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We present a theory of the total magnetic susceptibility (Y) of interacting electrons in
solids. We have included the effects of both the lattice potential and electron-electron in-
teraction and constructed in K space, using the Bloch representation, the effective one-
particle Hamiltonian and the equation of motion of the Green’s function in the presence
of a magnetic field. We have used a finite-temperature Green’s-function formalism
where the thermodynamic potential () is expressed in terms of the exact one-particle pro-
pagator G and have derived a general expression for X by assuming the self-energy to be
independent of frequency. We have calculated the many-body effects on orbital (X,), spin
(X;), and spin-orbit (X,,) contributions to X. If we make simple approximations for the
self-energy, our expression for X, reduces to the earlier results. If we make drastic as-
sumptions while solving the matrix integral equations for the field-dependent part of the
self-energy, our expression for X; is equivalent to the earlier results for exchange-
enhanced spin susceptibility but with the g factor replaced by the effective g factor, a re-
sult which has been intuitively used but not yet rigorously derived. An important aspect
of our work is the careful analysis of exchange and correlation effects on X,,, the contri-
bution to susceptibility from the effect of spin-orbit coupling on the orbital motion of
Bloch electrons. Although X, is of the same order of magnitude as X; for some metals
and semiconductors, its contribution has been hitherto completely ignored in all the
many-body theories of magnetic susceptibility. We have also shown that if we neglect
electron-electron interactions our expression for X agrees with the well-known results for

noninteracting Bloch electrons.

I. INTRODUCTION

The many-body theory of magnetic susceptibility
of solids, in which the effects of both the lattice
potential and electron-electron interactions are in-
cluded, is one of the basic problems of solid-state
physics that have not yet been satisfactorily
resolved. Owing to the enormous complexity of
the problem, the Hamiltonian is usually separated
into orbital and spin components (thus neglecting
spin-orbit interaction), and attention is focused on
one of the two parts.

The many-body effects on the diamagnetism of
free electrons have been studied by many au-
thors.!~® The more recent calculations®~# all
agree in the high-density, low-temperature limit.
However, these calculations are carried out in the
limit of very low or very high electron densities
and are not appropriate for Bloch electrons.

Fukuyama®!© calculated the orbital magnetism of
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interacting Bloch electrons, neglecting the current
vertex corrections, and has shown that the inter-
band effect between two bands separated by the
Coulomb interaction has properties similar to Van
Vleck paramagnetism.!! He also included the ef-
fect of correlation in the framework of a random-
phase approximation in the one-dimensional weak
cosine-type periodic potential model. Philippas
and McClure'? established the validity of the
Sampson-Seitz prescription'* applied to the
Landau-Peierls formula and obtained the quasipar-
ticle prescription that the diamagnetism of in-
teracting Bloch electrons is to be calculated using
Misra-Roth theory,!* i.e., by treating the self-
energy operator as a nonlocal pseudopotential, ig-
noring the change of the transformed self-energy
with the magnetic field. They have also shown
that the explicit many-body corrections to the orbi-
tal paramagnetism is, in general, small. Mohanty
and Misra!® showed by using Bloch representation
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that the transformed self-energy in the effective
one-particle Hamiltonian has the same translation-
al properties as a nonlocal magnetic pseudopoten-
tial.'>!” However, their expression for free energy
contains only the quasiparticle term, and the vertex
corrections have been neglected. Fukuyama and
McClure'® derived an expression for the orbital
magnetism of an interacting free-electron gas, tak-
ing into account the exact functional form of the
self-energy. Their result yields a generalized form
of the Landau-Peierls formula. Thus the effects of
exchange and correlations are not fully understood
for orbital susceptibility (X,), but their contribution
has been shown to be small."’

However, it is well known? that electron-elec-
tron interactions lead to an enhancement of the
Pauli spin susceptibility. Sampson and Seitz'? first
calculated paramagnetic susceptibility (X,), includ-
ing the effects of exchange and correlation.

Pines’! carried out a calculation similar to Samp-
son and Seitz,'® but his results differ remarkably
from theirs because of the use of the Bohm-Pines
theory for correlation energy. Brueckner and
Sawada®? derived an expression for the magnetic
susceptibility of an electron gas at high density us-
ing the exact theory of Gell-Mann and Brueck-
ner.?

Silverstein®* calculated the paramagnetic suscep-
tibility by a similar method with the addition of a
momentum transfer interpolation procedure
designed to obtain relevant information in the re-
gion of metallic densities. Hamann and Over-
hauser? calculated the wave-vector-dependent spin
susceptibility taking dynamically screened electron
interactions into account, and their calculations
agree with that of Dupree and Geldart?® and Piz-
zimenti et al.>’ Lobo et al.?® used a generalization
of the random-phase approximation, which takes
into account short-range correlations between the
electrons, to obtain X, for an electron gas at metal-
lic densities. Yafet?® has calculated X, for a two-
band model with 8-function interactions between
the conduction electrons using a random-phase ap-
proximation. Isihara and Kojima® calculated both
X, and X, of an electron fluid at low temperature
by considering the free electrons, first- and
second-order exchange, and the ring diagrams.

In a real metal, the background potential and the
electron density are far from uniform. Kohn and
Sham?! have used the density-functional formal-
ism*? to derive an expression for X, valid for slow-
ly varying density. The Hohenberg-Kohn-Sham
theory of inhomogeneous electron gas has been

generalized**~% to include the spin-dependent in-
teraction. Recently, Vosko and Perdew>® (VP)
have calculated X of metallic electrons based on a
variational principle within the density-functional
formalism.’!"> This variational expression allows
one to simultaneously treat band and exchange-
correlation effects among the conduction electrons
and also includes the influence of the core elec-
trons on the lattice. Vosko et al.’” calculated X,
for the alkali metals, and there is good agreement
with the experimental results. Using the theory of
VP, Janak3® calculated X, of a number of metals
(including the transition metals) to study the
enhancement of response which leads to ferromag-
netic instability. His results are in good agreement
with the results of Gunnarsson but differ from
those of Vosko et al.3”* because of the use of a
different approximation for the exchange-correla-
tion functional and because of the use of a dif-
ferent lattice parameter. However, the density-
functional formalism works well for systems where
the density varies slowly in space. Thus its validi-
ty is limited to nearly-free-electron metals with
only one occupied band.

It may be noted that in all these derivations the
entire effect of spin-orbit coupling was ignored. In
fact, it has been hitherto assumed that the effect of
spin-orbit coupling can be accounted for in X,
through the modification of the Bloch functions
and in X; by replacing the free-electron g factor by
the effective g factor. However, recently it was
shown by one of us*! that there is an additional
contribution from the effect of spin-orbit coupling
(X0 on the orbital motion of Bloch electrons. It
has also been shown that even in the absence of ex-
change and correlation effects the contribution of
X, is of the same order of magnitude as X, for
some metals*> and semiconductors.*> From these
earlier results*! a priori one cannot say anything
about the effects of exchange and correlations on
Xsor

It is evident that the many-body effects on the
spin-orbit contributions (both in X; and X,) to X
can be calculated by using the total crystal Hamil-
tonian including the spin-orbit interactions. Buot**
recently attempted to derive an expression for the
total magnetic susceptibility (Y) for interacting
Bloch electrons. However, because of the compli-
cations due to the use of the lattice-Weyl trans-
form,* he was not able to obtain a meaningful ex-
pression for X except for the two simple cases of
Fermi liquid and Hubbard limits.

It is clear from the foregoing remarks that there
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remains a need for a theory of total magnetic sus-
ceptibility (X) of solids (including spin-orbit in-
teraction) that will take into account both inter-
band effects and many-body effects. In this paper
we derive a theory for X of interacting electrons in
solids using a finite temperature Green’s-function
formalism where the thermodynamic potential Q
for an interacting electron system in the presence
of a periodic potential, spin-orbit interaction, and
external magnetic field is expressed in terms of the
exact one-particle propagator G. We constructed
in k space, using the Bloch representation, the
equation of motion of the Green’s function in the
presence of the magnetic field and evaluated Q. In
our theory the effects of exchange and correlations
on each of the three components of X have been
explicitly calculated. If we make a simple approxi-
mation for the self-energy, the first term of our ex-
pression for X, reduces to the earlier results.!? If
we make drastic assumptions while solving the ma-
trix integral equations for the field-dependent part
of the self-energy, our expression for X, is
equivalent to the earlier results for the exchange-

enhanced X but with the g factor replaced by the
effective g factor, a result which has been intuitive-
ly used but not yet rigorously derived. An impor-
tant aspect of our work is the analysis of exchange
and correlation effects on X, that are more subtle
and cannot be included in an intuitive way. We
note that our expression for X agrees with the ear-
lier results*!**¢*” for noninteracting Bloch electrons
if we completely neglect electron-electron interac-
tions.

The plan of the paper is as follows. In Sec. II,
we construct in k space, using the Bloch represen-
tation, the effective one-particle Hamiltonian and
the equation of motion for the Green’s function in
the presence of a magnetic field. In Sec. III, we
derive a general expression for X using a finite
temperature Green’s-function formalism and ex-
panding () in terms of the exact one-particle pro-
pagator G. In Sec. IV, we carefully analyze the ex-
change and correlation effects on each component
of X and compare our results with the earlier re-
sults. In Sec. V, we summarize and discuss our re-
sults.

II. EQUATION OF MOTION IN THE BLOCH REPRESENTATION

We use a finite-temperature Green’s-function formalism to express the thermodynamic potential
T, V,u,,B) for an interacting system in the presence of a periodic potential ¥V (T), spin-orbit interaction,
and external magnetic field B in terms of the exact one-particle propagator G. G satisfies the equation

(&—H)G(T,T,&)+ [ dT"S(7,7",£)G(F", T’

61)=8(-1"), (2.1)

where X is the exact proper self-energy operator, £ is the complex energy,

E=0I+1)ill/B+p ,

and H is the one-particle Hamiltonian given by

# =
+~——-—6’-VV><
4m?c?

1
H=—
2m

eA
P+ c

+V()+

(2.2)

V+5guoBa . 2.3)

In Eq. (2.3), A(T) is the vector potential, ¢ is the Pauli spin matrix, y is the Bohr magneton, and g is the
free-electron g factor. In the absence of the magnetic field, both G and = have the symmetry

G(F+R,?'+R,£)=G(T,7",&)
and

S(F+R,F'+R,£)=3(TF,T,&) .

(2.4a)

(2.4b)

The vector potential in the Hamiltonian destroys this symmetry, but both G and = can be written as the
product of a “Peierls phase factor” and a part which has the above symmetry. In the symmetric gauge

( ——BXr) we have!?#?

(2.5a)
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S(F,T,6, D)=V TXTE(F,F 6,0, (2.5b)
where

-~ eB

h=—. 2.6

e (2.6)
Substituting Eq. (2.5) in (2.1) commuting h_g differential operator through the Peierls phase factor, and then
multiplying the left-hand side by e =P T X ™, we obtain
1 — g - =12 ﬁ > - — > - =y
§,—-2;[p+hh><(r—r )] — PR o VVX[P+Ah X(F—T")]

N #
—V()— P

_ fd—nr in (T'XTH+TXT'+T" X?)i(f’, g H)G —>u 7 gl,h)__ —_?I) . (27)

We can write the equation of motion in the Bloch representation, i.e., in terms of the basis functions

—

¢n?p(?)=eik.r nkp(r) (28)
where U, ¢ Kp (T) is a periodic two-component function, # is the band index, K is the reduced wave vector, and
p is the spin index. Using the Bloch representation, Eq. (2. 7) can be written as

=2 -—>u —i T 1 =2 g = 2
fdrdr e~ X TUE () §1— 5 —[B+ARX(T—T)]

ﬁ - = 1 - = — hz B =
~ ooz O VY XBHARX(F—F)] =V (F) = =5 V2V — sguoB-d

V=2 T
Xe M =T, g OV (BG (7,6, W)U () % F
I = . —
+ 2 fdf»drrdrudrme—zk rU:kP(r)elh T'XTHTXT"+T"XT")
e, T
X ST F e N T =T Y, e (TN g (F)

-

X G(—nn —-n’é_l’ h )U,,"E"p'( i:’/)ei k ’~_r"=5'm,8ppl . (2.9)
By mtroducmg change of variables R; =7"—7", and R, = ( '4+T”) in the first term, R, =77, R,
= —(r +7"),R; =F"'—7,and R, = ——(r +71"') in the second term, and by using partial integration of

the type

— ST (TP TR o\ ok N
Z(r-—r’)e‘k (T=TNel k"(T'=7 )Un,,]—;,, A DV e ()
ol

—

K"(T=T"): -?n. = o s e
= Z efkmr—r )IVEH,e' (ri—x )Un.,fup.,(r)U:,.g,,p,,(r "y, (2.10)
o2
Equation (2.9) can be written in the form

3 (& —H & ED)Zpu T G T w i 6D =Bun'dpp 2.10)

where

=K+ifiV , 2.12)
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2

H(R,§) =5~ (B+HIRP+V @+ D 0 TV XG40+ sV 4 guo 7 +3(R,6), 213)
m-c

m2c2
St KHEN= [ dTdT Ul (Dle X T TIX(E, €U, ) (2.14)
and
Gy iy KE)= [ dTdT’ U,f,.fpu(f’)(?(f’,‘r*’,gl)e"'Y"(?“?')Un,yp.(f") : (2.15)

Since the U, ,’s form a complete set for periodic functions, Eq. (2.14) can be written in an alternate form:
[&—H(R,£)]G(K,&)=I . (2.16)

We note that similar Green’s-function equations for the orbital motion of Bloch electrons were derived by
Phillippas and McClure'? in the Luttinger-Kohn representation*® and Mohanty and Misra'® in the Bloch
representation. However, our equation of motion is more general and includes both spin and spin-orbit in-
teraction.

III. DERIVATION OF GENERAL FORMULA FOR X

The magnetic susceptibility (X) is calculated from the expression
1 ’Q

XMW= ——lim ——— .
V B—0 9B*3BY

(3.1

The thermodynamic potential () is evaluated using the Luttinger-Ward expression***

1
0= E[Trln(——Gg,)——TrZ(Ggl)G§I+¢(G§I )] . (3.2)

Here G¢, =G (§)), Tr is defined as Y, tr, where tr refers to summation over a complete one-particle set, and
the functional ¢(Gy¢, ) is defined as*4

n
$(Gg)= lim Tr Y, —;‘;2‘”)(% )G, - (3.3)

Here ="(G g,) is the nth-order self-energy part, where only the interaction parameter A occurring explicitly

in Eq. (3.3) is used to determine the order. In fact, ¢(G¢,) is defined through the decomposition of 2(")(6'51)

into skeleton diagrams. There are 2n Ge, lines for the nth-order diagrams in $(Gg). Differentiating #(Gg,)

with respect to Gg, has the effect of “opening” any of the 2# lines of the nth-order diagram and each will

give the same contribution when Tr is taken.* From Egs. (3.1)—(3.3), it can be easily shown that*
1 3 3T, 3%, 3Gy,

=B | " amrorr M O T gy 4t T gk 3B Jno

The first term in the right-hand side of Eq. (3.4) has exactly the same form** as that of the noninteracting
Fermi systems, except for the replacement of the “noninteracting G¢,” by the exact Ge, for the interacting

xe (3.4)

Bloch electrons. Thus we denote this term as X, (qp represents quasiparticle) and the sum of the second
and the third terms as X, which is the contribution due to exchange and correlation effects, and we have

XPY =X X (3.5)

In order to evaluate X from Eq. (3.4), we expand f.(f(ji,é‘, ), which is a (2X2) matrix, is an operator in K
space, and has both explicit (through k) and implicit B dependence,

32(K,B,&)
—&7—5’—% — haghys VeV 4 - - (3.6)

< = < o= _ %z
2(i,B,£;)=2(k,B,§;) —ih,g 3k*dk”
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and

S(K,B,£)=3%K,£,)+B*S 4K, £)+B*B S (K, + - - 3.7)
where

hop=€ap h? (3.8)

€qpy is the antisymmetric tensor of the third rank and we follow Einstein summation convention. From
Egs. (2.12), (2.13), (3.6), and (3.7), we write

H(R&)=Ho(K,&)+H'(K.£&), (3.9)
where
2 o 7 L P
k§1)—— p+ﬁk) + V() + 2= k§, 2V V+ 3 20°VV><(p-Hik) (3.10)
8mc 4m“c
and
a 1 3z L 8
H(k ,&1)=—1ih 311 Vk+ zg,uoB“o“—f—B“E "u(k gl)—lhaBB e Vi
1 hz 8220 8 v
—3haghys {—,;;Say+ o |VEVEHBABEEL) (3.11)

where we have retained terms up to second order in the magnetic field. Here Il /% is velocity operator

2
g,)z—(p+ﬁk)+ h a><VV+Vk>:(k§1 (3.12)

We make a perturbation expansion

G(K,£)=Go(K,&)+GolK,&)H'Go(K, &) +Go(K,&)H'Go(K, &) H'Go(K, &)+ - (3.13)
where
= 1
Go(k,§1)=m ’ (3.14)
and we retain terms up to second order in magnetic field. It can be easily shown that*?
V&Go(K, &) =Go(K,£)1°G,(k, &) (3.15)
and

V% Vi Go(K,8)= Go(K,&) ~y dar X7 | Gol (K,81) +Go(K, &Gy (K, TGy K.&)

+Go(K, NG (K, E)I°G (K, &) . (3.16)
We obtain from Egs. (3.11), (3.13), (3.15), and (3.16)

G(K,£)=Go(K,£)—Go | ihapTI®GollP— SguuoB F”

4
Go8aySps+(GoIPG TP —T1PG, G, 118+ ITPG, I1°G,,

#i
thashs | 57

#5
+5XPG,+ %GOX“)T‘” + T XG o (X P4 TIBG T8+ T1G,, I1P)
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+I1°Go(IIPG 1Y Gy 118 + ITYG ,TIBG 112 4- TI7G  II3G o ITP + I17G X P

— XBGIIY) | + TihopB gl 1°G  TIPG o F”

+ 119G FGoI1P + F¥GoI1%Go11P) + 2 Y*'G 1P —T1G, Y*)]

gZ[LZ
+B*BY 4°F“G0F"-—22"”’ Go+ " (3.17)
where
Ly
pv_ 02 (3.18)
Ak
and
F'=0"+ 2 sy, (3.19)
gHo .

A. Evaluation of X,

We shall calculate X4 using Eqs. (3.4) and (3.19). We assume the self-energy to be mdependent of fre-
quency, an approximatlon valid in the statistically screened exchange approximation.*® To carry out the fre-
quency sums appearing in X4, we use the identity*’

1
= In
B %

__ 1 dg 1
TO2I fC eB—m 4 1 In [H_§I ] ’ (3.20)

where the contour C encircles the imaginary axis in a counterclockwise direction. We define

H-§;

¢o(§)——Eln (14-e~BE—r)y 3.21)

From Egs. (3.2), (3.20), and (3.21), we obtain

f ¢° & nH —&)E , (3.22)

where tr is taken over one—particle states only. By partial integration, we obtain from Eq. (3.22)
Qup=—tr o OIn(H —&)— [ go(E)——dE (3.23)
® om0 ct e _H | :
Since the first term is zero, we have

Q= — Eﬁtr [ s0)6(&de . (3.24)

The advantage of using Eq. (3.24) is that after substituting the perturbation expression for G(£) [Eq. (3.17)],
the thermodynamic potential is easily evaluated. The results are precisely the same as obtained by using the
inverse Laplace-transform technique,*? but the present technique is simpler.

The one-particle trace is evaluated over the periodic part of ¥, ¢ PP which are eigenfunctions of Hy(k K). In

this basis G is diagonal and is given by

o =(E—En) . (3.25)
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After evaluating the trace, we perform the contour integration as prescribed in Eq. (3.24). We use the iden-
tity*!

hagh,s(MEMEMIM S + MSMIMIME ) =hogh sMTMIMEMS (3.26)
where M, M,, M3, and M, are any matrix elements and
ﬁ’,,p’,,‘_,=o , (3.27)

where p is a spin state conjugate to p. We also adopt the convention that the running index means that the
sum over all the bands and all the spin indices shall be taken except that all band terms equal to n have been
explicitly separated out. After considerable algebra we obtain

Trin(—Gg)= 3 ihap(IT5, mp 0L CARIY : 15 § LA ..
X

Sf(E,)  2¢o(E,)
By Wong) | g+ =2 |+ 58H0B Py f (By)
mn
ﬁ2 a "
+haﬁh78 " _888+ np,np an,np np,npf (Ey)
ROl #

a7536+ Xr‘tzp npaﬁﬁ X:g:n np np f(E

4m

f"(E,) 2f'(E,) 6f(E,) 8¢o(E,)
3Emn EL, E}n Empn

a B 8
+an,npnnp,npnnp mp’Hmp np

7

f(E,) 4Af(E,) 8¢o(E,)
+— nnp,mp mp’, np858 +

Em,, Er%m Eram

f'(E,) 6f(E,) 8¢o(E,) 4 4¢o(E,)
E"mEq" Er%mEqn Er?:mEqn Er%mEq2n

8
"qu »np

a
—p,mp mn np” np ,4p

2f 4¢O(En ) 4¢0(En )
ElnEqn Emn E;%m ElnEqn E ]2nEmn Eqn

+an mp Hmn »ap’ ng p” H'p np

2f(E,) 2f(E,) 4¢0(E,,)+4¢0(E,,)
" EmnEX ' E2,Em  EmEs  EsnEg

a B
+ an, npnnp mp H"tp ap” qu ,np

Fiy mpFmpy
+58UEB*B” | T Flp g Frp i (Ey) — —2E="E2 f (E,
mn

1.
+(71haﬂgﬂ'0B#F;‘x‘p,np ng mp' Hmp ,np+haﬂh78an,np np, mp’Hrsnp np)

fI(E,) 3f(E,) 4¢o(E,)
Epn EZ, E)n

—(3 2 ’haﬁg/l'OBﬂnnp,mp mp',qp qu",np

f(E,)  2¢0(E,)
Eq"Emn EremEqn

5
+haghys U mp Tl i gp "X gg',np)
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1.
—(ZihapgroB mrp myF, #P',qp""fp"mp“haﬁhrﬁﬂgp mp Xomp, qp'ﬂgp np)
f(E,) 200(E,) 2¢o(E,)
; 20 . 20 . _(%ihaﬂgﬂOB"F# m '77; ' "77ﬂ 'n,
Eqn Emn Emn Eqn Eqn Emn p,mp p,9p " 4p ,np
f(E,) 2¢0(E,)
+hagh 6 XY oy T Tt o)
ap rGan,mp mp',qp" " qp”,np Epmy Eqn Ep, qun
'H%"h aﬂgpoB“H‘,fp,,,,er ""lp’»qp" ﬂ’;p np_haﬁhrﬁnnp "'PX"'I'P qp” ngp”mp)
Sf(E,) 2¢¢(E,)
E2 I8 —(3 ’haﬁgf‘oB np.mp Mimgt, g "qﬁp"mp
mn mn
Sf(E,) 2¢0(E,)
+hogh s XY I8 )
ap YGan,mp mp',qp" 1qp",np Epn Eqn E,., qun
[(E,) 2¢(E,)
—ihagB* (Tl oy Yol — Yo o116 ) 4 ¢°2 2 | +B*B S (3.28)
Em" Emn
where, as indicated earlier, sums will be taken over all indices n, m, g, I, p, and p’, but ns~m,q,l. In the
above, we have also used the notation
Epp=En(K)—E,(X) . (3.29)

In Appendix A, we derive the following identity:

8 B B 8
2 2h oph 5 H‘:p»npnnp mpmp' a0 Mlgp",np _ H:p,npnnp,mg'nrnp',qp”nqp"mp
ayj
B i EmnEgn EL,E,,
P LR LS| L
E3
mn
ng,,ne . .rt.
+ihpgoB* np,np npimp mp',np np,on np,;np mp np f(E,)
: Emn Emn
B s
= 2 4h oh H:p,npnnp npnnp,mp'"mp',np Zﬁ an mp Ilmp np 8
P aptys 7 +— 3
k Emn m Emn
2 1
B L | 14 18 +
np,mp'*imp’,np” np »gp"" gp™"\np E,f,,,E,, E,mei,.
1 1

.+.

SR LA | (S | (MWD || A ELE.E ELE
mnLiinLign mn qn
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1 1

EpEg  EpnEg

a B )
an, npnnp mp Hmp’,qp"nqp"»np

. 8
21haﬂg.u'OB”F#p,np’ Ht:p',mp”nrﬁ;lp",np+4h th o l"lzp np np mp I-Imp np
Emn

5
ih op8 0B  IN5p, mp H'np a0"Fap',np +2hagh rﬁngp»mp M, 00 Xap'mp
Er%m gn

— (ih opg1oB* Iy, mp Frngt, qp qu np 2haﬁh75an mp Xy, ap"” ngﬂ ",np)

1 1
N .
EiEpm  ELEn,

X

)
lhaﬁg“OB an mp Hmp ,qp" p np+2haﬁh1'8 np mp’ Hglp‘,qp”nqp",np

EnEqn
8
i lhaBgM'OB ann np,mp’ Hﬁp np 2haﬂhybngp,an:g:mp Hmp np
Enn
_ ’haﬂgﬂOB an,npnnp mpFap np +2haﬁhy8nnp,npnnp,mer(rztp np
Epn
I 1 GO LS () | A
—Zlha np,mp' Lmp’, an2 np,mp’' Ymp',np do(E,)
mn
In Appendix B we show that
8
1 ng npnnp,npnnp,mp Hmp np
%haﬁh‘}’a 1 [ g ~_5B8+an np H:p,npnnp,np"' 3E,,,

g ey Spm— i XS, XED 7 ot X
2;17 a7535+ m np,np s — np,np“*np,np | _’;' ﬁ8+ np,np

f'(Ey)

a 5 a 5 B
Wy, mg W np M, Hapinp | Wapmp Tl mg Mg, o Map,mp
2EnEqn 2EpnEgm

= %haﬁhrﬁ Z ViVLE, ngﬁEnf'(E,, ).
K

It can also be shown by a partial integration similar to that shown in Appendix A for Eq. (3.30):

(3.30)

(3.31)
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a )
2h oh 2 an»npnnp,np np,mp Hmp np f(E
apt Vb L E2
k mn
a 8 a 8 B
—h ah 2 nnp,"'p H'"P':"PH"PJP' nqp L) an mp nmn "PH"P ar’ nqp"mp
T & E2,E, EL,E
k mnqn mntign
a ) B
an "PH"P""P nmp,qp qu I I (O (- I8
EX E np,np*tnp,mp'*imp’,qp” " gp”,np
mn®gn
a 8 a 8
H'lp,npnnp mp Hmp’»qp qu mp nnp npnnp npnnpymp Hmn np
2 3
EmnEqn Emn
230 | LA | A X"‘ né ...
Zﬁ np,mp'ttmp’,np 5 np,npiinp,mp'**mp',np
2 ay ™ 2
m Emn Emn
B 8 8 ay
an n np mp rImp np an npnnp memp np f(E ).
2 2
Emn Emn

It can be easily shown from time-reversal symmetry*! that

My mp(K) =211, (—K)

and

—

FrpnpK)=—F, (— K.

Using h,g= —hg, and the above, we have for nonferromagnetic crystals

f(E,)  2¢o(E,)
Em" Er%m

. a B
b _,’haﬂnnp,m‘on mp',np
n,m,p,p’, k
n*tm

From Egs. (3.1), (3.28), (3.30), (3.31), (3.32), and (3.35), we obtain

+ 5 810B  Flty af (Eq) =0

X€g= Z (1+8‘W) h2 > eaBpE‘yvakvxE VkV
k
8
+- e’ €upiErs gp,'"p mp', np”nnp ,ap’ qu »1p
ﬁ2 2 TaButrey EmnEqn
1 iegpo np np H‘:p mp’ Hgtp",np (E.)
- g y'()an,np np',np Aic ea Emn f n
82 2ﬁ2 H‘rfp,m;:o’nnp’,np 5 H‘:p mp' Hmp np"
ps+2

+ W €apu€ysy

2
Epn

a B 8
H”P»"'PH"’P np' M g gpm np

Ha
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(3.32)

(3.33)

(3.34)

(3.35)

8 8
A 1 T

E}Eq

a B a
H"P:"PH"PamP mp',qp’ H‘IP »np I

np, np np,mp

EpnEp
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B ) ) LY,
) H"P”"P mp a0’ H‘IP np +2 H"P mp HmP ap X‘IP np
EmnEqn Em"E'I"
ay ] ay B 8 v
2 X"P mp’ '"P .gp HGP P X"P:"PH"P:’"P H"’P np 1 22 an,mmep np
2 4 0
EmnEqn Emn Emn

R a né a B p
+ 1eglio € np np’ an mp" mp”,np + an mp’ l'Imp’,qp"l""qp”,np

aic P EL, EgnEpn

a B a B
an,mp Fr, mp',qp’ qu”’np Fr np,mp Hmp 9’ qu",np
EgnEpnn EgnEpn
a B a
+ an n np,mp I_[mp’,np an npnnp,mpFr’n‘p',np
2 2
Emn Emn

. B af ap B

ie an mp YmP np an,mn'nmp‘,np _s2mv (E,) (3.36)
+ 2%ic €apy E np,np f n . .

mn

We note that in the absence of an electron-electron interaction F=0, X=0, Y =0, and E, and II reduce to
the corresponding values for noninteracting Bloch electrons. In such limits, it can be easily shown that our
expression for X, reduces to the earlier results of X obtained for noninteracting Bloch electrons. 4647

B. Derivation of X o

We shall now derive an expression for X,,. From Egs. (3.7) and (3.17), we obtain

< -
o Lo, P, _ . 3%, 3G,
corr — §
B dB,0B, *' " 0B, 0B, |
1 v
=ETr (1+8,,) |2E¥ Go(k, g,)— eaﬁvzglﬂGo (K,&)TI%Go(K,£)TIPG (K, €))
+%gyozg;ﬂao(K,g,)FVGO(E,g,)]] : (3.37)

As before, we assume the self-energy to be independent of frequency. We carry out the frequency sums as
per prescription of Luttinger and Ward®:

1 1 1 1
B B g . (3.38)
B ; (&, —E,)™ 2l fro (E—E,)™ ePE—1 4 1 £

We obtain

n#

Lo DILs M ) LN | LA

a B
np,np IInp mp’ I-[mp”,n,a np,mp’ ‘mp',np
Epn Epn

M= 3 (148, e Cap
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H;fp npnnp,mp 2:np np 1 Ly v ,
+ E + Tgl"()zn,p,np’an',np f(Ey)
mn
1, 1
2,uv zn;fnp ng mp" rIﬁp",np En/.lwfmp n;znp npngp,np
+ np,np + =5 €apy 2 2
4ﬁc Enn Epn
a Lu Lu a
+ 17,11 "P mp Emp np 2np mp'Ilmp, qp"nqp hp
Er%m EpnEqn
I RV | A S | iy
np,mp’ mP ap"“qp",np  np,mp'<mp',qp" qp", np
E nEmn EmnEqn
Lu v L
— Lguo | ZremeTring | FopmsZnging || (3.39)
n . .
¢ Epnn Epn

C. General expression for magnetic susceptibility

It can be shown by partial integration method outlined in Appendix A that

. 1 B B Ly
le € z 2n;f,tmp mp’, npnnp,np np npnnp,mpzmp np f, E )
4ic P & Epn Ep
. Lu Ly a
___le € sz np mp sz ap” qp ",np ) an,np an mp” H'"P »np
- a,
4fic T(* EmnEqn Er%m
ng mp' 5’;) np np mp H;lnp np
+ f(E,) . (3.40)
Emn Emn

From Egs. (3.5), (3.36), (3.39), and (3.40), we obtain the general expression for total magnetic susceptibility,
which we write in an alternate form:

XHY=XEY L XRY L XY (3.41)

where X4 is the orbital contribution to the susceptibility,

e%e €
X'= 3 (148,,) | — e PEVEVLE, VEVRE, f(E,)

. 487°c*
2 a
e Capubpsy | 28 Moo, mp Mg np 545 an mp g gt an ,4p "nqp" np
472c? m E2X, EL.Ep
a B ) a 8 B
an,"m mp',qp’ qu”,lp”’nlp’“,np an np np,mn Hmp a0’ qu",np
2
ElnEanmn EmnEqn
a B ¥ 8 ay 8
H”Pr”PH"P:mP'HmP'r‘IP"HGP"»"P _ an memp,qp qu »hp

Er%m Eqn E""'Eqn
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B 8 B ) 8
an,'np H'np 90" X, afo »np X:;’ mp’ H'np»qp qu”»np X'?p npnnp mp H'"P np
EmnEqn EmnEqn E}in
4 ie € np mp'Yr?tp np Y:ﬁ,mp’ngp’,np f(E,) (3.42)
4ic P Epy Eppn " '
X! is the effective Pauli spin susceptibility including exchange and correlation effects,
2 B 8
eeﬁeybvnnmnmnnnpqnq n 1 2
X= 3 (148,,) abu p,mp'”"mp',np "7 "qp"\mp Leulot Y,
s < v 8#2c? EpnEqgn 3 np,npt'np',np
. B
1egiLo an np' Hﬁp mp’ rIm,o" np
— € . - (E,) , 3.43)
atic <P Enn SE) (
and X~ is the additional spin-orbit contribution to the magnetic susceptibility,
5
Xio= 23, (1+8,,) eze‘lﬁnfﬁv 11, mp Hmp ng' o, qp ap,np
S0 < uv 2 ﬁzcz Er%: . Eqn
4 legpLo . _3 Tap,np gt mpy Hﬁp”mp 1155, mp H”‘P a0 g ,np
4ic B E., EgEpn
ng mp']rnp,qp ng"mp J#pvm mp',qp’ qu’ np ngn np,mp’ Hglp',np
EgnEpmn EgnEmn Enn
B v
ng npllnp,mpImp',np + gzy Tnp.mpFmp,np np.mp' T mp',np f(E,)
) .
E,%m ’ Em\n Enn
(3.44)
Here
J—g+—L3t, (3.45)
8lo
E,,=E, —E,, and the other symbols have their usual meanings. We would like to make a few remarks.

Had we kept only the quasiparticle contribution to X, both spin vertices o* and o” appearing in X, would
have been renormalized to F* and F" by the exchange-correlation effect. The addition of X, results in
cancelling the renormalization effects of one spin vertex keeping only one renormalized spin vertex. Similar-
ly in X,,, every spin matrix & appearing in oIIIl terms gets renormalized by T, which is equivalent to the
vertex correction of one of the two o spin vertices. Had we considered only the quasiparticle term, each &
would have been renormalized by F. Similarly in the oo terms, one of the & gets modified to F. There are

also additional contributions due to self-energy terms.
We can also rewrite X" in Eq. (3.43) as

Xéw=———(1+8#v 2 gnn(k)anp,np gnn(k)aﬁp np+ 2rlt#np f’(En) ’

n K.pp

where the effective g matrix is defined as

(3.46)
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I8

G (K)0% n=——€apy 3, o mp Mmgnp 8T pn - (3.47)
‘uoﬁC m,p”

Emn

In the absence of many-body effects, Eq. (3.46) is identical to the expression for effective Pauli spin suscep-
tibility. The exchange and correlation effects are included through the vertex correction, i.e., o* is corrected
to (2/geff,uo)21’” +ot.

IV. MANY-BODY EFFECTS ON MAGNETIC SUSCEPTIBILITY
A. Exchange self-energy in the band model
The exchange contribution to the self-energy is local in T space

(7,6 = — - 3 0B F)G (T, T E—&r) “.1)
B2

where a simple static screening approximation is made in obtaining vg(T, ') from v(¥,7’). In this approx-

imation the se]f-energy is independent of &; and one has

2(7,7") 2 Vegr(T,T')G(T,T",&;) . (4.2)

We also assume that v (T,T’) is field independent, i.e., neglecting the field dependence of screening, we ob-
tain

(T,r LS v @ 7)EE T - 4.3)
B 6
S and G can be expanded in terms of Bloch states as follows:
SET)= 3 Zapmp (K, (O, (F) (4.42)
n,m, T(’,p,p'
and
GET)= 3 Gupmpl KN, T, 7T . (4.4b)
n,m, k ,p,p’

Substituting Eqgs. (4.4a) and (4.4b) in Eq. (4.3), we obtain
2 ZupmpU, g (W, ¢ (T

n,m,p,p'
1 ~ >
=— E Z veff(r r')G PP, ,_, k )¢P ?)lll;i’:p-:(l' ). 4.5)
§[ P9, k'.p.p’
If the effective electron-electron interaction is spin independent, then p=p,p’=p’' and we have
- - 1 :
2np,mp’(k)-—-_ﬁ 2 (nm |Ueff(k K’ )| pg >pp )7 qp(k 61) 5 (4.6)
X'6.p.9
where
(nm | vee(K,K) [ p@) por= [ U1 fF Wy ¢ E et (T, F W, 32 (FW 3 FNAT AT @.7)

Equation (4.6) is the expression for exchange self-energy in the band model. We can obtain °,3',32 etc.,
by expanding G. However, the resulting expressions become very complicated, and we have to make further
approximations to obtain reasonably tractable expressions. We shall now evaluate 2},,,,,,,, and E:,P,mp:, which
occur in X and X, We make the approximation
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(nn |ver(X,K") | pq Y ppr={nn | veg( K,X")|pp )8pg = Unp( K, l_(.’)Spq . (4.8)

From Egs. (4.6) and (4.8), we obtain

1 - —
,,,,,,,,(k)_-—gﬁz Op (K, k)G (K1) - 4.9)
k’,g,,p

Substituting the value of G from Eq. (3.17) in Eq. (4.9), summing over §;, expanding 3(K) as in Eq. (3.7),
and comparing first-order terms in magnetic fields, we obtain

St ()= = 0am (K, K2l g (K (K) =50, 0 (K, K" lm (K'Y mrfrn (K')

m, g m, k'
ie _' o H?"P’qpnngp"»mpl T o
— g et 2 Vnm(k,K ) T U (K) = f (K] (4.10)
m¥,gp" qm
gs£m

In order to calculate 2,,,, ,,,p(k), from Eq. (4.6), we assume
<nm I Ueff( k» k,) |pq >pp"_l_’-nm(ia l_(”)anpamq . 4.11)
From Egs. (4.6) and (4.11) we have

B3 T 1 - T UnsS [}
Sppmp(K)=——= ?25 Upm (K, k )G,,,,,,,,,,(k 1) . (4.12)
51

Substituting the value of G from Eq. (3.17) in Eq. (4.12), summing over &;, and comparing first-order terms
in magnetic field, we obtain

f(E,)—f(Ey,) f(E,)—f(E,)

—»

1, —,l Ly
En:mp 2 vnm 9 3 2np,mp

—-

- %#0 Z Upm (E’ E') nm aﬁp,mp’

Enm K’ Ewm
(4.13)
where we have defined a nondiagonal g matrix g,,, as
I8 ..
gnmaﬁp,mp"—goﬁp,mp + eaﬂp 2 __'!P,_GPE_M . (4.14)
qm
q#m
B. Exchange enhancement of X,
Let us see how Xt gets exchange enhanced. We can write Eq. (3.46) in the alternate form,
XU =Y X (4.15)
where
1 ’
ngg = _7#3 2 g#noﬁp,np'g#na‘;p’,npf (E,), (4.16)
nK.pp
is the effective Pauli spin susceptibility for noninteracting Bloch electrons,*' and
X=—gp0 3 SnSuknsOlgnpS En), 4.17)

nX.pp

is the contribution due to exchange and correlation. First we consider individual band enhancement and
neglect interband interactions in the expression for E,,p e’ in Eq. (4.10). We also neglect terms proportional
to f, make an average exchange enhancement ansatz, and assume v,,,, ~V,, 8, , Which is equivalent to the as-



26 MANY-BODY THEORY OF MAGNETIC SUSCEPTIBILITY OF . .. 1919

sumption that S is independent of K, to obtain

a
St = %T_L—nuo gty (4.18)
where
y=—3 Up(K,K')f(E,(K") . (4.19)
r’,m
From Egs. (4.15)—(4.18), we obtain
Xt
He —_ , 420
K= ey 420

where X§%, is the contribution to effective Pauli susceptibility for each band. We note that the intuitive re-
sult of Eq. (4.20), which gives rise to the well-known Stoner enhancement,’! is only valid if one makes dras-
tic assumptions while solving the matrix integral equations for Ef,;ﬁf,,p'. However, the neglect of interband
terms, i.e., coupling between the E,‘,’,{f,,p: for different occupied bands might be too drastic for systems such
as Be, Cd, etc.

We now consider exchange enhancement in a two-band model. We define

S =Zph et (4.21a)
am = %.U'Ogr‘;malr:lp,mp’ ’ (4.21b)
and
Np=—3 f1(E,). 4.21c)
o

From Egs. (4.10) and (4.21), we obtain (neglecting f terms)

2, =V Np 2y +Vpm Ny 2 +Upn@n Ny + Vi @ Ny, ‘ (4.22)
and
2m =V N, 2n +vmmN;n 2m +Vmna@n Ny +UmmamNm . (4.23)

Equations (4.22) and (4.23) can be solved self-consistently, and we obtain

2
_ vnnanNn +vnmamNm_vnnvmmanNnNm+ |vnm | anNnNm

(4.24)
" l_vnnNn_vmmNm+(Unnvmm— |vnm IZ)NnNm
and
_ vmnanNn +UmmamNm _vnnvmmamNnNm + | vnm | Zalele (4 25)
" 1"'Urm]\'rn_vmmlvm +(vnnvmm—‘ Ivnm 12)NnNm
We can write Eq. (3.46) in the alternate form,
X*=aN,+aiN,+a,N, =, +auNpZm - (4.26)
From Egs. (4.24) —(4.26), we obtain
BE (1 R (1 Lypn Bp
X‘smz XOs,n( 1 vmmNm )+X0.v,m( 1 vnnNn )+ 2 (XOS,nNm +X0s,mNn )(Unm +Umn ) (4.27)

1'”vnnjvn_vmmjvm +(Unnvmm - Ivnm lz)NnNm
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where we have assumed

al+al~2a,a, . (4.28)

Thus we see that even in a simple two-band model,
the exchange enhancement of X, is quite different
from the simple form obtained in Eq. (4.20). A
realistic calculation of exchange enhancement in
metals such as Be, Cd, etc. should at least be done
in a two-band model.

C. Exchange and correlation effects on X,

It is interesting to note that the effect of
electron-electron interactions is different on the
various terms in X, of Eq. (3.44). For example,
the effect of electron-electron interactions on the
first term in X, comes from the ITITIIII term,
which contains V; 2% In order to calculate the ex-
change and correlation effects on the second term,
we have from Egs. (3.45) and (4.18)

Jr,:p,np’ =Ah, olr:p,np’ > (4.29)
where
®n8hn
Af =14 —— 4.30
=1+ 2g(1—ay) ( )

In order to obtain the exchange enhancement in
|
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the third —seventh terms in X, we note that we
can write Eq. (4.13) in alternate form,

1, = H0%nmEhm Ulr:p,mp'
Znpmp(K) == O PR (4.31)

where a,,, is an exchange-enhancement parameter

defined by

anmz_zﬁnm(k,k')f nE f z (4.32)

X nm

From Egs. (3.45) and (4.32), we obtain

Jr‘t‘p,mp' =Afm a‘:p,mp' ’ (4.33)
where

Cum8am
Al =14 —— 4.34
nm + 28 (1—a,,) ( )

In order to calculate the exchange enhancement of
the last two terms in X, we have from Egs. (3.19)

and (4.32)
F#p,mp’ =Brlttm U‘r:p,mp' ) (4.35)
where
i 8hm
Bl =14—— (4.36)
nm g( 1 —a, )

We can now rewrite Eq. (3.44) with the help of
Egs. (4.29), (4.33), and (4.35) as

2 a B v 8
YEE— 2 € €apuCysy H"ﬂy"'P'Hmp’»np"nnp"yqp”’qu’“mp
Y #c? El.E
k,n,m,q,p,p' mnogn
n#m,q
] L e, .18 . o 4 4
Legho Cagn | — AT pnp Mg, mp Mmpmp Al rp, mp Wimpt, qp"gp",np
afu 2
2ic E., EpnEmn
E 1% 1B K By B
Amg an,mr)"’";p’,qp qu »hp Anm ""':p,'np nmp',qp”nqp”’_np
EpEp, EgnEmn
© e B a B
Anm an,npoﬁp,mp’nmp',np Ar‘:mnnp,npnnp,mp’aﬁtp'np '
2 - 2
E;. Emn
B* o*  of BE o* . .o* .
1. 22 mn® np,mp'“ mp’,np nm% np,mp'“ mp’,np
+38°1o S(E,) . 4.37
Epn Epn
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We note that except for the first term, each term
in X, gets exchange enhanced through the ex-
change enhancement parameters A’s and B’s de-
fined earlier, but the enhancement factors are dif-
ferent for different terms. From the earlier re-
sults,* a priori one could not say anything about
the effects of exchange and correlation. Even in
the absence of exchange and correlation effects, the
contribution of X, is of the same order of magni-
tude as X, for some metals*? and semiconductors*;
hence the exchange enhancement parameters A’s
and B’s would play an important role for determi-
nation of susceptibility of these solids.

D. Many-body effects on X,

The effect of electron-electron interaction on X,
is quite different from that on X, and X,,. The
first term of X, in Eq. (3.42) is the Landau-Peierls
susceptibility for quasiparticle (X§%) since the ener-
gy in the Landau-Peierls term is the quasiparticle
energy. This is the well-known Sampson-Seitz
prescription!® which has been proved by Philippas
and McClure.!? If we include the effects of
electron-electron interaction through an effective
mass and ignore the band effects, we obtain the
well-known result®! for X, in the Fermi-liquid
theory

Xip

=, 4.38
1+4,/3 4.38)

Xi%

where A is the Fermi-liquid parameter. Philippas
and McClure'? have shown that if a static
Thomas-Fermi potential is used and the band ef-
fects are ignored, X{% yields all the recent many-
body results®—% of X, for free electrons. Thus we
note that our X% agrees with all the earlier results
of X, for both band and free electrons. The.
second —fifth terms are corrections to the Landau-
Peierls term and agree with the results of Misra
and Roth'* except that the electron-electron in-
teraction is included in the II’s through V;3°.
These terms, which are zero for free electrons, are
of the same order as Xy p for band electrons'* even
in the absence of electron-electron interactions.
Therefore, while considering many-body effects on
X,, it is wrong only to consider X{% as has been
done in all the earlier calculations.

The sixth—ninth terms are interaction terms be-
tween the II’s and the electron-electron effective
mass. The tenth and eleventh terms are also expli-
cit many-body correction terms through

33 "# /3k®. However, in our approximation, these
terms are small.

It may be noted that since the explicit many-
body correction terms to X, are small, X, can be
calculated treating the self-energy as a one-particle
nonlocal pseudopotential and ignoring the change
with magnetic field of the transformed self-energy.
Since the theory of Misra and Roth!* does just
that, if the correct pseudopotential is used, their
theory includes both the band-structure and many-
body effects. The same conclusion has also been
reached by Philippas and McClure.?

V. SUMMARY AND CONCLUSION

The principal result of this work is the obtaining
of a tractable expression for the total magnetic sus-
ceptibility (X) of interacting electrons in solids. We
included the effects of both the lattice potential
and electron-electron interaction and constructed in
k space, using the Bloch representation, the effec-
tive one-particle Hamiltonian, and the equation of
motion of the Green’s function in the presence of a
magnetic field. We used a finite-temperature
Green’s-function formalism where the thermo-
dynamic potential € is expressed in terms of the
exact one-particle propagator G and derived a gen-
eral expression for X by assuming the self-energy
to be independent of frequency, an approximation
valid in the statically screened exchange approxi-
mation. In our theory the effects of exchange and
correlations on each of the three components of X
have been explicitly calculated. If we make simple
approximations for the self-energy, our expression
for orbital susceptibility (Y,) essentially reduces to
the earlier results.!” If we neglect the coupling be-
tween self-energy terms for different occupied
bands while solving the matrix integral equations
for the field-dependent part of the self-energy, our
expression for spin susceptibility (X;) is equivalent
to the earlier results for the exchange-enhanced X,
but with the g factor replaced by the effective g
factor, a result which has been intuitively used but
not yet rigorously derived. However, since these
assumptions are too drastic for metals such as Be,
Cd, etc., and for semiconductors, we made a care-
ful analysis of exchange and correlation effects in a
two-band model and solved the integral equations
for self-energy terms taking into account the inter-
band couplings. Our results indicate that the
exchange-enhancement effects do not appear in the
simple form obtained in the earlier results.

An important aspect of our work is the analysis
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of exchange and correlation effects on X,,, the con-
tribution to magnetic susceptibility from the effect
of spin-orbit coupling on the orbital motion of
Bloch electrons. In all the earlier many-body
theories of magnetic susceptibility, these effects
had been ignored, since attention had been focused
either on the orbital part or on the spin part of the
Hamiltonian. It has been assumed that the effect
of spin-orbit coupling could be accounted for in X,
through the modifications of the Bloch functions
and in X, by replacing the free-electron g factor by
the effective g factor, thereby neglecting many-
body effects on X,,. However, even for nonin-
teracting electrons, X, is of the same order as X
for solids with large g factors.*®* Since from
these earlier results a@ priori one cannot say any-
thing about the effects of exchange and correla-
tions on X, our present work is the first of its
kind where these effects have been analyzed using
a statically screened exchange approximation.

Our results indicate that the effects of exchange
and correlations are different for the various terms
in X4,. The leading ITITIIII term in X, becomes
exchange enhanced in a similar way as X;. How-
ever, this term is proportional to the nondiagonal
terms of the effective g factor g, whlch involve
the interband matrix elements of 3' operator. The
other terms in X, are also exchange enhanced, but
quite differently from X,. In the absence of spin-
orbit interaction, the many-body contributions to
X, vanish, as they should.

We have noted that our results agree with the
earlier many-body results for X, if we make simple
approximations and for X, if we make drastic as-
sumptions. However, it is not possible to compare
X since there has been no many-body calculation
for X, It may also be noted that if we neglect
electron-electron interaction, our expression for X
agrees with the results for noninteracting Bloch
electrons.>*

APPENDIX A

We shall now prove the partial integrations in Eq. (3.30) by generalizing a procedure used earlier by one

of us* for noninteracting electrons. We have
VENE, .y=VE [ dF Ui, (VEH,)U,
= [ dF (ViU (VEH()U,

npmp mkp

ept [ ATUL (VEVEHOU, ¢+ [ dT UL (VEHOVEU, 2,0

(A1)
Since U, ¢ parea complete set for periodic functions, we insert the complete set | U, g )(Uq o | in the
first and third terms. Therefore we have
VENE, = }_; [ ar VUi Uz, [ dT Ul (VEHOU, 3,
qsﬁn
+3 [dnVEU, U, ¢, [ dT'UL,(VEHO)U,, 1,
o
+ 2 [ dv Ui (VEH)U, ¢, fd"’U;kP ViU, %y
q;ém
hZ
+2fdr nkp(VQHO) mkp fd mkp mkp ;aaﬂ&np,mp"*'X:;fmp’ . (A2)
We also have
vi [d¥Uie HoUv =0, (A3)
from which we obtain
E, [ dT¥(VRU:z, U, ¢ y+En [dr U ViU, ¢+ 1M 0= (A4)

and
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*
vg [dT U, U, =0, (A5)
from which we obtain
- JarvViU U= [dT U, ViU, 3, - (A6)
From Egs. (A4) and (A6) we have for g#~n
n‘rfp,qp’
[ dT U, ViU, ¢, = —2% . (A7)
qn
We define
an,np = f arvy, n kak n kp (A8)
From Eqgs. (A2), (A7), and (A8) we obtain
§ A | (A 08, ey my
Vangp,mp 2 “—p—pE,_qM'i' 2 M,JE-_M+———8aﬁ8np,mp'+X:p mp
ap" nq ap" mq m
qn q#m
2( np,np” np ,mp’ an,mp Dr‘rztp ,mp’ /). (A9)
Similarly we can prove
13, .-FE, FB T2, 2
Vk np,np’ = 2 _W%—Lﬂg“*’ 2 —%M Y:tfm E( np,np" "P ymp’ an,'np D:tp ,MP’)'
20" ng 20" mq 8o
q¥#n g7#m
(A10)
The partial integrations can be done in the following way. We first differentiate
| R § LA | L
hoghy Vi | 3 —2R 20l W4 \(E,) | . (A11)
mp',q.p" EmnEqn
m,q5~n

When we differentiate the g=m terms, we obtain the following (where [ =m and [ =q terms are displayed
explicitly):

a B a B a a
haghys g0 Wigmp | Wapmplimp,mp' | Mg g qp ", mp’ + np ip” Hlp" + an,npnnp,m
Q
¥ Enl Enm Enq Eml Emn
Ha II'Y l'I8
np,qp qp"",mp’ af a B B a mp',qp"" "qp",np
+ E +Xup.mp' = Dnpunp Wnp mp 4o m gDt mpr ELE bolEy)
mgq mn

B a a Y, o .
AR D § AR | | ATUNVII | LA | (A
2
EmnEqn Ep qu
a y rr " y ’ " alll 1 Y ’ a
g, np Iy »gp HMPJP 5, qp 1, mp mpgp”
Emn qu Eqm
mn, o np.,.n‘,f " ap”
, P _-9P ay a 14 14 a 6
E, +X'"P ap” D"'P mp” Hmp’”,qp" +H’”P'»GP qu »ap” qp",np%(En)
B v a 8 a
an,mp’nmp’,qp” qu”,lp“'nlp”’,np + qu np np,np
2
EmnEqn EqI E‘]"
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5 8 8
+ 105 mp Mmg mp g 10 Mipr mp + o0, np
Eqm Ey, Enq
ng ,mp” nt’ln ad 8 a
+ E +qu np qp »gp" Mgpnp +H gp".np"Dnp,np |$o(Ep)
nm
8 8
_2 HEP""P Hmp ap' Mgy ,npn‘:p,np So(E,) +2 ng,mp mp',qp’ Mgy mpngpmp So(E,)
EpmEqn EpmEqn
B 8
+ an,'np'nrnp',qp qu npnﬁp"m dolE,
Ep,Eq
nﬁ A1 T2 | A | CASPII | GO
np,mp’ "'P ;11’ 2‘1# 2np~"np,np b En)+ np,mp’”*mp’, qu qp",np np,npf E,) (A12)
E’”"Eqn EmnEqn

Here the summation is over all the band indices except for nAm=~q5~4l. We also differentiate the ¢ =m
terms in Eq. (A11) and then add these terms to the terms in Eq. (A12). We simplify the sum by interchang-
ing band indices (except n) wherever necessary and by using the identity (3.26). Then the diagonal terms in
the band indices /, g, and m are grouped together with the nondiagonal terms. Finally, the summation over
K is changed to an integration, the volume integral over K space is changed to a surface integral, and since
the integrand is periodic in k the surface integral vanishes. Thus the term proportional to f(E,) will be
equal and opposite to all the terms proportional to ¢y(E,) and we obtain

a B 8
—h.ah 2 H"P?"PH"P’MP mp',qp’ qu ’”Pf‘(E
aftvd L EX E
k mntign
a 8 a 14 ] a B 8
—h oh 2 anfmp n"m qp'n g Wiprinp | My, npnnp mpmp,gp'Wgprnp | Tnp, annp mplmp,gp711
e vd L E2 E E + E} E 2 2
k mntgnIn mntgn EmnEqn
a ﬂ a 8
an,mv 'np’mp"nnp 19p’ ”qu’ mp p,mp H"tp np" np ap Ngp”np
3 2
EmnEqn Emn qn
a B 14
Ty, npnnp,"lp’n'nﬂ,qp qp LI ﬁz H"P»'"P ’”P':"P 5
2 2 3
EmnEqn m Emn
B ay 1) 8 ay
H"P."IPX'"P 90’ qu",np np mp H’"P"IP"X‘IP ,np do(Ep) ! (A13)
2 2 n’ >
EmnEqn EmnEqn

”"e

where the sums are over m,p’,q,p",,p"' but m,q,l54n. Similarly we obtain

|1 N § LR | LI | (-
_haﬁhys Z np,np ”P;':P E':;P:GP ap ,"Pf(En)
k mn®qn

qp”,np
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a B 8 - a 14 B 8
g |- an,mp || LA nqp,,,p,,,n,P,,,’np L8 S | CAD | (AP | b
aB’ s E2E E E2 E2
In“mn*tgn mnEqn
a )
N 15, mp mp 0 | AR | b
Eanmn
a B a1, a a 5 8
anmpnnp mp'Imp,gp"Tgp" np + anmpnnp mp' Hmp qp’nqp mp | 1lng npll np np mplmp',gp qu",np
2 2 2 2 3
EmnEqn EmnE EmnEqn
nr. ., ay B 8 ay B
_ fz_ np,mp' mP:"P 538 X"P:"‘P mp',qp’ qu”,np an MP’XMP 9’ qu”,np do(Ey)
3 2 2 o0NLn/
m Emn EmnEqn EmnEqn
(A14)
a v B 8
—h. ah 2 15, np g, npLnp, mp! Tl mp F(E
ap’yb L E3
k nm
a B 8 a 8 a 8 B
=h ﬂhyﬁ 2 H"Py"‘P Hmn npnnp,qp"nqp“,np an mp' "'P npnnp ap' H ap’\mp an npnnp mp’nmp a0’ qu",np
—a, 3 3 3
* EmnEqn EmnEqn E "E""'
a 8 B a B ) a B )
an npnnp,mp Hmp’,qp"nqp”,np an,npnnp mp H'"P"‘IP"H‘IP":"P ) an npnnp "PH"P""P'H'"P""P
2 2 3 4
Eanmn Emn qn Emn
2 Y 8 né 8 ay,
_ ﬁ_ an,mp H’”P np 5 ”P’nPH"PrmP mp,np H"P ”PH”P memp »np ¢ (E,) (A15)
m  E} ” E} E} o
mn nm nm
a 8 B
hoh an,npnnp,npnnp mp Hm,o np
—"ap 1'82 f(E
X Enm
a 1) B a B ) a
=haphys z H"Pf'np H"m npnnp (14 qu”,np an mp’ mn npnnp,qp"nqp",np an,npnnp mp Hmp qp'qu »np
=Map"y 3 3 3
T EpnEq E,,E,;, E,.E.
a a v ) a 8 B
Hup,npnnp mp’ Hmp qP"H qp”,np H,,,,,,,,,H,,p mp'Imp',gp"lgp",np _2 an,npnnp npllnp,mp 1l np
3 2 2 4
EmnEqn EmnEqn Emn
ay 8 8 ay B
ﬁz an,mp mp',np 8 an,np np,mp IImp np nnp,annp,mp’Hmp‘,np (E,)
3 + 3 3 $olE,) ,  (Al6)
m Emn Enm Enm
| R LA ) (4
p,mpmp’,np” np,np
—haﬁk"z 3 f(E,)
g E,,
a B a B a ne Y
—=h 3k7 2 H"P mp HMP ap" qp »np an mp" '"P npnnp,np an mp' mn',np”F np”,np
—"a 2 3 3
X EmnEqn Epn E;n
I 1 L ) ME ,..Yer,
np,mp’ mp ap" " "qp",np np,mp'~ mp',np éoE,) (A17)
2 2 oNEn /oy
EpnEg 8Ho Emn
and '
14 a
—h_aAY 2 F, "P,'"P’Hmp npllnp,np f(E
e’V L E2
k mn
2 B (A § B a B
Fy, Ump.np | Frpinp an',MP”H'np”,np np,'np Wy, gpTgpr np

e
=haﬂ}\'},2 ___mpgp -~ g9p ,mp’
g EpEpy Epn ELEn,
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sz mp’ Hmp npngp np 2 Yr?p mp’ I_Igp',np ¢0(En ).

E), gHo E.,

Using Eqgs. (A13)—(A18) and the identities

B )
hooh Hzp mp m:tp np’ an ,ap' qu M2 _h b H:p,'np H'"P np’an“ qp”'nqp"' np
ap’ys EXE aptyd E E3 ’
mnqn mntgn
which is obtained by interchanging m and g and p and p" in the summation, and
8
B ooh.s z Hzp mp nmp np"nnp a0 Tgp" np H‘:p mp nmP""P' an qp”n ", -0
e m,g.0',p",p" EmnE, EnnEqn
p'#p
we obtain the desired result of Eq. (3.30).
APPENDIX B
We shall now prove Eq. (3.40). We have
| N § RN | - | LA 7
haphys 2 e ’;’;j':: et +E—H"P npllip,npBp6+ 5 X,?f,,PII‘,’,‘p npllip,np |/ (En)
K
) § (IR § L m , #
= Shaghys 3 Wi il | — 270000 4 020 Tnine | B X, | fE)
X Enm nm m
Further,
ViE, =13, 5
From Eqs. (B2) and (A9), we obtain
Ha H HY ,Ha ’ ﬁZ
VeVYE, = np,mp’""mp',np npmpmpinp | W s | yay
k n Enm Enm m o np,np *
Equation (B1) can thus be rewritten as
| NN § RN § (R § LA 7
haﬁh‘ys Z np,np 'IP";PE’::,MP mp',np +€_Hz:p np np,np838+ an npnl':llp np np,np f”(E )

= chaphys 3, Wi npllpne VEVRE, [ (E,)
k

The right-hand side of Eq. (B4) can be shown by partial integration to be equal to
<haghys 3 (VEVLE, NVEVRE,)f'(E,) .
K

From Egs. (B4) and (B5) we write

NN § AN | (- | L #
hth ¥ Z np,np="np, ';Pl;:':: mP mp', nP ___Ht:p npnnp) np6B8+ XnB,? npr[gp np np np fII(E )
k

6m

= —shaghys 3 (VEVLE, (VEVLE, )f (E,)
k

Further, we can write

(A18)

(A19)

(A20)

(B1)

(B2)

(B3)

(B4)

(BS)

(B6)
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a B ) a 8 B

LA gh s n"”’"‘P H"'p np' an”,qp"’nqp’”mp o, mp "‘P np Ung g Ugp np
a

: 4 EmnEqn EmnEqn

2 10, 7 7, D G | LA | LA

np,mp’ "'P "Ps + 8(11635'1” np npSBé ) np,np”"np,mp’" "mp’, ”P X;’z;/n np,np f’(E )
m E,, 2m E,,
1 IIgp,mp Hmp np an mp H:Inp np ﬁz
=Thth1/6 E,, + E,. —Say"i’ np,np
an,qp HZP mp | ng,qp Hqﬁp",np 85 ,
X E,, +—8ps+ Ey, +Xnpnp |['(Ey) . (BT

From Egs. (B3) and (B7) we have
! 1 R | AN | AP | 0 E § AN | Vo | (-0 o3 i | LB | LA
—haﬂhya np,mp’” “mp’,np”” "np",qp""" "qp nP np,mp’* "mp',np"" "np",qp""" "gp"’,np +_w8 s
2 EmnEqn EmnEqn m Enm

7 7 D G | LI |

+— ay866+ an,np835+ -Xt‘lzp,n f/?,np“z B RO f (E
2m Emn

=vhaghys 3, (VEVLE,(VEVRE, ) (E,) . (BS)
k

From Egs. (B6), (B8), and (A20), we obtain the desired result in Eq. (3.40).
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