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Study of electronic states with off-diagonal disorder in two dimensions
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The nature of electronic states in a two-dimensional tight-binding model with off-
diagonal disorder is examined by iterative methods applied to very long strips of finite
width M. We find that for E=0 the localization length depends linearly on M for all
disorders 8'. This indicates a R ~' ' behavior of the wave function, and provides a
singular deviation from the belief based on scaling theory that all states are exponentially
localized in two dimensions. However, for all E+0, states are exponentially 1ocalized
and scaling behavior is obeyed.

Recently, significant advances have been made'
in understanding Anderson s localization in disor-
dered systems. Much of the work has been based
on the idea that the extended or localized nature
of the eigenstates can be determined by a single
scaling variable, the dimensionless conductance
g(L) of a system of length L. By assuming that
the quantity P(g )—:ding/dlnL, which describes the
length dependence of g, is a monotonic and non-
singular function of g only, one obtains that g~0
as I.~ oo for any disordered system of dimen-
sionality lower than or equal to 2.

Various numerical approaches such as the direct
determination of the eigenfunctions, sensitivity to
boundary conditions, calculation of the transmis-
sion coefficient, evaluation of the conductivity,
recursion methods, ' localization function
method, etc. ' have been used to test these ideas.
The predictions of the numerical studies in 2D
(two dimensions) range from the existence of an
Anderson transition ' to localization for any
amount of disorder. ' ' Most of the numerical
calculations and especially the very recent work, '

support the predictions of the scaling theory for
2D; that is, all states are exponentially localized for
any amount of disorder.

These numerical studies were performed for a
tight-binding model defined by the Hamiltonian

II=QE„~ n) n +g'V„n (m ~,
n n, m

with only diagonal disorder, i.e., the diagonal ma-
trix elements e„are random variables. The role of
randomness in the off-diagonal matrix elements

V„~ has not been studied extensively until recent-
ly, " ' since it was presumed that off-diagonal
disorder is very similar to the diagonal one. A 1D

system with only off-diagonal disorder provided
the first indication that this may not be so. At the
center of the band' ' of this system, the wave
function decays not exponentially with the distance
L but more slowly as exp( —a~L).

It is the purpose of this paper to examine the
nature of the eigenstates in a 2D square lattice
with only off-diagonal disorder by using recently
improved iterative methods ' applied to very long
strips of finite width. The present work is a test of
how sensitive, if at all, the scaling theory is to dif-
ferent types of disorder. Our numerical results
show that at the center of the band the localization
length depends linearly on the strip width for all
values of the off-diagonal disorder. This indicates
a power-law type behavior of the wave function.
This result is in contrast with the case of diagonal
disorder in 2D where numerical studies ' show
that at E =0 even for low disorder the states are
exponetially localized as predicted by scaling
theory. ' However, we find that for E+0 the states
are exponentially localized and the localization
length obeys finite size scaling behavior consistent
with the ideas of scaling theory of Abrahams et al.

We considered a system of length E~ 00 in the
x direction and length M in the y direction
described by the usual Anderson tight-binding
Hamiltonian with constant diagonal matrix ele-
rnents. The off-diagonal matrix elements V„ for
nearest neighbors are random variables and zero
otherwise. We use a rectangular probability distri-
bution of width 8' for the logarithm of the V„

1/W if
~
inV„~/Vo

~

(W/2
P(in V„ /Vp) = '0

where Vo ——1 is taken as the unit of energy. 8' is a
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good measure of the strength of the off-diagonal
disorder. ' Periodic boundary conditions are im-

posed on the y direction. For X ~&M the system is
one dimensional and therefore we can define a lo-
calization length A, for a given energy E disorder
W and width M. By studying A, vs M for given E
and W, one can predict the behavior of the 2D sys-
tem (M~ oo). We used two independent numerical
methods for calculating A, . In the first method, the
matrix element (1

I
G(N)

I
N) of the Green's func-

tion between states located at the first and Nth
columns of the strip is found by iterating the fol-
lowing equations:

—1 —1
~n ~N —1~N —1,N~N ~ (2)

By iterating Eqs. (2) and (3) in the above manner,

only the largest eigenvalue of A~ ', which is related
to the localization length, contributes to Eq. (4).
We can also combine Eqs. (2) and (3) into a single

equation for AN, as first noted by MacKinnon and
Kramer. The second method we employed is
based on the multiplicative ergodic theorems'
for products of random matrices. The amplitudes
of the wave function at the ith and (i + 1)th
columns are related to the amplitudes on the i' —1

and ith column by the relation
r

Tg (5)
CXg QI

where T; are 2M)&2M matrices whose elements

depend on the values of the random off-diagonal
matrix elements of H~. The localization length A,

is related to the eigenvalues of the matrix T de-

fined by the limit'

lim gT/T =1.
N~ oo.

A, is now given by

minI Ir k I I) I

where I I k I,k =1, 2M are the eigenvalues of T.
The details of the two methods which are a gen-
eralization of the recent recursive methods7' to in-

clude off-diagonal disorder can be found in Refs. 7

B~ (E H——~ —V—iv ~ tB~ I Vgg ) ~) ' . (3)

Here A/
' ——(1

I
G(N)

I
N ), B/ (N

I

G——(N)
I
N ),

and H~ is the Hamiltonian of the N-column sys-

tem. The localization length k is now given by

~= »m [2(N —1) '»TrI &I IG(N) IN& I'.
N~ oo

(4)

and 8. These two methods contain no restriction
on the size of the system other than the computer
time available. Therefore, one can increase Ã until
a given accuracy of the localization length is ob-
tained. Typically we iterated the solution until
EA, /A, =2%, where hA, is the standard deviation of

For off-diagonal disorder of W =2 and width
M =31,X was run for 10 sites; for larger disorder
and smaller M the convergence is faster. In gen-
eral, we found that the transfer matrix technique
was significantly faster than the Green's-function
recursion method and within statistical error, we

obtained the same results by the two methods. %e
want to mention that all these recursive methods
cannot reliably calculate the length dependence of
the dc conductivity o using the Kubo-Greenwood
formula. Even in 1D, where we know that all

states are exponentially localized, the Kubo-
Greenwood formula for 0. has problems. ' There-

fore, by calculating A, in 2D and then trying to ob-

tain the scaling function P(g) from A, one has to
introduce another possible approximation relating
0- to x.'

We calculate the localization length A,(E, W, M)
for d =2 with 2& W & 16 for both E =0 and E+0
and for a number of different values of M. In Fig.
1 we plot A,~ as a function of M for different W's

at the center of the band (E =0). Figure 1(a)
shows our results for M even and Fig. 1(b) for M
odd. ' Note that A.~ increases almost linearly with
M for all W's even for very large disorders. This
indicates that we cannot define a finite localization
length for the infinite lattice. Therefore, following
the arguments of Ref. 7, we propose that for a 2D
lattice at the center of the band with only off-
diagonal disorder, the wave function falls off with
distances as R ~' ', which suggests a very weakly
localized or very weakly extended behavior depend-

ing on the value of y. In Fig. 2 we plot the ex-
ponent y as a function of W, taken from the case
of even or odd M. The exponent y( W) =1/nb(W), .
where b ( W) =A,M/M. Note that y increases
linearly with W, and is larger than one when
W=ll. Therefore, for W& ll, the states are
weakly extended. Next we examined whether or
not this "power-law localization" persists for
E+0. As shown in Fig. 3, A,M is no longer linear
in M, but it approaches a finite limit as M —+ 00,
which is the localization length. Thus the power-
law localization is an exception appearing only for
E =0 and for the case of off-diagonal disorder. It
is tempting to attribute this exception to the possi-
ble existence in a square lattice of a logarithmic
singularity in the density of states N(E) at E =0
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FIG. 1. Localization length A,~ vs the width M for even (a) and odd (b) strips.

even in the presence of off diagonal disorder. . To
further check this idea, we calculated A, vs M at
E =0 and 8'=10 for a triangular lattice, which
does not have any singularity in X(E) at E =0; we
found that the states are exponentially localized.
We also checked, for the triangular lattice and for
8 @0, the case E = —2 [where at zero disorder
X(E) is singular] and we found exponentially lo-

calized states. Therefore, we tentatively conclude
that this power-law localization for off-diagonal
disorder at E =0 for a square lattice is due to the
logarithmic singularity at E(E), which seems to
persist even for W@0.

Our results for large E() 10 ) and large M
obey the scaling law

AM/M=f(A, „/M)
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FIG. 2. Exponent y( W) vs 8' for only off-diagonal

disorder at E =0 for M odd {open circles) and M even
(closed circles}.
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FIG. 3. A~ vs M for four different energies E with
8' =4.
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found by MacKinnon and Kramer; this is con-
sistent with the idea of one-parameter scaling. On
the other hand, the case of E= 10 shown in Fig.
3 is so close to the E =0 power-law localization
that one probably needs to reach M's much larger
than M =31 in order to see the scaling behavior.
To further check the universality of the scaling
behavior, we have examined some cases with only
diagonal disorder and E+0; we found that data
fall on the same scaling function as in Fq. (7).

Our present results provide further support to
the idea that the one-parameter scaling hypothesis
(which leads to exponential locahzation for d & 2)
is true in a generic sense. On the other hand, the
present work clearly demonstrates that exceptions
to the rule for exponential localization for d & 2 do
exist.
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In both methods the values of A. at E=0 for strips of
even number of lines are lower by -10% than the
corresponding values for odd number of rows. Exam-
ination of the behavior for strips with open boundary
conditions rather than periodic ones by both numeri-

cal and analytical methods shows that odd strips at
E =0 behave similarly to one-dimensional systems
with purely off-diagonal disorder, namely the states
are localized more weakly than exponential. The in-

troduction of periodic boundary conditions amounts
to connecting many 1D channels in parallel which re-
sults in a reduction of the statistical fluctuation re-
sponsible for this anomalous localization and in recov-
ering the exponential decay. We believe, however,
that the slight difference between the values of A, for
even and odd strips with periodic boundary conditions
is a remnant of the more drastic difference for the
single channel case.


