'Fnp , np 4~'~apv
a ~P

np, np' Anp', mp" AAmp", np f'(E, )
mn

2

+ ~ 2 GaPpEy5„4' c

2 na, rry2'6 Anp, mp'~ mp', np np mp mp np np qp qp ~np5»+2
Emn Eqn

np, mp'~ mp', np" np", qp"'A qp'", np np, mp' mp', qp" Aqp", Ip"' L1p"', np

Emn Eqn E1IIEqn Emn

VL np npL Lnp mp L L mp qp VAqp np VL np npVJnp mp A
Amp qp VLqp np

2 2
EmnEqn &m. Eqn
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p ay gS H x y

—2
' ' ' +2np, mp' mp', qp" qp", np np, mp' mp', qp" qp", np

EmnEqn EmnEqn

op ay P S

+2 ' ' ' —2np, mp' mp', qp" qp", np np, np np, mp' mp', np

EmnEq.

np, mp'~ mp np+4g Po Emn

&gPO ~'np, np' np', mp" mp", np+ 4~ aP~ E2
—3-

mn

np, mp' mp', qp" qp", ri p

np, mp' mp', qp" qp", np

E E EnE „

np, np np, mp' amp', np np, np' np, mp' mp', np
2 2

Em.

+ 2~ &apv

np .r ~. —r~ .rrp.
np, mp' mp', np np, mp mp ', np'

np, np J n
mn

(3.36)

We note that in the absence of an electron-electron interaction I" =o, X=O, F=0, and E„and II reduce to
the corresponding values for noninteracting Bloch electrons. In such limits, it can be easily shown that our
expression for Xqp reduces to the earlier results of X obtained for noninteracting Bloch electrons. '" '

B. Derivation of g„

We shall now derive an expression for X„«. From Eqs. (3.7) and (3.17), we obtain

8 Xg, BXg, BGg,

p
'

aa„aa, '~+ aa„aa„

Tr ( 1 j5& ) Xgl Gp( k gl ) — Enp Xg& Go(k kl )II Go(k kl )II Gp(k g~)

+ —,gpoXI', "Go(k k)+"Go(k k) (3.37)

As before, we assume the self-energy to be independent of frequency. We carry out the frequency sums as
per prescription of Luttinger and Ward

1 1 1 p 1 1

P ( (gi E„) &« "—"0 (g—E„) e~'~ "'+1

We obtain

(3.38)

X"„"„,= g(1+5„„) e p„
k

np, np' np', mp" mp", np np, mp' mp', np np, np

Emn Emn



26 MANY-BODY THEORY OF MAGNETIC SUSCEPTIBILITY OF. . . 1915

rr nP .X'~.
Pi P Pi P Pi P + gl, P Pv f&(E )4 g90 npnp' np', np n

mn

2pv le+ ~np, np + ~ &apv
np, np' np', mp" ~mp", np np, mp' mp', np»np, np

2 2
Emn Emn

np, np np, mp'~mp', np ~np, mp' mp', qp" qp", np
2

Emn Emn Eqn

~~np, mp' amp', qp"~qp", np ~~np, mp'~mp', qp"~~qp", np

EqnEmn EmnEqn

1—4ggo
np, mp' mp', np np, mp'~mp', np+ ' ' f(E)

mn mn
(3.39)

C. General expression for magnetic susceptibility

It can be shown by partial integration method outlined in Appendix A that

rr rr~ r'~ie ~ np, mp' mp', np np, np np, np np, mp' mp', np

mn mn

I',e
4Re

k
2E nE,„

H .Y~" „Y~" II+ P& P P' P P' P P' P f(E ) (340)
Em. Emn

From Eqs. (3.5), (3.36), (3.39), and (3.40), we obtain the general expression for total magnetic susceptibility,
which we write in an alternate form:

1 X +X +X

where 7"," is the orbital contribution to the susceptibility,

(3.41)

2
aPp6y5v

4g2c 2
np, mp' mp', np"' np", qp"' qp'", np

5ps+2
m Emn EmnEqn

a y P 5 a y 5 P
—2 np, mp' mp', qp" qp", lp"' 1p'",np np, np np, mp' mp', qp" qp", np

)a qn mn Emn Eqn

~~np, np ~np, mp' ~mp', qp" ~~qp", np ~~np, mp'~mp', qp" ~ qp", np
2

EmnEqn &mn&qn
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np, mp'L mp', qp"~qp", np ~np, mp' mp', qp" qp", np ~np, np np, mp' mp', np

Emn Eqn Emn Eqn

ie+ 4~ &apv

p ap ap p
~np, mp' ~mp', np ~np, mp' ~~mp', np f(E„)

mn mn
(3 42)

P"," is the effective Pauli spin susceptibility including exchange and correlation effects,

x~"=g (i+a„„)
k

app tv LLnp mp VLmp' np'VLnp" qp VLqp np

8%2 2 E E sg ~«PnP nP nP0 F" ~

C mn qn

a piegpo Jnp, np' np', mp" mp", np

4r. '-&.
mn

(3.43)

and g"„ is the additional spin-orbit contribution to the magnetic susceptibility,

2

Xg= ~~(l+& „)
~app~y5v np, mp' mp', np" np", qp"'~qp"', np

2g2 2 E2

gl 0 np, np' np', mp" mp", np np, mp' mp', qp" qp", np

4~ aPv ~2 E Emn qn mn

rr p J~ rr a p, p

+ ' ' + ' ' +np, mp' mp', qp" qp", np np, mp' mp', qp" qp", np np, n np, mp' mp', np

qn mn qn mn Emn

LLnp, npVLnp, mp'~ mp', np
2E

1 p 2 np, mp' mp', np np, mp' mp', np+sg~o E +
mn mn

f(E„) .

(3.44)

Here

yj
gPQ

(3.45)

E „=E E„,and the oth—er symbols have their usual meanings. We would like to make a few remarks.
Had we kept only the quasiparticle contribution to X, both spin vertices i'' and o appearing in X, would
have been renormalized to F" and F"by the exchange-correlation effect. The addition of X„„results in
cancelling the renormalization effects of one spin vertex keeping only one renormalized spin vertex. Similar-

ly in 7„,every spin matrix 0. appearing in O.IIH terms gets renormalized by J, which is equivalent to the
vertex correction of one of the two spin vertices. Had we considered only the quasiparticle term, each ir
would have been renormalized by F. Similarly in the o.o. terms, one of the o gets modified to F. There are
also additional contributions due to self-energy terms.

We can also rewrite X,""in Eq. (3.43) as

(3.46)

where the effective g matrix is defined as
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~'e np, mp" mp", np'
gnawn(k)o'np, np'= ~apv ~ ' '

+g+np, np' '
m, p" &mn

(3.47)

In the absence of many-body effects, Eq. (3.46) is identical to the expression for effective Pauli spin suscep-
tibility. The exchange and correlation effects are included through the vertex correction, i.e., H is corrected
to (2/gerdco)X'" +0".

IV. MANY-BODY EFFECTS ON MAGNETIC SUSCEPTIBILITY

A. Exchange self-energy in the band model

The exchange contribution to the self-energy is local in r space

X(r, r ',gi)= ——g u,rr(r, r ')G(r, r ', g~
—

g~ ), (4.1)

where a simple static screening approximation is made in obtaining v,rr(r, r ') from v (r, r '). In this approx-
imation the self-energy is independent of gI and one has

(4.2)

We also assume that v,rr(r, r ') is field independent, i.e., neglecting the field dependence of screening, we ob-

tain

(4.3)

X and G can be expanded in terms of Bloch states as follows:

X(r, r )= g X„p p(k)g„k (r)g' k,(r')
n, m, k,p,p

and

(4.4a)

G(r, r ')= g G„«(k)g„-„(r)g*-„,(r ') .
n, m, k,p,p

Substituting Eqs. (4.4a) and (4.4b) in Eq. (4.3), we obtain

X„p p(k)g„-k (r)g' -„p,(r ')
I

n, m, p, p

(4.4b)

v,rr(r, r ')G,(k')f k, (r)g'-k, .(r ') .
ll p, & k ',p,p'

If the effective electron-electron interaction is spin independent, then p=p, p'=p' and we have

(4 5)

X„p «(k)= —— g (nm
~
unff(k, k') ~pq)ppGppqp(k', (f),

k ', l&,p, q

where

(4.6)

(4 7)(nm ~urr(k, k') ~pq) = I p'„k (r)g k«(r')u, rr(r, r')g k, (r)f'k.«(r')drdr'.

Equation (4.6) is the expression for exchange self-energy in the band model. We can obtain X,X',X, etc.,
by expanding G. However, the resulting expressions become very complicated, and we have to make further
approximations to obtain reasonably tractable expressions. We shall now evaluate X„'p p and X„'p p which
occur in g, and 7„. We make the approximation
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'(nn
I

U ff(k k ) I pq &~ =&«
I
u.rr(k k') Ipp &5' =".p(" k'}5pq

,
(4 g)

From Eqs. (4.6) and (4.8), we obtain

Xn n (k)= ——g v„(k,k')G (k'&(~) .
k ', fi,p

(4.9)

Substituting the value of G from Eq. (3.17) in Eq. (4.9), summing over gi, expanding X(k) as in Eq. (3.7),
and comparing first-order terms in magnetic fields, we obtain

Xn'p np'( k }= g Unm ( k k '
}Xm pm p'( k' }fm ( k')

2 p'o g unm ( k k '
}gmm ( k ')o

mp mp'fi'n ( k ')
m, k' m, k'

e p„g u„(k,k') '
2

' [f (k') —fs(k')] .

qQm

(4.10)

In order to calculate X„'p p(k), from Eq. (4.6), we assume

(nm
~
v,rr(k, k') ~pq)~ ——v„(k,k')5„p5 s .

From Eqs. (4.6) and (4.11}we have

(4.11)

X„pmp(k)= ——g U„m(k, k')G„pmp(k'&k) . (4.12)

Substituting the value of G from Eq. (3.17) in Eq. (4.12), summing over gI, and comparing first-order terms
in magnetic field, we obtain

f(E„)—f(E )
Xnp mp'( k ) g unm ( k & k }Xnp mp' 21 0g Unm ( k & k }gnm ~igp mp'

Enm

f(E„) f(E )—
Enm

where we have defined a nondiagonal g matrix g„m as

(4.13)

le np, qp" qp", mp'
gnm ~np, mp' g~np, mp'+ +agr,

PIC q p- Eqm

qQm

(4.14)

B. Exchange enhancement of g,

Let us see how X,""gets exchange enhanced. We can write Eq. (3.46) in the alternate form,

yPE4 +yPP

where

&O.s =
4 Po g gnn+np, np'gnn~np', npf (En } &

ns k,psp

is the effective Pauli spin susceptibility for noninteracting Bloch electrons, ' and

~l,s =
2 p'0 g gnnXnp, np'onp', npf'( n ) &

n, k,pp'

(4.15}

(4.16)

(4.17)

is the contribution due to exchange and correlation. First we consider individual band enhancement and
neglect interband interactions in the expression for Xnp np in Eq. (4.10). We also neglect terms proportional
to f, make an average exchange enhancement ansatz, and assume U„=v„„5„,which is equivalent to the as-
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sumption that X'" is independent of k, to obtain

An
y ~P

np, np'= 2 i I Ognn~np, np' ~

An

where

a„=—g u„(k, k')f'(E (k')) .

(4.18)

(4.19)

From Eqs. (4.15)—(4.18), we obtain

pe
x,""=g (1—a„) ' (4.20)

where X~0,"„is the contribution to effective Pauli susceptibility for each band. We note that the intuitive re-
sult of Eq. (4.20), which gives rise to the well-known Stoner enhancement, ' is only valid if one makes dras-
tic assumptions while solving the matrix integral equations for Xnz nz. However, the neglect of interband
terms, i.e., coupling between the X„~„z for different occupied bands might be too drastic for systems such
as Be, Cd, etc.

We now consider exchange enhancement in a two-band model. We define

1,pX =X '~p p, (4.21a)

and

am 2 POgmm~mp, mp' ~ (4.21b)

k'

From Eqs. (4.10}and (4.21), we obtain (neglecting f terms}

(4.21c)

and

~n Unn+n~n + nm+m ~m +Unn n+n +~nm m+m (4.22)

~m =Umn+n~n+Umm+m~m+ mn n+n+~mm m+m .

Equations (4.22) and (4.23) can be solved self-consistently, and we obtain

(4.23)

and

2

&n=
UnnunNn +Unm&mNm Unn~mm&nNnNm +

I Unm I unNnNm

UnnNn UmmNm +(UnnUmm I ~nm I
}NnNm

(4.24)

2
UmnanNn +UmmamNm —

Unn "mmamNnNm +
I Unm I

amNnNm

1 —UnnNn —UmmNm+("nnUmm I "nm I
}NnNm

We can write Eq. (3.46) in the alternate form,

~s n+n + m+m + n+n~n + m+m ~m

From Eqs. (4.24) —(4.26), we obtain

(4.25)

(4.26)

X"o,"„(1 UN )+XL" (1—U„„N„)+, (X"„"—„N +X"„"—N„)(U„+U,)
yPP

S 2
UnnNn UmmNm + (Unn ~mm I Unm I

}NnNm
(4.27)
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where we have assumed

2 2
an+am =2anam . (4.28)

the third —seventh terms in 7„,we note that we
can write Eq. (4.13) in alternate form,

Thus we see that even in a simple two-band model,
the exchange enhancement of X, is quite different
from the simple form obtained in Eq. (4.20). A
realistic calculation of exchange enhancement in
metals such as Be, Cd, etc. should at least be done
in a two-band model.

P
PO+nmgnm ~np, mp

np, mp (4.31)

where a„ is an exchange-enhancement parameter
defined by

- -, f(E„) f(E -)

un = —g U„(k, k') . (4.32)
En

C. Exchange and corre1ation effects on g

From Eqs. (3 45) and (4.32), we obtain

rl'
"npmp' = nm npmp' ~ (4.33)

It is interesting to note that the effect of
electron-electron interactions is different on the
various terms in X«of Eq. (3.44). For example,
the effect of electron-electron interactions on the
first term in X«comes from the IIIIIIII term,
which contains VkX . In order to calculate the ex-

change and correlation effects on the second term,
we have from Eqs. (3.45) and (4.18)

where

pP
nm nm

2g (1—a„) (4.34)

~ np, mp' ~nm np, mp' ~ (4.35)

In order to calculate the exchange enhancement of
the last two terms in X«we have from Eqs. (3.19}
and (4.32)

"np, np' nn np, np ~

where

(4.29)
where

ngnna
2g(1 —an )

(4.30)

In order to obtain the exchange enhancement in

nmgnm

g(l —a„) (4.36)

We can now rewrite Eq. (3.44) with the help of
Eqs. (4.29), (4.33), and (4.35) as

k, n, m, q,p,p'

n+m, q

+pp g~& np, mp mp, np np, qp &qp' '
np

fl C E2 E

gI 0 nn npnp' 'np'm, p" mp , np ~"q,n~~np, mp'~~mp', qp"Oqp', np+ p 3

-IIP „ u p

+ ' ' +mq np, mp' mp', qp" qp", np nm np, mp' mp', qp" qp", np

Eq.Em. EqnEmn

nm np, np~ np, mp' amp', np ~mn anp, np np, mp'~ mp'np
2 2En

gp, &p, gp
+—.g I 0 E + E

' f(E„).mn np, mp' mp', np nm np, mp' mp', np

mn
tmn

(4.37}
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We note that except for the first term, each term
in X„gets exchange enhanced through the ex-
change enhancement parameters A's and 8's de-
fined earlier, but the enhancement factors are dif-
ferent for different terms. From the earlier re-

sults, ' a priori one could not say anything about
the effects of exchange and correlation. Even in
the absence of exchange and correlation effects, the
contribution of X„is of the same order of magni-
tude as X, for some metals and semiconductors
hence the exchange enhancement parameters A' s
and 8's would play an important role for determi-
nation of susceptibility of these solids.

BX'&/Bk . However, in our approximation, these
terms are small.

It may be noted that since the explicit many-
body correction terms to X, are small, P, can be
calculated treating the self-energy as a one-particle
nonlocal pseudopotential and ignoring the change
with magnetic field of the transformed self-energy.
Since the theory of Misra and Roth'" does just
that, if the correct pseudopotential is used, their
theory includes both the band-structure and many-
body effects. The same conclusion has also been
reached by Philippas and McClure. '

V. SUMMARY AND CONCLUSION

D. Many-body effects on P,

The effect of electron-electron interaction on X,
is quite different from that on X, and X„. The
first term of X, in Eq. (3.42) is the Landau-Peierls
susceptibility for quasiparticle (X$$) since the ener-

gy in the Landau-Peierls term is the quasiparticle
energy. This is the well-known Sampson-Seitz
prescription' which has been proved by Philippas
and McClure. ' If we include the effects of
electron-electron interaction through an effective
mass and ignore the band effects, we obtain the
well-known result ' for X, in the Fermi-liquid
theory

+LP
(4.38)

where A ~ is the Fermi-liquid parameter. Philippas
and McClure' have shown that if a static
Thomas-Fermi potential is used and the band ef-
fects are ignored, Xfp yields all the recent many-

body results of X, for free electrons. Thus we
note that our Xs agrees with all the earlier results
of X, for both band and free electrons. The
second —fifth terms are corrections to the Landau-
Peierls term and agree with the results of Misra
and Roth' except that the electron-electron in-

teraction is included in the II's through VkX .
These terms, which are zero for free electrons, are
of the same order as XLP for band electrons' even
in the absence of electron-electron interactions.
Therefore, while considering many-body effects on

Xo, it is wrong only to consider X5 as has been
done in all the earlier calculations.

The sixth —ninth terms are interaction terms be-
tween the II's and the electron-electron effective
mass. The tenth and eleventh terms are also expli-
cit many-body correction terms through

The principal result of this work is the obtaining
of a tractable expression for the total magnetic sus-
ceptibility (X) of interacting electrons in solids. We
included the effects of both the lattice potential
and electron-electron interaction and constructed in
k space, using the Bloch representation, the effec-
tive one-particle Hamiltonian, and the equation of
motion of the Green's function in the presence of a
magnetic field. We used a finite-temperature
Green's-function formalism where the thermo-
dynamic potential 0 is expressed in terms of the
exact one-particle propagator G and derived a gen-
eral expression for X by assuming the self-energy
to be independent of frequency, an approximation
valid in the statically screened exchange approxi-
mation. In our theory the effects of exchange and
correlations on each of the three components of X
have been explicitly calculated. If we make simple
approximations for the self-energy, our expression
for orbital susceptibihty (X,) essentially reduces to
the earlier results. ' If we neglect the coupling be-
tween self-energy terms for different occupied
bands while solving the matrix integral equations
for the field-dependent part of the self-energy, our
expression for spin susceptibility (X,) is equivalent
to the earlier results for the exchange-enhanced X,
but with the g factor replaced by the effective g
factor, a result which has been intuitively used but
not yet rigorously derived. However, since these
assumptions are too drastic for metals such as Be,
Cd, etc., and for semiconductors, we made a care-
ful analysis of exchange and correlation effects in a
two-band model and solved the integral equations
for self-energy terms taking into account the inter-
band couplings. Our results indicate that the
exchange-enhancement effects do not appear in the
simple form obtained in the earlier results.

An important aspect of our work is the analysis
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of exchange and correlation effects on 7„,the con-
tribution to magnetic susceptibility from the effect
of spin-orbit coupling on the orbital motion of
Bloch electrons. In all the earlier many-body
theories of magnetic susceptibility, these effects
had been ignored, since attention had been focused
either on the orbital part or on the spin part of the
Hamiltonian. It has been assumed that the effect
of spin-orbit coupling could be accounted for in g,
through the modifications of the Bloch functions
and in X, by replacing the free-electron g factor by
the effective g factor, thereby neglecting many-

body effects on X„. However, even for nonin-

teracting electrons, g„ is of the same order as X,
for solids with large g factors. ' Since from
these earlier results a priori one cannot say any-
thing about the effects of exchange and correla-
tions on X„,our present work is the first of its
kind where these effects have been analyzed using
a statically screened exchange approximation.

Our results indicate that the effects of exchange
and correlations are different for the various terms
in g„. The leading HHIIII term in g„becomes
exchange enhanced in a similar way as 7,. How-
ever, this term is proportional to the nondiagonal
terms of the effective g factor g„~, which involve
the interband matrix elements of X' operator. The
other terms in g„are also exchange enhanced, but
quite differently from X, . In the absence of spin-
orbit interaction, the many-body contributions to
X„vanish, as they should.

We have noted that our results agree with the
earlier many-body results for X, if we make simple
approximations and for X, if we make drastic as-

sumptions. However, it is not possible to compare
X„since there has been no many-body calculation
for X„. It may also be noted that if we neglect
electron-electron interaction, our expression for g
agrees with the results for noninteracting Bloch
electrons. ' '

APPENDIX A

We shall now prove the partial integrations in Eq. (3.30) by generalizing a procedure used earlier by one
of us for noninteracting electrons. We have

VkII~p p Vk f dr U——„*-„(V)Hp)U -„.

f dr(VkU k&)(VkHO)U kp + f d1 U k&(VkVkHO)U p& + f dr U p&(VkHO)Vk U

(Al)

Since U„k are a complete set for periodic functions, we insert the complete set
~

U k „)( U g „~ in the
q k p" q k p"

first and third terms. Therefore we have

VkII„= g f dr(VkU„'„)U „„f dr 'U*„„(VkH )U
q,p
q&n

+ g f dr(VkU„*p )U„gp f dr'U„*k „(V)HO)U
P

+ g f dr U„*k (VkHp)U -„„f dr'U'-„. , VkU -„,
q,p"

qQm

f2+y f dr U„'-„,(VkH, )U~-„p, fdr'U„~kp. .V;U~kp„+ "g.g„p~p. +X„p—p, .
II I (A2)

We also have

Vk f d U„uQoU 7 '=0

from which we obtain

Eq f dr(VkU*k )U k +E„f dr U*k VkUqk +II pqp 0

and

(A3)
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Vk f d r U'
nk pUq k p, =0,

from which we obtain

f dr(Vk U„*k U -„=, —f dr U„'k 7k U k . .

From Eqs. (A4} and (A6) we have for quan

rr
dr U„*k VkU k, ——

qn

We define

Dnp, np'=—f dr Un k peak Un k p, .

From Eqs. (A2), (A7), and (AS) we obtain

(AS}

(A6)

(A7)

(AS)

rr op
v n'k np, mp' =

q p" nq q,p"
quan q+m

rrp rra. np, qp"~ qp", mp' fi ap+ ~aP np, mp'+Xnp, mp'
mq m

a p p a
(+np, np" ~np", mp' llnp, mp"Dmp", mp }. '

P
(A9)

Similarly we can prove

anp, qp"~'qp" mp' ~ Enp qp Viqp mp
~k+np, np' = ~ + ~ + ~np, mp' g (Dnp, np"+np", mp' +np, mp"Dmp", mp' }

q,p" nq q,p" mq gI 0 p"
quan q+m

(A10)

The partial integrations can be done in the following way. We first differentiate

haphygVk
I Il

m,p, q,p
m, q+n

rrp, rry, „rr& „
np, mp' mp', qp" qp", np

tl(o(&„) (Al 1)

When we differentiate the qQm terms, we obtain the following (where l =I and l =q terms are displayed
explicitly):

haphyg
np, lp"'a~lp'", m p' ~ anp, mp'~ amp', mp' a anp, qp"'~ ~qp"', mp' ~~np, lp'"~ alp"', mp' np, np np, mp'

Enl Enm Enq Eml Em„

np qp'" qp'", mp' ap ~a ~p
Emq

rry rr&a amp', qp" a aqp", np
NO &n

mn qn

rrp
np, mp'

2'E-Eqn
Pgm I l ttlPgg tll

q
II P~m I

q IIP~q tt
q

II

Eml Emq

a y a
+ +mp', np'" np"', qp" mp', lp'" lp"', qp"

Eql

y a

+ mp', mp' mp', qp"

a
mp', np"' np"', qp' ay a y y a 5+ +Xmp', qp" +mp', mp"'~mp"', qp" +limp', qp'"Dqp"', qp" llqp", npA(@n }

qn

n a 5

+ '2 ' ' '+np, mp' mp', qp" qp", lp"' lp'", np qp", np np, np

EmnEqn Eql
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P~ PP f/tPg Ill Pg II IplllP+fptll np Q +qpll qpll J Qqpll np

qp", mp'" mp"', np 5 a+ +Xqp", np +qp", qp'" llqp'" np +~qp ,np""'Dnp" , np'00(En )
Enm

IJ gP y

y,m„)+2 ', ' ' A«. )np, mp' mp', qp" qp", np np, np np, mp' mp', qp" qp", np np, np

En E„

np, mp' mp', qp" ~aqp", npaanp, np

mn qn

np, mp'~~mp ,qp"~'~qp", npllnp, np ~~np, mp'~'mp', qp" qp", np np, np

nm qn mn qn

(A12)

Here the summation is over all the band indices except for n+m~+l. We also differentiate the q =m
terms in Eq. (All) and then add these terms to the terms in Eq. (A12). We simplify the sum by interchang-

ing band indices (except n) wherever necessary and by using the identity (3.26). Then the diagonal terms in

the band indices /, q, and m are grouped together with the nondiagonal terms. Finally, the summation over
k is changed to an integration, the volume integral over k space is changed to a surface integral, and since
the integrand is periodic in k, the surface integral vanishes. Thus the term proportional to f(E„)will be
equal and opposite to all the terms proportional to $0(En ) and we obtain

np, np np, mp' mp', qp" qp", np (g )
.rry

aP y5 E E n

k mn qn

rr cry n' P y ~5 ~a ~y gP 5

=haPhyg ~ 2 '
2 + 3 +np, mp' mp', qp" qp", lp"' lp"', np np, np np, mp' mp', qp" qp", np np, np np, mp' mp', qp"~qp", np

Emn Eqn Eln EmnEqn EmnEqn

Vanp mp~amp np anp qp Vxqp ~

np Vanp mp Vamp np V~np qp qp np
3 2 2

EmnEqn EmnEqn

aanp, np anp, mp' amp', qp" qp", np A 'np, mp"'mp', np+ z 2
+-

EmnEqn m Emn

np, mp' mp', qp" qp", np np, mp' mp', qp"~qp", np+ ', ' ' — '
~

' ' $0(&„),
EmnEqn EmnEqn

(A13)

where the sums are over m, p', q,p",I,p"' but m, q, l+n. Similarly we obtain

rra rry rr' -rr~-"p p np mp mp qp" qp" np ~(EaP y5 ~ J n

k mn qn
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np mp' mp' qp" *qp" lp'" lp"' np np mp' mp' np"LLnp" qp'"Viqp"' np
=hnphyg Z, —2

1nEmn qn E'nEqn

np mp' mp np np qp qp np+ E

rlnp, np~np, mp' mp', qp" qp", np np, np 'np, mp' mp', qp" qp", np ~np, np np, mp' mp', qp" L qp", np
2 2 2 2 3E nEqn Em.Eq. EmnEqn

a y x y rr5 rr~ x y rrt'
np, mp' mp', np np, mp' mp', qp" qp", np np, mp' mp', qp" qp", np

m Em„Eqn

(A14)

rr~ n5
np, np np, np np, mp' mp', np ~,EaP y5 ~ 3 Jk n)

k nm

rr ny rI~
np, mp' mp', np np, qp" qp", np

=haphy5~
' '

3
' ' +

k EmnEqn

L Lnp, mp'L Lmp', npL Lnp, qp" L Lqp", np L Lnp, npL Lnp, mp'L Lmp', qp" L Lqp", np
3 3E nEq.

np, np np, mp'+mp', qp" qp", np np, np np, mp'L mp', qp" Lqp", np LLnp, npLLnp, np Lnp, mp' Lmp', np

2 2 3 4
EqnEmn EmnEqn Emn

~~np, mp'~~mp ,np '~np, np~~np, mp'~~mp', np ~~np, np~~np, mp'~~mp', np

mn nm nm

(A15)

rI ay n' .rI~
np, np np, np np, mp' mp', np &&E

aP y5 ~ E3 J& n&

k nm

'Lnp, mp' Lmp', np np, qp"L qp", np np, mp' mp', npLLnp, qp" qp", np np, npL np, mp' Lmp', qp" Lqp", np
=hn&hr~ X 3 + 3 +

k EmnEqn EmnEq. EmnEqn

LLnp npLLnp mp LLmp qp qp np LLnp npLLnp mp LLmp qp LLqp np LLnp npLLnp npLLnp mp LLmp np
3 2 2 4E Em.Eqn Emn

a y ay P 5 ~5 ay PF f11np, mp'11mp', np Xnp, np~np, mp'~mp', np ~~np, nPnp, mp'~mp'np,
ps+ 3

—
3 0o n ~ (A 16)

mn nm nm

rr s'y rr~
np, mp' mp ,np np, n'p f(E )

k mn

L Lnp, mp'LLmp', qp"L qp", np
2E nEqn

a y P
~np, mpI'mp, nprrnp, npE'

mn E.'.
'

and

~P ~a
LLnp, mp'L mp, qp qp, np 2 "np, mp mp, np Po(E„),

EmnEqn Emn

.rr~ .„n„„np, mp' mp', np npnp f(@,
k mn

(A17)

a y P

=h-~~ X — ' '~ ' +np, qp" qp", mp' mp', np np, np' np', mp" mp", np np, mp' mp', qp" qp", np

k EqnEmn E „ EqnEmn
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pr rrp rra
np, mp' mp', np np, npE'

mn

.IIP .2 np, mp' mp n'p,
~ (E )

Emn
(A18)

Using Eqs. (A13)—(A18) and the identities

haphy5
anp, mp" mp', np"~~np", qp"' aqp"', npp p p

E EmnEqn
(A19)

which is obtained by interchanging m and q and p and p" in the summation, and

m, q,p', p",p"'

p @p

np, mp' mp', np" np", qp"' qp"', np np, mp' mp', np" np", qp'" qp'", np

Em. Eqn & nEqn
=0, (A20)

we obtain the desired result of Eq. (3.30).

APPENDIX B

We shall now prove Eq. (3.40). We have

h phys+
k

II5 2
np, np np, np np, mp' mp', np

3Emn
+ ~np, np~np, np~ps+ 6 +np, np~np, np~np, np f"(En )

6m

Further,

1 a
6 haphys g np, npIInp, np

k

IIP II ~ „ II IIP ~ „nP&mP P& P + P™P P P + g +gP5 f&&(E ) (81)E E p5 np np n
nm nm m

~kEn =~np, np .

From Eqs. (82) and (A9), we obtain

II H~ ~ II~ II~a~y ~ np, mp' mp', np np, mp' mp', np rs

Enm Enm m

Equation (81) can thus be rewritten as

IIP
np, np np, np np, mp' mp', np n lla lly g + ~ ~f5 lla lly+ z np, np np, np p5 6 np, np np, np np, np J n

3~mn 6m

(82)

(83)

, h phys g II„p „—pIPp„p(V~gVkE„)f"(E„) . (84)
k

The right-hand side of Eq. (84) can be shown by partial integration to be equal to

, h.ph, s g (V—kV—Ã.)(V~aV~E. )f'«. ) .
k

From Eqs. (84) and (BS) we write

(BS)

h phys+
k

2
p5 a y+

6 ~np, np~np, np~ps+ 6 +np, np~np, np~np, np f (En )
mn 6m

Further, we can write

= —6haphysg(VkV/En)(VI VkEn)f'(E„) . (86)
k
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1

h aph y5
Hanp, mp' m p', np" np", qp"' qp"', np np, mp' mp', np" np", qp"' qp'", np

EmnEqn EmnEqn

2~' Hn m Hm ~ n
Xy H~ta Np, ltlp Nlp, lip

~ ~ s n ~ay ~ 2
llpllp , Np, Nlp Itlp, lip I ay tts rg(E )

m nm 2m m ~mn

1

4 h
amph yg

2
np, mp' mp', np np, mp'Hmp', np+ E + 5+y+Xnp np

nm nm m

H~ -H' - „~& H'„-H~ - „npqp , q"p", np R
~ np, qp" qp np ", +tts r (@ ) (87)

nq m nq

From Eqs. (83) and (87) we have

1

—,h~phy
H Hy H~ H' H Hy H' HI'

np mp'Hmp' np"Hnp" qp"'Hqp"' np Hnp mp'Hmp' np"Hnp" qp"'Hqp"' np 2A Hnp mp'Hmp' n

E nEqn E nEqn m En

X„y„H~fl ~ay ~
j Xay ~tts 2 Np, Np lip, flip flip, lip fg(~ )

mn

, h phys—g(VkV/E„)(VkVkE„)f'(E„) . (8g)

From Eqs. (86), (Bg), and (A20), we obtain the desired result in Eq. (3AO).
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