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The thermal conductivity of polycrystalline, cubic CuC1 has been measured from 100 to
480 K and pressures from 0.5 to 2.7 GPa by a transient hot-wire technique. The heat

transport is produced by phonons. The absolute value of the conductivity is low and be-

comes nearly temperature independent at high temperatures where it is approaching the
minimum possible value. The conductivity decreases with increasing pressure; its volume

derivative, g, is negative over the whole range studied. This effect is related to the nega-

tive Gruneisen parameters, y, for the transverse-acoustic phonons. Some specific-heat-

capacity values were also measured.

I. INTRODUCTION

The present experiments on CuC1 were undertak-
en in order to determine whether or not this ma-
terial has a negative-g value, where g is defined as

BlnK

aanV

Here E is the thermal conductivity and V the sam-

ple volume. Previous experiments on the thermal
conductivity' of ice and ammonium fluoride had
exhibited such negative-g values. All other known

crystals had positive-g values. Ice and ammonium
fluoride have an adamantine structure and possess
a large amount of hydrogen in the structure. It
was thought worthwhile to determine whether the
hydrogen is a necessary ingredient for obtaining

negative-g values. It turns out that it is not. The
negative-g values are a consequence of the very
open adamantine structure and the negative
Griineisen parameters of the transverse-acoustic
modes. Thus CuCl was chosen as a model sub-

stance because it has a very large and negative
thermal Gruneisen parameter at low temperatures,
as determined from thermal expansion measure-
ments. The results on CuC1 in the present paper
reinforce the arguments for this particular cause of
the negative-g values.

The CuCl powder used was commercial
reagent-grade material. It was treated in an HCl

solution containing excess copper metal in order to
remove any CuC12 and to ensure that only Cu'+
was present. The CuC1 powder was then carefully
dried under vacuum at 520 K. The desired cubic
zinc-blende structure is stable up to 680 K. An
x-ray analysis of the powder revealed only cubic

0
CuCl with a lattice parameter of ao ——5.418 A.
Exposure of the powder to moisture was avoided,
and it was white in color when installed in the
pressure cell. Green CuC12 2H20 was not present.
Care was also taken to avoid contamination with
Cu20 since it exhibits anomalous effects under
pressure. The CuCl powder was compressed into
two circular discs 39 mm in diameter and 5-mm
thick.

III. EXPERIMENTAL TECHNIQUES

The thermal conductivity was measured using
the transient hot-wire method. Details of the
method and of the general experimental arrange-
rnents have been given elsewhere. ' The nickel
heater-thermometer wire, 0.1 mm in diameter, was
installed as a circular loop between the two CuC1
discs in the Teflon-lined pressure cell. The electri-
cal resistivity of CuC1 is very high so that the
nickel wire was used in direct contact with the
sample. The temperature was controlled by either
heating or refrigerating the whole massive pressure
cell, and it was measured using a Chromel-Alumel
thermocouple. The measurements were carried out
in the temperature range 100—480 K and at pres-
sures up to 2.7 GPa. The thermal conductivity
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was determined with an accuracy of +3% except
at the lowest and highest temperatures where a
limit of +5%% must be given. In order to ensure

good thermal contact between the hot-wire and the
specimen, a minimum pressure of 0.5 GPa was

used.

IV. DATA

The basic experimental data are given in Figs. 1

and 2 showing the thermal conductivity E in

W/m K as a function of temperature T in kelvin,
and as a function of pressure P in gigapascal. We
have covered the temperature range from 98 to 479
K and the pressure range from 1 atm (10 GPa)
to 2.7 GPa. Three runs were made at constant
pressure while the temperature was varied (Fig. 1),
and thirteen runs were made at eight different con-
stant temperatures while varying the pressure (Fig.
2). The data points shown in the graphs in Figs. 1

and 2 are representative. However, each curve is a
composite of 200 to 400 data points recorded on an
automatic data-taking computer. The experimental
data in Fig. 2 can be extrapolated to 10 GPa
(i.e., 1 atm) at constant temperature to yield values

of K vs T. These results are shown in Fig. 3. The
curves in Fig. 2 also yield a E vs T curve at 2.5
Gpa.

CuCl undergoes various structural changes under
pressure. ' ' At room temperature these
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FIG. 2. Thermal conductivity vs pressure at eight
different isotherms.

V. ANALYSIS OF THE RESULTS

Phonons are the dominant heat carriers in CuC1.
The electrical resistance was so high that electron

changes all occur at or above pressures of 4 GPa.
%e have been careful to avoid these phase changes,
and the present samples were all in the phase with
the zinc-blende structure.
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FIG. 3. Thermal conductivity vs temperature at 10
and 2.5 GPa. The curve labeled K';„ is the theoretical
value of the minimum thermal conductivity.
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heat transport is negligible. The results in Figs.
1 —3 can be analyzed using the theoretical models
of Slack. ' This reference will be referred to as
SSP [Solid State Physics (Ref. 15)]. For such an
analysis values are needed for the acoustic Debye
temperature 8, the Griineisen parameter y, the
predicted minimum thermal conductivity I( ';„,as
well as a knowledge of the crystal structure and
the phonon dispersion curves. '

Phonon
branch (THz)

8 Group velocity
(K) (10 cm/sec)

TA
LA
TO
LO

1.50 (max) 73
3.75 (max) 193

6.2 300
6.96 335

1.49
3.53
-0
-0

—2.5
+ 2.0
+ 2.4
+ 3.0

TABLE I. Phonon frequencies, characteristic tem-
peratures, and Gruneisen parameters.

A. Acoustic Debye temperatures

As explained in SSP the Debye temperature in
the high-temperature limit S„can be obtained
from the phonon density of states g (v). Equation
(1.3) of SSP gives

h 's 000'„=——, f v g(v)dv J g(v)dv
1/2

where h is Planck's constant, k is Boltzmann's con-
stant, and v is the phonon frequency. The tilde
over the 8 indicates that the integration is over the
acoustic modes only. In. CuC1 the large atomic
mass ratio of 1.8 separates the optic and acoustic
modes quite well. ' In fact the transverse- and
longitudinal-acoustic modes are also well separat-
ed. ' The g(v) curves of Prevot et al. ' at 4.2 K
were integrated to obtain

the latter in units of K. The acoustic mode 8 at
absolute zero can be obtained from Eq. (3.4) of
SSP,

8 =8 n-'"
p p (4)

where n =2, the number of atoms in the primitive
unit cell. Using SO=179 K from Barron et al. 3

we obtain

0" (TA) =73

8„(LA)= 193,

in units of K.. These values are given in Table I.
An average 8 for all the acoustic modes is given

by

0" = [ 3 [0" (TA)] + [0" (LA)] }
(3)

8 =126,

TABLE II. Contributions to the minimum thermal conductivity in the high-temperature
limit.

Modes

I
&mince

(W/mK)
Fractional

contribution

Propagation
velocity'

(10s cm/sec)

Propagating
TA
LA

0.0437
0.0576

0.140
0.184

1.49
3.53

Slowly propagating
TA
LA
TO
LO

0.0209
0.0261
0.1054
0.0591

0.067
0.083
0.337
0.189

0.40
0.96
1.7
1.9

Total 0.3128 1.000

'This velocity for the slowly propagating phonons is just v5, for the others it is the group
velocity.



80——142,

in units of K. Note that Vardeny et ai. ' find

8&——164 K. The ratio 8&/8„=1.13 for CuCl.
This is very similar to the values found for other
zinc-blende crystals in Table II of SSP. In ZnS,
which has almost the same masses and mass ratio
as CuC1, 80/8 „=1.17.

B. Absolute value of It '

As shown in. SSP it is possible to make a reason-
aMe estimate of the value to be expected for the
thermal conductivity at the acoustic Debye tern-

perature. Equation (3.3) of SSP gives

E'(8„)=8n'~ M5(8„) y„ (6)

C. Calculated minimum thermal conductivity

The concept of and method of calculating the
minimum value of E has been given in SSP. The
minimum E is independent of temperature for
T~g8, and is

E';„„(total)=E';~„+E';„o„.
The A term is for acoustic phonons and the 0 term
is for three combined optic-phonon branches, all at
frequency v,z. The optic term is

where 8 =3.04)& 10+' W/kg m K, M is the aver-

age atomic mass, 6 is the average interatomic spac-
ing, and y„ is the Griineisen parameter for the
acoustic phonons in the high-temperature limit. If
we take the average of y for the propagating
acoustic phonons, we find

(2m +Xz.~)
3

using the y values in Table I. This yields

E'(126 K)=1.48,

in units of W/mK at P =1 atm. The measured
value is 2.9 W/mK from Fig. 3, about twice as
large as the calculated estimate. The observed
value minus E,', is 2.7 W/mK (see Sec. V E).
The agreement between Eq. (6) and the observed E
value is within the limits found for other materials
in SSP.

where n =2. For the optic modes the frequencies
and characteristic temperatures are related by

A VPP k 8PP ~ (10)

Values of Spp are given in Table I, and are taken
from the neutron scattering results at 4.2 K. The
shift in 8 values with temperature is ignored. For
the acoustic modes the characteristic temperatures
are the 8„values derived earlier. The vz values
are the maximum frequencies of possible phonons
for the whole mode. They are taken from the cal-
culated one-phonon density of states of Prevot
et a/. ' The vz values are close to but not identi-
cal to the values of k8„/h. The average propaga-
tion velocities in Table I of the TA and LA modes
have been estimated from the Voigt-Reuss-Hill
averages of the elastic constants. Using the e,z of
Hanson et al. this gives, at 300 K, the adiabatic
bulk modulus

8, =39.3,
and the adiabatic shear modulus

S,=9.13,

both in units of GPa.

1. Phonon wavelength cutoff

It can be seen from the phonon dispersion
curves'" that not all of the acoustic phonons have
the propagation velocities given in Table I for the
lowest-frequency phonons near the zone center.
There is some cutoff wavelength, and acoustic pho-
nons of shorter wavelengths can be assumed to
have zero propagation velocity. This type of
analysis has been employed by Holland ' for Si and
Ge. Phonons of longer wavelengths are assumed
to have a constant velocity. This cutoff wave-

length for the acoustic phonons is

A,c =v/v

These values are, then, for the TA modes,

A,,=9.93,
and for the LA modes,

A,,=-9.41,
0

in units of A. This wavelength cutoff corresponds
to a wave-vector cutoff q, of

kV,p
m1110 oo nn5

(9) q, =2m/A,
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The distance from the center to the edge of the
first Brillouin zone (BZ) in the [100] direction is

q,„([100])=2m/a.p where ap=5. 418 A. The
average radius of the first BZ is just

q,„=(3/~) '~3q, „([100]), (14)

(15)

where ~, is the transport fraction. From Eqs.
(11), (12), (13), and (14) this is

~, (TA) =(0.554) =0.170,

M, (LA)=(0.585) =0.200.
(16)

Thus only about 18% of all the possible acoustic-
phonon modes can actually transport heat in CuCl.
The other phonons have very small or zero group
velocities. This is basically why the thermal con-
ductivity of CuC1 is so low. The optic modes in
CuC1 have such low group velocities that they ef-
fectively carry no heat either; see SSP.

2. Minimum conductivity

The method in SSP of estimating the minimum
thermal conductivity is to give all of those pro-
pagating phonon modes with A, & A,, a mean free
path equal to one wavelength. For the other
acoustic modes and optic modes, which are

nonpropagating, a mean free path of magnitude 5
is assumed. For each propagating acoustic branch
the contribution to E';„is given by

2m k
+mi~co =

3
+max

3n v
(17)

This is obtained by integrating

K'= —, I luC(v)dq,

which is

and 4n.(q,„) /3 is the volume of the first zone.
The number of phonon modes between the zone
center and q, is proportional to the volume of the
first BZ sphere of radius q, . Hence the fraction of
the phonon modes that can transport heat in CuC1
is given by

&,=(q, /q „)',
3n5

(20)

The term in parentheses gives the fraction of the
modes, all with frequency v,„, that have zero
group velocity. They then transport energy by an
atom-to-atom collision at an effective velocity of
v,„5; see Eq. (20.2) of SSP. The optic-mode con-
tributions are given directly by Eq. (9). The sum
of all these contributions is

E';„=0.313,

in units of W/mK. Of this 47% is contributed by
the acoustic modes and 53% by the optic modes;
see Table II. The temperature dependence of K';„
is given by Eqs. (19.5) and (20.4) of SSP for the
propagating and nonpropagating fractions, respec-
tively. The results are shown in Fig. 3. An ernpir-
ical fit to these results gives K vs T for the limited
region 100&T & Oo as approximately

1.75

K';„(T)=K';„„1——57
T

J

(21)

3. Minimum conductivity versus pressure

In order to compare the theory with the experi-
mental results obtained under pressure, it is neces-

sary to calculate how K';„depends on pressure,
This can be done using Eqs. (9), (17), and (20), the

y values from Table I, and the fractional contribu-
tions from Table II. The result is

K';„„(P)=[K';„„(P=0)][1+ (GP/Br )],

u =2m.v/q .

For q g q, one has U =0. In the high-temperature
limit Eq. (18) becomes Eq. (17). The results are
given in Table II. Note that there are two TA
branches so that the results of Eq. (17) are doubled
for the propagating TA modes.

For the nonpropagating regions of the acoustic
modes the expression for E';~ for a single pho-
non branch is

1 &~ ul kx e"
6n P ii (e"—1)

(18)
where 6 is the volume derivative

Here l =A, =2m/q, x =hv/kT, and C(v)
=kxze"(e —1) is the heat capacity. For q(q,
one has

BlnKm;„„G=
Bln V

The value of 6 is given by
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G =yr~(0. 140)+ (yTA —0.333)(0.067)+ yt A(0. 184)+ (yLA —0.333)(0.083)

+(pro —0.333)(0.337)+(l to —0.333)(0.189) . (24)

The 0.333 term is just (8 ln5/8 ln V) = —,. The re-

sult is

G =+1.17 .

The isothermal bulk modulus Bz. is calculated to
be 40 GPa from data ' ' in the literature, and is
assumed to be independent of temperature and
pressure. The resultant pressure dependence of
E';„ is shown later in Fig. 5.

I

from the known dispersion curves. The experi-
mental results in Fig. 5 indicate that the theoretical
pressure dependence from Eq. (22) is also substan-
tially correct. The E';„ term is thus approximate-
ly expressible by

~ =0.313[1—(»/T) ' "](1+0.029P),

(26)

in units of W/mK for 100& T & co.

D. Experimental minimum thermal conductivity E. Propagating acoustic phonons

The experimental results in Figs. 1 and 3 have
the general form

E =(2 /T')+E. ;„. (25)

+mince =0 29
+0.01

in units of W/mK. The theoretical value is 0.313
W/mK, calculated with no adjustable parameters

The minimum conductivity appears as a term ad-

ded to the "normal" temperature-dependent con-
ductivity. The experimental data have been plotted
as E vs T ' in Fig. 4 using the "best-fit" value of
@=1.75. These results can be extrapolated to
T = ao readily to give E;„„for various pressures
as shown in Fig. 5. Two other points derived from
Fig. 2 are also given. At I' =1 atm the experimen-
tal value of

We shall define the normally propagating acous-
tic phonons as those that have sonic velocities v;
slowly propagating phonons have velocities v5 and
move by atom-to-atom collisions. The temperature
and pressure dependence of the heat transport pro-
duced by the slowly propagating phonons is small
and comparable to that of E';„. The normally
propagating acoustic phonons account for most of
the pressure and temperature dependence seen in
Figs. 1 —3. The propagation velocities of these
two different groups are given in Table II. In or-
der to correctly analyze this behavior we need to
subtract from the total measured thermal conduc-
tivity the contribution supplied by the slowly pro-
pagating phonons. This correction term is equal to
E';„mi nsuthe minimum thermal conductivity of
the normally propagating TA and LA modes.
This term is thus

hC
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theoretically calculated value.
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=0.211 1— 62
T

1.72

(1+0.043P),

(27)

again in W/mK. This differs slightly from Eq.
(26). Further analysis is carried out using

F. Temperature dependence of Eg

In the temperature range of 100 to 200 K the
temperature dependence of Kz is given by

+R + +corr &

where K is the measured thermal conductivity and

Es is the experimental value for the thermal con-
ductivity of the propagating phonons. In Fig. 6
the curves for Ks vs T are given. Notice especial-

ly the effect of X'„at high temperatures by com-

paring Fig. 1 with Fig. 6.

1 00+ gth+ 7) p (29)

The linear thermal expansion coefficient a vs T as
obtained from literature ' data is shown in
Fig. 7. Values of u, g, and il,s are given in Table
III. The g values are experimental ones from Fig.
9. The values of rI,„are given by Eq. (11.3) of
SSP. %e have

ble that there is little or no scattering of the pho-
nons at grain boundaries in the present polycrystal-
line samples. The measured grain size was about
10 p, the average mean free path at 100 K due to
phonon-phonon scattering is about 0.05 p. Thus
our polycrystalline samples behave almost like
single-crystal ones. From SSP we note that the
three-phonon acoustic-acoustic scattering predicts
a=1.00. Two possible mechanisms are given in
SSP whereby e can be increased above unity; these
are thermal expansion and optic-node scattering.
Thus from Eq. (12.5) of SSP,

'gth=3cxgT . (30)
BlnKg

alnT
(28)

3.0—

with a value of @=1.6+0. 1 for pressures of 1.35
and 2.1 GPa. The e value of 1.6 gives the true
temperature dependence of Kz. The exponent of
—1.75 used in Fig. 4 is an empirical value used to
produce a nearly linear extrapolation to T = oo in
order to find experimental values for K;„„.The
large (i.e., & 1.5) value of e makes it appear plausi-

Since the g values are negative the q,h values are
negative. They are also small, and it appears that
p,&-0.6 experimentally.

It is possible to estimate the g,„contribution to
the value of e. We assume that the 82% of the
acoustic modes, those that are nonpropagating and
have high peaks in the density of states at 73 and
193 K, scatter the propagating acoustic phonons in
a manner similar to that of the optic modes. The
coupling constant here is S =1, however, since the
scattering is acoustic-acoustic. The rj,~(acoustic)
contribution is given by
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FIG. 6. Corrected thermal conductivity vs tempera-
ture at four isobars.

FIG. 7. Linear thermal expansion coefficient as a
function of temperature.



TABLE III. Thermal expansion contributions to e.

a
(10 K)

98K ",
II5K.

I50K
~ ~

100
200
300
400

0.0
+ 9.3

+ 14.6
+ 19.0

—22.3
—17.5
—12.6
—7.8

0.000
—0.098
—0.166
—0.178

l87K .

250K
o

295K
~ ~ ~

0

~ 4 I
I
~ I

S, (Z, +X,—1)

3[S;+(1/Z;)] '

Z;=X~/(e ' —1) .
(32)

~ ~

I ~
I

~ g
~ fI

~ I ~

I I II o

%if

479 K
I,, ~ gimel ~ ~ ls g ~ e i$ ~i

These equations appear in SSP as Eq. (12.4). Simi-

larly the optic-mode contribution is
-2

0.0
I I ) 1 t

-0.02 -0.04 -0.06
VOLUME RATIO(V/Vo)]

il,„(optic) =(2I'ro+ YLo) .

The overal1 g,p is just

i)op='gap(acollstic)+rjop(optic) .

(33)

(34)

FIG. 8. Corrected thermal conductivity vs sample
volume for eight isotherms. The natural logarithms of
the values are plotted. Thus the slopes of the curves

give the value of g.

The derived value of S,„=1.75, where S,„ is the
scattering strength of the optic phonons relative to
that of the acoustic phonons. This means that the
scattering of acoustic phonons by optic phonons is
75% stronger than the acoustic-acoustic scattering.
This value should not be taken too seriously, but it
does indicate that the propagating phonons are
scattered by the slowly propagating phonons as
well as by interaction with the normal acoustic
phonons. This additional scattering by the slow
phonons is probably responsible for e being notice-
ably greater than unity.

G. Volume dependence of E&

In Fig. 8 we show the results of ln(E& ) plotted
versus ln(V/Vo). The applied pressure has been

converted to a volume change by assuming that the
isothermal bulk modulus is 8&——40.0 GPa. The
slopes of the in(Eii ) vs ln(V/Vo) curves between
1.5 and 2.7 GPa are the measured g values given in
Table IV and plotted in Fig. 9 as a function of
temperature. The value of g appears to increase
linearly with increasing temperature from a value
of about —22 at 100 K to zero at 560 K. We
would like to be able to compare these measured g
values with theoretical estimates. The g value at
high temperatures can be estimated from E;„us-
ing the contributions only from the propagating

TA and LA modes. Thus for T »193 or 73 K,
the effective Debye temperatures of these modes,
we obtain from Eq. (24),

yr~(0. 140)+yi ~(0.184)

0.140+0.184

Using yr~= —2 5 yLA=+2. 0, we find

g„=+0.056 .

(35)

Thus the high-temperature limit of g is very nearly
zero because the negative effect of yTA cancels the
positive effect of yi &. As the temperature de-
creases below 193 K, the LA Debye temperature,
the contribution of the TA modes begins to exceed
that of the LA modes and g should become more
and more negative. At 73 K the TA modes dom-
inate the behavior and g =——24. The value of g is
approximately' equal to

1

(36)

Thus at 73 K one obta)ns y~~- —5. From refer-
ence to Fig. 13 it is apparent that yr~ (T =0) is
—2.5. This is the average yqA for phonons near
the zone center. For the higher-energy TA pho-
nons it appears that y decreases to values of about
—5 for wave vectors about halfway across the BZ.
This observation needs further confirmation, but
rather large negative-y~A values have been calculat-
ed and measured for other diamond or
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98
115
150
187
250
295
385
479

22.5+0.5
21.0+0.5
19 +1
18 +1
16 +1
13.0+0.5
7.3+0.5
4.0+0.5

TABLE IV. Experimental g values in the pressure
range 1.5 —2.7 GPa.

~ -30 I I
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8
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~ -IO-
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cC
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Cl
LLI

0
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TEMPERATURE (KI

500

FIG. 9. Volume derivative of E, which is g, vs tem-

perature. The error bars are the estimated uncertainty
in the slopes of the lines in Fig. 8.

zinc-blende structure crystals. In CuCl the zone-
boundary TA (X) phonons have a y= —1.7 while
in AgoaS2 the value for some TA modes is
y= —4.4.

H. Specific-heat capacity

The transient hot-wire method used in the
present experiments also yields data for the
specific-heat capacity per unit volume as a func-
tion of temperature and pressure. If we define Cz
as the specific-heat capacity per unit mass at con-

stant pressure and p as the mass per unit volume,
the specific-heat capacity per unit volume at con-
stant pressure is just pc&. This is the quantity
measured in the present experiments. Figure 10
gives the results at P =2.1 GPa over the tempera-
ture range studied. The maximum scatter in the
data is about +7% from the average value. The
absolute uncertainty in the values is about +10%.

In order to compare Fig. 10 with previous re-
sults' at 1 atm it is necessary to know the pressure
dependence of pC&. Results for three temperatures
are shown in Fig. 11. The expected pressure
dependence can be calculated from the following.
The specific-heat capacity per unit mass at con-
stant volume C„ is given by

2D (O~r~) +D (OL~) +2E (Ogo) +E(OLo)
6

~ 2.51
E
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FIG. 10. Heat capacity per unit volume vs tempera-
ture at a constant pressure of 2.1 GPa.
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TABLE V. Calculated pressure dependence of pC~.

aln(pC, )ra~

TABLE VI. Experimental values of the thermal
Griineisen parameter at various temperatures.

100
150
200
300
400

—0.63%%uo

0.74%%uo

+ 0.92%
+ 1.39%%uo

+ 1.96%
+ 2.50%

The 8 values are given in Table I. The 8 values

change with pressure (or volume) according to

100
150
180
200
250
300
350
400
450
500

0.00
0.38
0.50
0.60
0.75
0.89
1.02
1.14
1.27
1.40

Bln8 Bln8
(38)

where the y values in Table I are used. The C~
and C„are related by

Cq/C„= 1+3ayT . (39)

Since 3ayT is small for CuC1 up to 400 K, then

aC, ac„
aI =a~

The overall result is that

(40)

Bin(pCp ) 1 BlnC„

BP BT Bln V
1— (41)

Since BT——40 GPa, BT ——+2.5%/GPa. At lower
temperatures the BlnC, /BlnV term comes in, and

At the very highest temperature C, is a constant
independent of volume. Hence

Bin(pC~ )

Qp T

the results are given in Table V. These calculated
pressure dependencies are also shown in Fig. 11.
The agreement for temperatures of 295 and 150 K
is very good. The results for 98 K below 2.0 GPa
are seen to be suspect and are ignored henceforth.
Large differential thermal contraction stresses in
the teflon cell and the sample are thought to be in-

fluencing the results at these lowest temperatures.
The data in Fig. 11 are then corrected to 1 atm
pressure and plotted in Fig. 12. A density p of
4.132 g/cm has been used.

The present results are about 5% higher than
the more accurate data of Vardeny et al. ' below
160 K. This is within the accuracy of the present
method. Thus the present results were decreased

by 5% and the dashed line in Fig. 12 shows the
expected behavior of CuC1 up to 400 K. At 400 K
the value of C~ =49.1 J/mole K. Using Eq. (39)
this gives C„=47.9 J/mole K, which is 96% of the
Dulong-Petit value of 6R at infinite temperature.
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FIG. 12. Heat capacity per mole vs temperature for
atmospheric pressure.

FIG. 13. Thermal Gruneisen parameter vs tempera-
ture. The points are experimental data, the solid curve
is the theoretical fit.
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Thus the dashed extrapolation in Fig. 12 appears
to be reasonably accurate. This curve is used in
Fig. 13 to calculate y'" vs T.

VI. GRUNEISEN PARAMETERS
AND THERMAL EXPANSION

Some data exist in the literature for the
Griineisen parameters y of CuCl. Single-mode y
values near the center of the phonon BZ have been

determined ultrasonically under pressure. Some

values at the zone boundary have been determined

by optical experiments under pressure. Previous
plots of the thermal Gruneisen parameter y'",
versus T, exist. ' We have determined y'" (see
Table VI) from a combination of the thermal ex-
pansion (see Fig. 7) and the specific-heat capacity
(see Fig. 12). The y'" vs T curve has been fitted by
using the selection of mode y values and Debye
temperatures listed in Table I. The fit is shown in
Fig. 13. Except for the minimum at 7 K the fit is
rather good. The expression used is given by

2yrAD (73)+yi ~D (193)+2yroE (300)+yLoE (335)

2D (73)+D (193)+2E(300)+E (335)
(42)

Here D(T) and E(T) are the Debye and Einstein
specific-heat-capacity functions for the given tem-
perature.

Clearly it is an oversimplification to assume that
the y for a particular mode is constant across the
whole BZ. Lattice-dynamical calculations
show that this is not, in general, the case. The
minimum at 7 K in Fig. 13 indicates that y~A is
varying rather rapidly as one proceeds outward
from the zone center. However, we are mainly in-

terested in the order of magnitude and sign of the
mode ys. For this Table I is adequate. These
values have been used in the preceding parts of this
paper.

VII. AVERAGE PHONON LIFETIMES

Several studies of the vibrations or excursions of
the Cu and Cl ions from their equilibrium posi-
tions show large motions. This can be interpreted
as large excursions into the regions where the
anharmonic terms in the interatomic potential be-
come very important. Evidence for the rapid de-
crease of the mean lifetime of the lattice phonons
with increasing temperature comes from the neu-
tron scattering studies. ' ' Prevot et al. ' find
that for T g 200 K many of the phonon peaks are

vv=5, (43)

at 200 K, where ~ is the lifetime. At 200 K the
higher-energy acoustic phonons will be the dom-
inant carriers. These will be in the frequency
range of 1 to 4 THz (see Table I). Thus their life-
times from Eq. (43) will be of the order of
2)&10 ' sec. Such short lifetimes will produce
lifetime broadening of the phonon peaks. Just
such effects are seen in the neutron scattering.
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too broad to be seen. At 200 K and 1 atm pres-
sure the measured E is about S times its minimum
value. Hence the mean free path of these pro-
pagating phonons is five wavelengths. In terms of
the phonon frequency this means for the dominant
acoustic phonons,
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