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Applied to the determination of the density of states of disordered systems, the recur-

sion method permits the local Green's function to be written as a continued fraction. %'e

examine the effect that truncating this fraction has upon the local Green's function and

present a means of reducing this effect. Further, a self-consistent approach for obtaining
the local Green's function is developed. This approach is shown to be suitable for the

study of disordered systems.

I GENERAL CONSIDERATIONS

The mathematical problems involved in the
study of disordered systems are complicated ones
primarily ii that the matrix describing the physics
of the diso. dered system is infinite and irreducible.
Gne approach is a numerical one which usually
starts withtruncating the system matrix to a finite
but large sze and then applying direct methods
such as D~an's method of negative mode counting
to determine the distribution of eigenvalues. '

However, romputational difficulties prevent the
studies of .cally large systems so that the approach
to infinitesystems can never be fully explored.

on the ~ther hand, if the Green's-function ap-
proach is «sed, one needs to determine the diagonal
elements tf the resolvent operator to obtain the
eigenvalue. For this purpose, the recursion
method

developed

by Haydock, Heine, and Kelly
is very ustful because the matrices for disordered
systems ar: usually sparse matrices in the represen-
tation of local basis vectors.

It should be noted that for a finite system, there
is really no appreciable advantage to using the re-

cursion method rather than direct methods since
the transftrmed (tridiagonal) matrix is still an

X)&X matrix. However, for an infinite system,
the local Green's function can be expressed as a
continued fraction in the transformed (tridiagonal)
representa:ion.

The coe"ficients in the continued fraction at a
given level depend only on the properties of the
particles enclosed within a sphere of observation
defined by the shell r (see Fig. l). As the contin-
ued fracti(~n is developed, the situation is equiva-
lent to an:nlargement of the "sphere of observa-
tion". Atany given step of the development, the
number oII particles included in the sphere of ob-
servation i always larger than the number of steps

needed to reach the boundary of the sphere. Since
it is known that the eigenmodes for disordered sys-
tems may be either fairly localized or fairly extend-
ed, it may happen that at a certain step further en-

largement of the sphere of observation will not add
any new feature to the results. In this situation the
corresponding local Green's function has exhibited
a trend toward convergence. It is this particular
characteristic of the recursion method which
makes it well suited for the study of disordered
systems.

In this work we examine use of the recursion
method in the study of disordered systems. Em-
phasis will be placed on the effect of truncation of
the continued fraction on the properties of the sys-
tem, a possible way to reduce that effect, and a
proposal of a method which provides a self-
consistent scheme to study all aspects of disordered
systems.

est shell
2nd shell
5th shell

FIG. 1. Two-dimensional square lattice in the recur-
sion representation.
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II. THE EFFECT OF TRUNCATION
OF THE LOCAL GREEN'S FUNCTION

ON THE DISTRIBUTION
OF THE EIGENVALUES

One of the advantages in using the recursion
method is that the number of particles within a
given shell, N, is always larger than the shell num-
ber. For localized states, convergence of the local
Green's function can be expected to occur for a
reasonably small shell number, r. One way to
proceed with the calculation then is to truncate the
continued fraction at that shell. Indeed, it is ex-

pected that such a procedure will be sufficient to
obtain all the information desired about those
states (but only for those states). However, some
states can be quite extended and for those conver-
gence of the local Green's function will not occur
unless r becomes large enough to include all impor-
tant correlations. Computing time and the pro-
gress of errors in the computer calculation makes
the truncation scheme a very unattractive scheme
to follow in those situations.

But, there is another factor to be considered
when the continued fraction is truncated. This is
the effect of truncation on the eigenvalues ob-
tained. In order to study this effect, we shall use a
concrete example of the dynamics of a two-
dimensional square lattice.

Consider a two-dimensional periodic square lat-
tice with nearest-neighbor interactions. The matrix
equation describing the dynamics of the system
may be written

MU =A, U .

In the system of reduced units of y/m = I (y is the
force constant and m is the mass), the smallest
nontrivial matrix is

A —1 —1 —1 —1

p.5

p.2

Q. I

Q. 0 2.P
I

Q P 6.p S,Q

FIG. 2. Frequency spectrum of a periodic tvo-
dimensional square lattice: Histogram represents a
"five-particle" system; the solid curve represents the ex-
act calculation.

Next we proceed to apply the recursim method
to the matrix given by (2). In the new representa-
tion the matrix is tridiagonal with diagonal ele-
ments ak and off-diagonal elements bk. The local
Green's function for the system Roo(co ) may now
be written as a continued fraction:

Roo(co )=
(ao —co )—2

b;
(a, —co') ——.'

For the periodic two-dimensional square lattice as
shown in Fig. 1, it can be shown that allthe
ak ——A. The coefficients bk are given in I'able I.

By examining Fig. 1 and Table I, it appears that
up to the first shell all the information a)out the
first five particles is included in the consideration.
One might then expect to be able to obtain all the
information about the eigenvalue problen of the

—1 A 0
—1 0 A

—a 0 0
—1 0 0

0 0
0 0

A 0
0 A

(2) TABLE I. Coefficient b, for a periodic sqmre lattice.

b„

where A =4. The solution to the eigenvalue prob-
lem defined by Eq. (2} gives the following normal
modes: co =4 (threefold degenerate), co =2, and
co =6. If one plots the histogram of the eigen-
value distribution (Fig. 2},one sees that it agrees
very well with the known frequency spectrum of
the two-dimensional square lattice considering the
fact that only five particles are included in the
consideration.

1

2
3
4
5

6
7
8
9

10

4.000
5.000
3.800
4.305
3.873
4.169
3.908
4.114
3.929
4.085
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five-particle system [Eq. (2)] by truncating the lo-
cal Green's function, Zoo, at the first shell. How-
ever, in doing so, one finds that the poles of Roo
occur at co =2 and co =6, and apparently the de-

generate mode at co =4 is not recovered. One
might think that only two roots are found because
truncation at the first level actually corresponds to
considering a 2)&2 matrix and that the complete
picture for a five-particle system would be obtained
by going to the fourth level before truncating.
(The fourth level would yield a 5 X 5 transformed
matrix. )

However, if the local Green's function is trun-
cated at r=4, one finds that the poles of R oo' oc-
cur at co =0.4, 1.96, 4, 6.05, and 7.6. The frequen-

cy spectrum of the five-particle system is distorted;
the two modes at m =2 and co =6 are shifted
somewhat, the degeneracy at co =4 is removed,
and two new modes appear at co =0.4 and
co =7.6. A histogram constructed from these data
shows no resemblence to the frequency spectrum of
the two-dimensional square lattice. The reason for
these changes is that there are actually 41 particles
included in the sphere of observation when the
continued fraction is truncated at the fourth shell
(r=4) The m. ixing of the information about the
particles in the three outer shells with the five par-
ticles in the inner shell apparently is responsible
for the changes. Thus, it is important to note that
in the transformed representation simple truncation
at any given step can result in a distorted picture of
the system except for those states where the trend
of convergence of the local Green's function is es-
tablished. Simple truncation in the transformed tri
diagonal representation is quite different from the
truncation in the original representation. Hence,
extreme care must be exercised when using the
truncation scheme in the recursion method, es-
pecially for those states which are not very local-
ized. Some other scheme is needed if one is in-
terested in obtaining a complete and accurate pic-
ture of the disordered system.

III. THE CONVERGENCE OF THE LOCAL
GREEN'S FUNCTION

We have showed that if one is interested in the
total picture of a disordered system (rather than
just the limited region of very localized states),
simple truncation of the continued fraction used
for the local Green's function can often present a
distorted picture of the system. Before attempting
to devise a scheme to remedy the situation, we first
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FIG. 3. Randomly generated two-dimensional binary
system. The triangles represent the impurity atoms at
10%%uo concentration.

examine how the truncated local Green's function
behaves as r increases in different frequency re-
gions.

We first consider the dynamics of a two-dimen-
sional randomly and isotopically disordered binary
system with, 10% light impurities (ML /MH ———, ).
The impurity configuration is randomly generated
and is shown in Fig. 3. The coefficients a„b, and
the truncated local Green's function Roo' are calcu-
lated for different frequency regions. Some of the
results are shown in Tables II and III. It is in-
teresting to note that from co =0 to co =7.S, Roo'
has not shown any trend of convergence for r up
to r=30. However, at cu =7.85 and beyond, the
local Green's function has definitely demonstrated
convergence. This indicates that there is no need
to be beyond the 30th shell to determine the prop-
erties of these modes. The normal modes beyond
co =7.85 are localized modes with localization
lengths equal to or shorter than the length defining
the 30th shell. We have also calculated the local
Green's function at co =13.5 which is in the neigh-
borhood of a prominent impurity mode (outside
the main band defined by 0 & co & 8). It can be
seen that this mode is indeed very localized (with
localization restricted within the first shell).

The results of these calculations clearly indicate
that for localized modes simple truncation at the
level of convergence can determine the properties
of these modes because the local Green's function
has reached convergence. However, for the major
part of the spectrum, the likelihood of R00 reach-
ing convergence for small r is remote. For these
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1

2
3

5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

—1.000
—1.000
—1.000
—0.674
—0.136
—0.410
—O.S54
—0.761
—0.289
—0.0221
—0.330
—0.623
—0.717
—0.549

0.0003
—0.132
—0.173

0.0375
—0.198
—0.293

4.000
5.000
3.800
4.305
4.853
5.812
4.713
4.522
4.650
5.565
5.6S4
4.568
4.290
4.230
5.493
5.935
5.198
5.7S4
5.964
4.910

0.333
—0.500

2.294
—0.326

3.426
—0.244
—3.235
—0.0824
—1.767
—0.0782
—1.187

0.0882
—0.665

0.310
—0.665

0.378
—0.603

0.360
—0.543

0.571

TABLE II. Coefficients I,'a„—co ) and the truncated
local Green's function Zoo' for the random configuration
shown in Fig. 3 at ~ =5.0.

r Qt —N 2 b, Boo
(r)

For extended modes, M may approach infinity as e
and g approach zero. However, if instead of sim-

ply truncating the continued fraction one replaces
the remainder of the continued fraction after a
given level by a parameter X, one obtains (with

a =a; —co),

b)ap—
b„a)—

ar —&

If the parameter X can be chosen to reflect the ef-
fect of the remainder of the continued fraction on
the local Green's function, it may then be expected
that Roo'(X) will approach the limit ROD(co ). This
should also mean that

(7)

In fact, Eq. (7) can be used as the self-consistent
equation to determine X.

For a system with a fixed configuration, Eq. (7)
indicates that

modes simple truncation will not work (see Sec. II).
How can one then proceed to analyze the proper-
ties of these modesT

To look for. clues to solve this problem, we con-
sider a situation where all the modes are extended
(so that the local Green's function will not con-
verge for finite r). The periodic two-dimensional
lattice is just such a case.

The local Green's function may be considered as
the limit of the truncated continued fraction as the
level of truncation approaches infinity. Ordinarily,
when dealing with finite systems such as resulting
from the truncation of the continued fraction, the
poles of the truncated local Green's function deter-
mine the eigenvalues of the truncated system. In
general, the eigenvalue spectrum for a finite system
consists of a series of discrete poles. As the level
of truncation increases, the density of the discrete
poles also increases, leading eventually to a con-
tinuous spectrum as the level of truncation ap-
proaches infinity. Thus, following %ongtawatnu-
gool and Wu, we write

Roo(co ) = lim R'Oo(co +i rt)
g—+p r~oo

[where Roo(co ) is the local Green's function for
the infinite system] or

~
Rixi(co +iri) Roo'(oi +i') ~

(e—
for r )M and r' gM .

a„'+) —X

or that the coefficients ak and bk must have
reached convergence at k =r +1.

If one examines Table IV one finds that for the
two-dimensional square lattice a; =A and the coef-
ficients bk have converged to within 1% at k= 15.
Chen and %'u computed the frequency spectrum of
the two-dimensional periodic lattice for r=14, us-
ing Eq. (g), and obtained excellent agreement with
the known results. Thus for a periodic system
with extended states, even though the truncated lo-
cal Green's function does not show any trend of
convergence at or in the neighborhood of r=14,
Eq. (7) with r= 14 nevertheless leads to excellent
results. This certainly suggests that the concept
leading to Eq. (7) is a valid one and as the situa-
tion requires, it should be modified to deal with
disordered systems.

The discussion presented above indicates how
the local Green's function behaves under different
situations. I'or the more localIzed states, the local
Green's function is expected to conuerge at a reason
ably small ualue of r (see Table III). On the other
hand, for the extended states, it is the conuergence
of the coefficients a„and b„at reasonably small
values of r which provides an efficient way of deter-
mining the local Green's function euen though the
local Green's function itself is not expected to con
uerge until r~ ao (see Table IV). Since Eq. (7) is
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TABLE III. Truncated local Green's function Roo(co').
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1

2
3
4
5
6
7
8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

7.0

—0.600

0.0316
—0.325

0.507
—0.174
—0.351
—0.880
—0.151
—0.577

1.111
—0.076
—0.387

0.112
—0.218
—0.443
—0.162
—0.335
—0.642
—0.254
—0.471

0.298
—0.346
10.200

—0.154
—0.32S

0.412
—0.254
—0.379

7.5

—0.424
—0.637
—1.427

0.219
—0.743
16.270
0.454

—0.018
—0.987

0.112
—0.141
—0.319
—1.928
—0.227
—0.415
—0.767
—0.356
—0.531
—0.761
—0.425
—0.634
—1.064
—0.515
—0.834
—2.079
—0.269
—0.946

3.293
—0.248

7.8

—0.364
—0.457
—0.551
—0.767
—0.470
—0.605
—0.680
—0.763
—0.166
—0.725
—0.799
—0.871
—1.580
—0.831
—0.898
—0.971
—0.878
—0.924
—0.953
—0.896
—0.939
—0.960
—0.918
—0.952
—0.963
—1.004
—0.955
—0.967
—0.984

7.85

—0.356
—0.438
—0.513

0.647
—0.448
—0.550
—0.596
—0.637

1.813
—0.619
—0.651
—0.674
—0.761
—0.662
—0.681
—0.697
—0.676
—0.687
—0.693
—0.680
—0.690
—0.694
—0.686
—0.692
—0.694
—0.699
—0.693
—0.695
—0.697

7.9

—0.348
—0.422
—0.482
—0.571
—0.428
—0.509
—0.538
—0.561
—0.829
—0.551
—0.567
—0.577
—0.603
—0.572
—0.579
—0.585
—0.578
—0.582
—0.583
—0.579
—0.582
—0.584
—0.581
—0.583
—0.584
—0.585
—0.583
—0.584
—0.584

13.5

—0.110
—0.110
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111
—0.111

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 .

18
19
20

3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500
3.500

4.000
5.000
3.800
4.305
3.873
4.169
3.908
4.114
3.929
4.085
3.943
4.067
3.952
4.055
3.959
4.047
3.964
4.040
3.968
4.036

0.424
0.637
1.427

—0.571
0.0805
0.274
OA11
0.595
1.151

—1.032
0.0269
0.245
0.384
0.549
0.944

—2.693
—0.0500

0.212
0.356
0.508

TABLE IV. Coefficients (a„b,) and Roo for the
periodic square lattice at co =0.5.

br

(9)

(R'"'(X))= gP,
g

C

ap
gC

g
C ~a&—

bC

consistent with both aspects of the behavior of the
local Green s function, its applicability to disor-
dered systems where both localized states and ex-
tended states may exist is therefore expected.

However, because all possible configurations
consistent with the distribution of disorder are
present in an infinite disordered system, the quan-
tity of interest is the ensemble average of the local
Green's function, (Roo'(X) ). The self-consistent
equation for the determination of the parameter X
then becomes

(Roo'(X)) =(Roo+ '(X)) .
The direct procedure to determine X using Eq.

(9) may now be set up as follows. For a given
shell r consisting N„particles, the ensemble aver-

age of Rco (X) is computed over all possible config-
urations of the N praticl e,si.e.,
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where ak and bk are the coefficients of the contin-

ued fraction at kth shell for a given configuration
c and P, is the probability of occurence of that

configuration. Similarly Roo+"(X) can be set up
in the same way. When these quantities are substi-
tuted into Eq. (9), we obtain

g
Cao—

bc

r C ~

Qi
bc

a„' —X

p
Cao—

( C ~ai—

bc

b„'+ i

(10)

The solution to Eq. (10) determines X from which
other quantities of interest such as the frequency
spectrum, can be calculated.

The actual computation of X starts with an arbi-
trarily chosen r and Eq. (10) is then solved. Next
the same procedure is repeated for r +1. If either

X, and X,+&, or the quantities calculated based on

X, and X,+&, exhibit the trend of convergence, one
may conclude the X, has reached its limit, X. The
degree of difficulty of computation of X thus de-

pends on r. For the two-dimensional binary sys-
tem under consideration, the number of particles
enclosed within the rth shell is E„=1+. 2r(r+1).
For example for r =2, 1V,+ &

——25. This means that
in the summation at the right-hand side of Eq.
(10), 2 configurations need to be considered. Ap-
parently the direct application of Eq. (10) will

quickly become inefficient as r exceeds the first
few shells.

On the other hand, consideration of the structur-
al aspect of the two- and three-dimensional sys-
tems shows it is necessary to go beyond the first
few shells in order to recover the features associat-
ed with those properties. For example, it can be
seen from Fig. 1 that each of the four sites 2, 3, 4,
and 5 in the first shell can be reached from site 1

in the zeroth shell in only one way. However,
there are two types of "lattice sites" in the second

shell, namely, the sites 6, 8, 10, and 12 which can
be reached from the sites in the preceding shell one

way only and the sites 7, 9, 11, and 13 which can
be reached from the sites in the preceding shell two
ways. As the shell number increases, the number
of sites which are equivalent to the first type of
site remains fixed at four while the number of sites
of the second kind will increase. Eventually, the
properties of the local Green's function will be
determined mainly by the properties associated
with sites of the second kind. In the calculation of
the frequency spectrum of periodic lattices, it was
shown that for the extended states the coefficient

b, converged to within a few percent of its limiting

Roo'(X) = XP,
C

& Cao—
bc

Cai-
a,"—r.

where W, is the number of randomly generated
configurations.

To demonstrate the feasibility of this approach,
the coefficients (a„,b„) for a randomly generated
configuration are shown in Table V. It is seen that
the values of successive a„and b„do not exhibit
any correlation. In fact, these values seem to fiuc-
tuate randomly. Furthermore, the local maxima
and minima of a„and b„ fluctuate within a range.
From the results shown in Table VI, it can also be
seen that the values of a, and b„ for different con-
figurations all exhibit the same behavior. In par-
ticular, their values all fluctuate within the same
range. This then indicates that the ensemble
averaging over a limited number of configurations
may indeed give a realistic description of the disor-
der of the system as long as a sufficiently large
number of shells (a sufficiently large r) is included
in the consideration. In this spirit, the self-
consistent equation for the determination of the
parameter X using Eqs. (9) and (11) will be mean-

value at about the tenth shell (see also Table IV).
This indicates that a reliable calculation of the lo-

cal Green's function must include at least the first
ten shells. A direct calculation of X in the spirit
of Eq. (10) using r =10 would involve 2 ' configu-
rations; an almost impossible task to carry out.

Another way to use Eq. (9) is to proceed as fol-
lows. Instead of averaging over all possible config-
urations corresponding to a cluster defined by a
small shell number r (say r=10), the ensemble

average of the local Green's function may be taken
over a limited number of randomly generated con-
figurations of a cluster defined by a reasonably
large r (so that a sufficiently large number of parti-
cles is included within the rth shell), i.e.,
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TABLE V. a, and b„ for a randomly generated configuration.

a, b,

1

2
3

5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

4.000
8.000
7.360
6.424

11.379
6.861

10.397
6.630
7.345
8.259
7.702

11.871
8.338
6.480
9.602
6.513
8.829
7.327
6.785

10.852
5.166
8.021
7.923
5.110
7.976
8.157

6.000
2S.OOO

8.310
20.208
19.471
19.348
17.668
10.487
17.567
13.205
24.276
30.965
9.685

17.602
16.992
10.578
23.002
7.872

25.661
12.198
8.591

20.612
9.018
8.440

19.327
20.255

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

10.625
8.053
7.705
5.984
5.800
9.345
5.852

13.615
6.361

10.239
7.703
7.661
8.852
8.466
6.429
8.045

10.518
7.530
9.274
7.254
7.452

10.500
6.615
6.622

23.724
14.115
13.303
6.187

17.466
11.750
19.919
24.815
13.121
25.010
11.062
20.429
17.574
14.511
9.679

28.598
16.558
18.040
18.236
10.932
23.442
17.066
9.563

16.038

ingful.
Since the numerical studies of the two-

dimensional lattice indicate that a system of a few
thousand particles usually yields reasonable and
meaningful results, it may be sufficient to use r in

the neighborhood of r= SO (corresponding to a sys-
tem of 5101 particles) for Eq. (11). Figure 4 shows
the results of our calculation of the frequency
spectrum of the system described earlier using Eq.
(11). In this calculation, r was chosen to be 30 and
100 randomly generated configurations were used.
In the figure, the histogram obtained by Payton
and Visscher by direct numerical calculation for a
system of 900 particles is also shown. The agree-
ment between the general features of the two spec-
tra is indeed excellent. Some of the peaky fluctua-
tion in the spectrum may be attributed to the limit-
ed number of configurations used or to the fact
that not enough shells had been included. These
factors have to be considered in light of the effi-
ciency of the calculation. Thus, an attempt should
be made to obtain an optimal combination of the
size (r) and the number of configurations for
achieving the best result with the most efficient ef-
fort. Work along this line is currently in progress.

VI. SUMMARY

The recursion method is certainly useful for the
study of disordered systems, " in particular if
one is interested in developing an approximate
method for an infinite system. It transforms the
matrix describing the physics of the system into a
tridiagonal form and provides a scheme to incor-
porate the properties of the local environment into
the transformed matrix. When the local Green's
function is written in the form of a continued frac-
tion, each pair of consecutive coefficients (ak, bk)
contains information about all the X„particles in-
cluded within that shell. However, a simple trun-
cation of the local Green's function at any given
step will only present a distorted picture of the sys-
tem except for those localized states for which the
local Green's function has already converged at the
level of truncation. The logical way to approach
this problem is to carry the detailed description of
the system to an appropriate level and then replace
the remainder by an effective parameter reflecting
the effect of the rest of the system. But, because
of the transformation involved in the calculation of
ak and bk, a critical factor determining the feasi-
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TABLE VI. a, and b, for some randomly generated configurations.

Config. 1

&r

Config. 2 Config. 3 Config. 4 Config. 1

b„
Config. 2 Config. 3 Config. 4

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

6.944
5.935
9.514
6.886
9.791
7.754
6.081
5.403
7.661
8.079
5.174
9.362
9.518
8.660
9.993
9.490
6.778

10.232
7.069

12.216
7.330
7.679

10.445
9.002
8.749
5.369

7.475
9.958
6.178
5.461
6.897
6.947

11.121
7.952
8.980
6.231
6.456
7.549
9.126
8.526
9.816
7.582

11.764
e.ooo
6.006
9.113
5.508
6.592
9.735
8.556

10.661
9.218

9.624
7.752
9.140
6.956

10.064
9.007
8.690
9.217

10.465
9.936
7.375
6.130

11.127
8.599
9.885
5.340
5.871

10.263
6.206
8.281
9.569
7.886

11.604
8.821

10.589
7.326

9.976
10.578
7.728
5.710
8.878
7.541
9.318
9.793
7.621
7.097
8.758
5.986

10.307
6.536
9.542
7.999
6.628

10.132
9.783
7.363

10.291
7.813

10.248
10.923
9.519
9.317

22.987
6.762

16.400
15.996
16.452
21.595
10.873
8.137
8.594

21.190
8.144

10.152
31.410
15.303
23.685
25.188
15.297
16.502
20.043
17.006
31.332

8.317
30.115
15.356
28.210

8.969

23.377
15.623
21.202
7.143

10.459
10.180
22.807
20.383
19.264
14.457
8.456

12.940
17.231
19.132
23.119
15.969
24.703
20.362
5.996

17.318
12.719
6.794

19.614
19.803
22.606
26.145

18.037
19.160
17.325
17.192
14.329
27.498
18.001
18.108
29.186
21.165
24.445
7.414

20.524
21.159
25.846
12.548
6.199

17.716
16.449
9.770

25.954
15.216
25.417
26.452
21.318
22.824

22.176
20.562
26.528

8.227
12.380
19.316
14.729
26.624
19.516
10.375
20.162
10.533
16.02S
19.053
11.681
26.693
9.561

16.385
31.437
14.495
21.090
18.673
19.528
29.594
26.931
21.217

0.30—

0.25

0 20-

Cil'3

O. I 5—

0. I 0-

0 05-

I 0
l
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FIG. 4. Main band of a disordered square lattice. (C~ ——0.15 and ML, /MH ——
3 )
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bility of any approach is the computation time.
For example, Sinai, %u, and Chen' recently used
an effective-medium approach to get around the
time-consuming problem of taking the average
over all possible configurations of a large system.
For the two-dimensional square lattice, they ob-
tained good agreement with the numerical calcula-
tion by averaging over all configurations corre-
sponding to particles only in the first two shells
(corresponding to r= 1). The tradeoff is the in-
clusion of an effective medium which has to be
determined self-consistently. The self-consistent
scheme requires the calculation of the coefficients
ak and bk for each iteration. Hence, the comput-
ing time for complicated systems may become ex-
cessive. On the other hand, in the present scheme,
the coefficients ak and bk for all the configurations
need to be calculated only once. They can be
stored away and recalled for repeated use. This
feature alone will make this approach most attrac-
tive for treating more complicated, realistic sys-
tems.

In addition to the determination of the eigen-
value spectrum, the other important problem is the
calculation of the eigenvectors. In the transformed
tridiagonal representation, only the local Green's
function can be directly linked to the amplitude of
the eigenvector at the. local site. Recently Tong
and co-workers' ' carried out a series of calcula-
tions to map out spatially the amplitudes of the
eigenvector by calculating the local Green's func-
tion at each spatial point. In their approach, since
the recursion method has to be used at every local
site, the calculation becomes quite involved. Also,
the calculation is carried out basically in the spirit
of truncation of the continued fraction at finite
step with allowance given to the boundary farther
away from the region of calculation. Still, their
scheme will probably only work well in the region
of localized states. For the important problem of
studying the transition from the region of localized
states to the region of extended states near the
band tail, their scheme may need to be modified
along the lines as discussed in Sec. III.
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