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Motion of interstitials in metals: Quantum tunneling at low temperatures

H. R. Schober
Institut fiir Festkorperforschung der Kernforschungsanlage, Postfach 1913,
5170 Jiilich, West Germany

A. M. Stoneham
Theoretical Physics Division, AERE Harwell, Oxon OX11 ORA., England
(Received 23 September 1981)

Tunneling rates for heavy-impurity interstitials in fcc metals are calculated. The full
interstitial —host-lattice coupling is taken into account in the dynamics as well as in the
lattice relaxation. It is shown that resonant modes play a decisive role in tunneling. The
results of this full dynamical study are compared to simple one-dimensional models, from
which it appears that the one-dimensional approximation can be used to extrapolate to
different values of mass, jump distance, and classical activation energy. The method can
be extended to study the finite-temperature behavior, and we indicate how this can be

done.

I. INTRODUCTION

It is well known that self-interstitials and
heavy-impurity interstitials (e.g., Fe in Al) in met-
als are mobile at very low temperatures. In some
cases (e.g., Au self-interstitial) the interstitials ap-
pear to be mobile at the lowest temperatues stud-
ied, typically around 1 K; in other cases (e.g., self-
interstitials in Cu and Al) there is a threshold, typ-
ically 20—40 K, above which the mobility rapidly
increases. The rapid annihilation prevents a de-
tailed study of the temperature dependence of the
mobility of self-interstitials. The most important
experimental studies are, therefore, done on
trapped-impurity interstitials. The main tech-
niques are internal friction and Mdssbauer effect.

Most interpretations of the data are classical,
i.e,, in terms of hopping motion described approxi-
mately by an Arrhenius expression of the form

W =Wyexp(—e/kT) . (1.1

Clearly this will not describe cases where motion
occurs down to the lowest temperatures known. In
those circumstances one must consider the effects
of tunneling and the quantum corrections this im-
plies. It is these quantum effects which are the
subject of the present paper. We consider them in
several stages. Firstly, we have made classical cal-
culations of the equilibrium geometries and classi-
cal activation energies of self- and impurity inter-
stitials with the use of empirical interatomic poten-
tials. Secondly, we have calculated quantum tun-
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neling rates at 7=0 in the same model, with
minimal extra approximations. The finite tem-
perature rates present a formidable technical prob-
lem and we merely indicate the way they can be
obtained. The outline of the way in which quantal
behavior can be handled is one of the main pur-
posed of our paper. Thirdly, we have calculated
the T =0 tunneling rates using the simple models
usually invoked. These “model” rates, normally
based on one-dimensional potentials as a function
of some reaction coordinate, are expressed in terms
of a classical activation energy and a classical force
constant near equilibrium. The comparison of the
model predictions and the full quantal results are
the second major purpose of this paper.

II. INTERSTITIAL IMPURITY COMPLEXES

A. Models for trapped interstitials

The two techniques which have been especially
important in analyzing the structure of interstitial
impurity pairs have been measurements of
Mossbauer intensity and of internal friction. The
early work on the change in MdGssbauer intensity in
Al:Fe (Refs. 1 and 2) between 15 and 20 K was in-
terpreted at first® in terms of jumps confined to an
octahedral cage of positions.* '

Later measurements of the direction dependence
in single crystals® ruled this out and a cubic cage
was proposed instead. Meanwhile, internal friction
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showed a number of low-energy relaxation peaks in
many different systems.® The relaxation of Al:Fe
seems to behave classically at the experimental fre-
quencies and temperatures.” The internal friction
results on Al:Zn, on the other hand, suggest an oc-
tahedral cage with relaxation via a tunneling pro-
cess.® Tunneling phenomena are also observed in
amorphous metals and in low-temperature creep of
metals.” An interesting feature of the internal fric-
tion is the occurrence of pairs of relaxation peaks
showing an exactly parallel annealing behavior
(frozen-to-free split-interstitial phenomenon).
Several models have been proposed to explain the
experimental results. None of these models ex-
plains the apparent frozen-to-free behavior of the
split interstitial, and one has to assume that two
different defects accidentally anneal in parallel
ways.” We have therefore done the calculations for
three different models.

B. Interatomic potentials

We have used short-range potentials for the in-
teractions between host atoms and between the im-
purity and its neighbors. Since impurities in Al
have been studied most intensively we have
modeled impurity Al systems.

In order to get realistic quantitative values it is
necessary to reproduce the known activation ener-
gies and relaxation values. Most published Al po-
tentials give values too low for the activation ener-
gy of the self-interstitial, and relaxation volumes
are often not even calculated. We have taken for
the host-host interaction, V(R), with R < 1.2a, the
modified Morse potential:

V(R)=Vy+D{exp[ —2a(R —R,)]
—2exp[—a(R —Ry)]}
—C(R —Rxn)*O(Ryn—R), R <1.2a
2.1

where NN stands for nearest neighbor, ¥,=0.0233
eV, Rp=0:71555a=2.89 A for Al, D =0.227 eV,
Ryn=a/V2=2.86 A for Al, a =4.04 A for Al,
C=1200 eV, a=7.6499a ~'=1.89 A~! for Al, and
O(x) is the Heaviside function. This potential was
originally derived for Cu*, though it is known too
to describe interstitials and their conglomerates in
AL'™ Tt also gives reasonable values for the elastic
constants if scaled by the appropriate lattice con-
stant (@ =4.04 A) and mass (m =27) for Al

The impurity-host interactions used the same po-
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FIG. 1. Possible configurations for heavy impurity
interstitials in fcc metals: (a) mixed dumbbell (octahe-
dral cage), (b) cubic cage, and (c) tilted mixed dumbbell
(split-octahedral cage).

tential with the replacement of R by R +8. As §
varies one mimics the change of impurity “size.”*

C. Static calculation

We have calculated equilibrium configurations
and energies at T =0 K for a range of values of §
using the DEVIL code originally developed at
Harwell. For details of the calculation procedure
see, e.g., Ref. 11.

For 6=0, the self-interstitial, one obtains the
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(100) dumbbell as the stable configuration, in ac-
cordance with the experiment. This dumbbell can
migrate by a rotation-translation jump process with
a classical activation energy of E, =120 meV. For
an impurity atom, this jump process does not lead
to long-range migration, but merely to motion in a
cage of equivalent sites surrounding the octahedral
position [see Fig. 1(a)]. With increasing values of
the impurity size 8 the configuration stays essen-
tially the same (mixed {(100) dumbbell) with the
impurity moving closer to the octahedral site, the
cage becoming smaller, and the classical activation
energy E, falling to about 1 meV as 8 approaches
0.03a. The energy surface still shows clearly de-
fined minima separated by saddle points. This
geometry seems to be realized in Al:Zn.® For
8~0.03a the (100) dumbbell becomes unstable,
and the impurity occupies a position displaced by
(€,€,€) from the octhaedral site. The equivalent
impurity sites form a cubic cage [Fig. 1(b)]. This
configuration has been proposed for Al:Fe.® The
energy surface no longer shows clearly defined
minima and saddle points, but has multitude of lo-
cal minima, etc. For 8> 0.05a¢ the impurity sits in
the octahedral site, and there is no longer a cage
motion.

It has been shown that self-interstitials and
(100) mixed dumbbells have low-energy resonant
libration modes.!?> A small perturbation of the po-
tential can make this resonant mode unstable, so
that the (100) mixed dumbbell tilts [Fig. 1(c)].!?
The impurity atom can jump with a jump frequen-
cy v; (E, is typically less than about 10 meV) be-
tween the four sites surrounding the untilted posi-
tion, and with a frequency v, (E, =50 meV typi-
cally) from one ring of four sites to the next one.
Such tilts can be induced, e.g., by an additional
term V,q44 in the host-impurity potential (see Fig.
2):

(R —R,)?

Vaga=A exp e (2.2)

with
A~0.02...0.05 eV,
b~0.02...0.05a ,
Ry~0.6a .

Such a tilted-dumbbell configuration (split-
octahedral cage) is a possible alternative model for
the Al:Fe system.

The octahedral and cubic cages have also been
found for a range of impurity interstitials in Al by

computer simulations using pair potentials derived
from pseudopotential theory.!* Unfortunately,
whilst these calculations are closer to first princi-
ples, they are not yet able to predict geometries
and energies quantitatively. Thus for the self-
interstitial in Al, with the use of such potentials, a
minimal knock-on energy for induced diffusion of
0.15 eV is reported,'® suggesting that the activation
energy for self-diffusion (which should be a factor
of 2 lower) is well below 0.1 eV, instead of the ex-
perimental value of 0.12 eV. Furthermore, for
those situations which are interesting in the context
of tunneling (i.e., where the classical activation en-
ergies and jump distances are sufficiently small),
changes in the cutoff procedure can alter drastical-
ly the geometry for these potentials.

To obtain a reasonable estimate for the tunnel
frequency in a given system, therefore, one has to
correlate as many experimental data as possible to
some potential parameters. This can best be done
with a simple empirical potential, such as (2.1).
Calculations have further shown that, if this is
done, the main feature of the dynamics (such as
resonant modes) do not depend strongly on the
underlying model.*

III. CALCULATION OF TUNNELING RATES
A. Tunneling rates at 0 K: Methods
In the preceding section we discussed the static
properties of interstitials and the way in which
they are modeled. We now turn to their dynamic
behavior. At the absolute zero of temperature,

only a “tunneling” contribution remains, and the

0.8~

0.4~

\/R fa)
-0.2 -

-0.4 L

VI(R} (eV)

FIG. 2. Impurity-host potential for a tilted mixed-
dumbell configuration. Arrow indicates the deviation
from the smooth Morse potential. Parameters:
8=0.005a, 4 =0.02 eV, b =0.02a, Ry=0.61a. Poten-
tial shown corresponds to case 2(c) in Table II.
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appropriate rate must be obtained from a solution
of the Schrodinger equation. Provided the rate is
small, one can write vz, the tunnel frequency be-

tween two sites, in the form

_ 2[Eo ¥y | ) — ¢y | H | ,)]

h
T 1— (g [ 4,2

, (3.1)

in which Eg is (¢, | H | ;) (or equivalently
(¢, | H | ¢,)), and H the Hamiltonian.

1. Initial and final states

It is vital to choose the right states between
which the transitions occur. In this case ¥; and 9,
are ground-state wave functions of multidimen-
sional harmonic oscillators. The oscillators
describe the vibrations about the relaxed initial in-
terstitial configuration () and final configuration
(¢,). The Hamiltonian H contains all the atomic
kinetic energies and the full interaction described
in the static calculations.

It is known that harmonic-oscillator ground-
state wave functions result in an underestimate of
the overlap in one-dimensional calculations. This
will also be true to some extent in the multidimen-
sional case. The error should, however, be less
than in one dimension, since the overlap per mode
will be larger and, therefore, will not depend as
critically on the extreme wings of the wave func-
tions. From Table IV, later in this paper, it can be
seen that the values obtained in an effective one-
dimensional approximation are only weakly affect-
ed by this choice of wave functions. The main
point of the paper is to show the importance of the
lattice coupling on the tunneling and, for this, the
fine details of the wave functions are not impor-
tant.

An important point to note is that specific
atoms change their role between the initial and fi-
nal states. For example, consider a jump from
along the +z direction to along the +y direction
of an impurity interstitial in an octahedral cage.
In the initial state the host atom along +z is part
of a dumbbell: Afterwards, it is merely a host
atom close to an impurity dumbbell. Because of
this change in role of specific atoms, the normal
modes also change in the transition. This change
must be recognized in the calculations, even
though there are symmetry operations (translations
and rotations) which relate the initial and final
states.

It is easily seen, for example, by using continu-
um elasticity, that the important atoms in Avy are
the ones whose displacements change appreciably.
For this reason, we can concentrate on the modes
of a central cluster of atoms. Usually a 22-atom
cluster is used, so that there is always a full set of
host atoms around each dumbbell. Smaller clusters
give too high a resonance frequency; indeed, the
frequency may be used to monitor convergence
with cluster size. In practive we choose the cluster
by evaluating the overlaps between the initial and
final state in the Einstein model for each atom
separately, and by including all those atoms with
overlaps significantly less than unity in the cluster.
The contribution of the other atoms (i.e., those
with overlaps very close to unity) is calculated for
each one separately in the three-dimensional Ein-
stein model.

2. Matrix elements of interatomic potentials

The evaluation of the matrix elements in (3.1) by
direct, multidimensional, numerical integration
would be very time consuming, and would intro-
duce uncontrolled numerical errors. This difficulty
is avoided by approximating V' (R) by Gaussians.
Two methods of approximation were used. In the
piecewise Gaussian fit we chose

Vp(R)=A4;exp( —a;R*) —B;exp(—b;R*)+C; .
(3.2)

The parameters (4;,B;,C;,a;,b;) give an essentially
exact fit over a small range R; <R <R;. The
values of the parameters are therefore different for
different pairs of atoms depending on their average
distance R; <R,, <R;. This approximation can
become poor if there is a large change in distance
between initial and final state. In these cases we
used instead a whole-range Gaussian fit,

V,(R)=A exp(—aR?*) —Bexp(—bR?) . (3.3)

There the agreement is not so good locally, but is
acceptable over a wide range of R. The replace-
ment of V by V,, produces a 10% error in the cal-
culated classical activation energy of the self-
interstitial.

For convenience we replaced the small perturb-
ing potential (2.2), which causes the tilting of the
dumbbell, by a potential fixed in space and acting
on the impurity only:
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TABLE 1. Tunnel splittings for different interstitial configurations. In these expressions
AE is the tunnel splitting for two adjacent positions, ignoring all others, calculated with Eq.

(3.1).

Configuration Symmetry Energy
1. Octahedral cage [Fig. 1(a)] E, Ey+AE
Tu EO
Ay E,—2AE
2. Cubic cage [Fig. 1(b)] Ay Ey +3AE
T, Ey+AE
T, Ey—AE
Ay Ey—3AE
3. Split octahedral, with tilted Longer range: As in
dumbell [Fig. 1(c); there are (1) above, with
two independent types of AE=hv,
tunneling corresponding to
v, (shorter) and to v, (longer), Shorter range: The interstitial
with hvy>>hv,). stays in the same
site but changes tilt
direction, AE=hwv,
B, Eo+2AE
E, E,
A, E,—2AE

Vaa=A[exp(—a®x?)+exp(—a®y?)]. (3.4)

The initial- and final-state configurations were al-
ways recalculated using the Gaussian approxima-
tions, and all values given in the tables refer to this
approximation.

Another ingredient concerns the normal modes,
which can be obtained directly. For the contribu-
tion of the atoms at the outside of the cluster we
have used the Einstein approximation, choosing the
appropriate frequencies from the second derivatives
of the potentials at the sites in question (and in-
cluding here interaction with atoms outside the
cluster).

Before we discuss the results for Avz, we note
three further points. Firstly, we have assumed tun-
neling is only important between adjacent sites.
Thus we ignore transitions within an octahedral
cage from along +z to along —z, for example.
Secondly, if the interstitial can move over N sites, °
the N degenerate levels in the absence of tunneling
are split once tunneling is included. If we obtain a
tunnel splitting Ae for two sites considered by
themselves, the splittings which result are those
shown in Table I. Thirdly, it is convenient to ex-
press the results for Avy in a form which allows us
to relate the full tunneling model to simple one-
dimensional approximations. We shall write

AE =27#A4 exp(—V mgB) (3.5)

and discuss 4 and B. Here A4 is dimensionally a
frequency, and exp(—1/mgB) will be identified
with the overlap (¢, | ¢,) of the initial and final
states.

B. Quantum tunneling at 0 K: Results
1. Dependence on host and impurity mass

In order to interpret the results in terms of for-
mula (3.5), we have varied the host and impurity
masses. First, with both equal (m; =m) we derive
AE for a range of values of this mass. We then
use Eq. (3.5) to derive 4 and B by fitting. To
within 1% or 2 %, this gives the value of B de-
rived from the overlap alone,

(¢1| ) =exp(—V'moB), mi=my. (3.6)

Table II gives the values of 4 and B for a number
of configurations. The configurations are charac-
terized by their geometry, tunneling distance (2d)
and classical activation energy (E,).

If we only change the impurity mass, we can
calculate an effective mass m g from the overlap:

(Y| ¥) =exp(—V'megxB) , (3.7)
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Table II. Tunneling constants and effective masses.

2d B
(a, ie., 4.04 A E, A (atomic mass
Case Configuration for Al (meV)  (THz) units~'/?) X
1(a) Octahedral 0.288 108 : 18.96 3.1
1(b) 0.240 39 306 12.24 2.9
1(c) 0.127 1.3 51 1.91 2.2
1(d) 0.093 <1 29 1.025 2.5
2(a) Split octahedral 0.065 44 26 1.055 0.9
2(b) 0.092 10 32 1.28 1.4
2(c) 0.062 8 19 0.64 1.2
3 Cubic 0.127 3 58 2.37 2.70
(m; +Xm,) comparisons show that 27#id > fiwg >>AE in all
M g == _‘(1-_‘_:)“" ’ 3.8) cases. The values of the resonance frequencies

where X measures the extent to which the host
atoms participate. The values of X shown in Table
II are calculated for my=27 and m; =60. In all
cases the value of X increases with increasing im-
purity mass. For m; =40, X would be typically
5—109% lower. This shift of X can be understood
qualitatively from the frequency shifts with chang-
ing mass. In almost all cases the effective mass
corresponds to the participation of two to three
host atoms in the reaction coordinate. This is the
value expected for resonant libration modes.!® The
low value for the case of the split-octahedral cage
is probably due to the approximation (3.4), where
we replaced part of the impurity-host potential by
a potential fixed in space.

2. Magnitudes of prefactors

The variation of the prefactor 4 with impurity
mass and host mass never exceeded 10%, and in
most cases the change was below the numerical ac-
curacy. We may conclude therefore that Eq. (3.5)
is suitable to parametrize the tunnel splittings for a
large range of geometries and masses. Detailed

range from 1 10" to 2.5 10"? cps. Even though
the resonance modes dominate, the prefactor 4 is
not simply the frequency of the resonance mode, as
one might have expected from some classical
theories.

3. Overlaps of initial and final states

For our perturbation treatment to hold, one
hopes the overlap (¢, | ¥,) will be small. We may
break this into several components:

(i) the overlap Sy associated with the resonant
mode(s),

(ii) the overlap S; associated with the cluster, in-
cluding the resonant mode contribution, and

(iii) the overlap Sp associated with the boundary
atoms.

The total overlap is (¢, | ¢,) =S;Sp (or equivalent-
ly B=B;+Bg). If one hopes to be able to make
the simplest approximations to interstitial dynam-
ics, one needs Sp~1, S; ~Si << 1. Table III

TABLE III. Breakdown of the overlap into its several contributions; m;=m,=27.

Case (¢ | ¢2) St Ss B, By
1(a) 1.7%x10~% 6.5x10~*% 0.03 18.3 11.4
1(b) 2.3x 1072 6.3x1072% 3.7x10~* 10.7 8.9
1(c) 4.7x10% 2.9x10~* 0.15 1.6 1.4
1(d) 4.9x103 1.4x 102 0.33 0.82 0.72
2(a) 4.1x1073 6.6 103 0.63 0.97 0.62
2(b) 1.3%1073 3.1x1073 0.41 1.11 1.05
2(c) 3.5%102 5.3%x 102 0.66 0.56 0.44
3 4.4%x10- 2.6Xx1073 0.17 2.0 1.8
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shows S; to be small, as desired, with S normally
in the range 0.1—1.

The contribution from the resonance modes
gives an effective value of B as

Br=3, -l—wRdlzg, m;=m, (3.9)
< #
where dp is the mode half-jump distance. If the
eigenvector of the mode R is €y, and if the atomic

displacements in the transition are 2d, then d R 1S
defined by

di=|deg|?. (3.10)

In Table III the effective values of B; are com-
pared with the ones calculated from the resonant
modes alone. The results confirm that the
resonant modes dominate the behavior, though oth-
er motion cannot be ignored. These other contri-
butions are especially important in those cases
where the classical activation energies are high and
the tunneling distances large.

1V. SIMPLE APPROXIMATIONS
FOR TUNNELING RATES OF T'=0

The full atomistic calculations of the tunneling
frequencies involve substantial amounts of work.
It is therefore appropriate to see if one can obtain
reasonable estimates merely from the much simpler
calculations of the classical activation energy and
frequency of the reaction coordinate. In this sec-
tion therefore we look at some of the simple
models which have been used to estimate tunneling
rates at 7=0. Such models are derived from sim-
ple one-dimensional potentials either by an exact
solution, or by perturbation-theory equation (3.1)
or by WKB theory.!’

In all formulas the critical parameter (apart
from numerical constants varying from case to
case) is o, the ratio of the classical activation ener-
gy to the vibration energy:

oc=mawd?*/# 4.1)

with d the half-jump distance and © defined by the
potential-energy surface near the initial (or final)
site. All the results given here assume o >>1, and
that o is obtained from atomistic calculations of
classical activation and phonon energies.

Two different potential shapes are considered
mainly in the literature: parabolic potential wells
and a sinusoidal potential.

(i) parabolic potential wells:

%mcoz(x —d?, x>0

Vix)= (4.2)

%mwz(x +d)?, x<O0.

By expansions of the exact solution one obtains'®

AE =fir—2=Vge =" =fioo]. 12840 %exp(—0) .
Vo

(4.3)

The same result is also obtained by perturbation-
theory equation (3.1). Apart from a small numeri-
cal factor, the result is also reproduced with the
use of the approximate WKB formula of Landau
and Lifshitz!”:

1/2
Ae= | & ﬁw%\/}e“"
=71.04960' %exp( — o) . (4.4)

(ii) sinusoidal potential:

V(x)=5E, |14cos | Zx
232
=ma)2d 1+4cos | —x (4.5)
m

The exact solution can be given in terms of
Mathieu functions. In the limit o <<1 an expan-
sion of their characteristic values!® gives?

AE =#w(2 /7)o exp[ — (8 /7%)0]
~#0.35920"%exp( —0.810600) . (4.6)

In first-order perturbation theory one obtains the
slightly different form

o

AE =%w

oe”

4
1——
772
~#iw0.59470 exp(—0o) . 4.7

In WKB theory!” one gets the result (4.6), apart
from a factor 1/V/7m~0.5642. The asymptotic
solution to the Mathieu equation given in Morse
and Feshbach!? gives the result (4.6) instead of
(4.5).

All models have the exponential dependence on
o in common and therefore depend exponentially
on V'm. The prefactor has at most a weak depen-
dence on m. One has to remember that terms like
#ico ~m ~!/? have been omitted and must be han-
dled separately. There is quite a variance in the
numerical factors.
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TABLE IV. Comparison of different approximations.

Multidimensional cluster
Perturbation theory (3.1)

Perturbation theory (4.7)

Sine potential in one dimension
Expansion (4.6)

Case vr vr vr
B (THz) B (THz) B (THz)
1(a) 18.96 13.65 1x10=% 11.06 6x10~%
1(b) 12.24 7x 10~ 5.78 2x 10712 4.69 gx 101
1(0) 1.91 2x1073 0.59 4x1072 048  2.6Xx107?
1(d) 1.025 1x1072 <0.38 9% 1072 <0.31  59%x107?
2(a) 1.055 1x107! 1.32 3.3x1072 1.06  29x107?
2(b) 1.28 41072 0.99 4.1x1072 0.80 2.9% 1072
2(c) 0.64 7x10~! 0.57 2.9%107! 0.46 1.8x 107!
3 2.37 3x10~* 0.97 1.4 1072 0.78 1.6 1072
In Table IV we compare the values obtained for to Arrhenius-type behavior of the diffusion con-
the exponential factor B equation (3.5) and for the stant. Much, though not all, of the formalism for
tunnel frequency vy (m; =my=27) for the two these transitions can be taken over from Flynn and
one-dimensional approximations (4.5) and (4.6) to Stoneham.??
the multidimensional cluster result. As activation The diffusion rate can be expressed in terms of
energy we use the values of Table III; the tunnel nonradiative transition probabilities of the form
distance d in the one-dimensional approximations 2
we replace by an effective tunnel distance dg: wppr(ll')='h— | {pl |H—Ey |p'l'} | *8(Ey —E,y) .
deffId\’ (1+X) ) (48) (51)

where d and X are given in Table II also. This
corresponds to taking an effective mass.

One can see from Table IV that the one-dimen-
sional values agree quite well with the cluster
values. The complete failure for the cubic cage
(case 3) occurs because the energy surface bears no
resemblance to the assumed sine form. The same
is true for the octahedral cage near its instability
[case 1(d)]. We conclude that the one-dimensional
formulas can be used to extrapolate the cluster
values to different values of E,, d, and m as long
as one is not too near to an instability.

V. EXTENSION TO T+#0 K

In this section we merely outline how to proceed
from our present results to those at 7540. At
elevated temperatures there will still be tunneling
transitions between equivalent states 1; and 1,.
These can be calculated from Eq. (3.1) inserting ex-
cited states and thermal occupation numbers for
them. With increasing temperature these coherent
tunneling transitions will rapidly lose in impor-
tance compared with incoherent transitions, i.e.,
transitions where ¥; and 9, are nonequivalent
states of the whole crystal. In the limit of very
high temperatures these latter transitions give rise

Here H is the full Hamiltonian, E,, is the expecta-
tion value,

Eplz(p”Hlpl) ’

and the 8(x) function ensures energy conservation.
We have denoted by p,p’ the initial and final con-
figuration and by /,I’ the occupation numbers of
the eigenstates. The transition probability of in-
terest is for neighboring interstitial sites p,p’, and
is thermally averaged over the initial-state variables
! and summed over the final-state variables /’,

W’;p =E (wpp’(l,l’)>l M
Iz

(5.2)

(5.3)

The coherent terms /=I' have to be omitted from
the above formulas. The matrix elements in (5.1)
can be calculated for a cluster of atoms with the
methods used in the T=0 K case. The high occu-
pation numbers associated with low-frequency res-
onance modes cause some difficulty, but this can
be overcome by use of recursion relations and com-
puter algorithms for analytical differentiation.

An important point concerns energy conserva-
tion. The 8 function of (5.1) is appropriate when
one treats the whole crystal in detail. But in prac-
tice one treats only a small cluster in detail the
remainder being treated very approximately. Ener-
gy transfer to and from this remainder must be al-
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lowed for. This problem can be solved similarly to
Flynn and Stoneham.”> We make the assumption
that the rest of the lattice is coupled linearly to the
cluster of atoms treated in detail. This assumption
is much weaker than the usual one assuming a
linear coupling of the whole lattice to the impurity
site. Linear coupling implies that the modes of the
rest of the lattice are not changed in the transition
p—p’, though they will be displaced. We thus ob-
tain the following approximation for (5.1):

wp )= | (pl | H By | p'T) |?
X3, [€ap(r) | a,(r')), |2

XS(Ey —Eyy+E,—E,) . (54

p,p’l,1' now denote the states of the cluster only
whereas 7,7’ denote the states of the rest of the lat-
tice. The & function is thus replaced by a shape
function. Numerous approximations are available
in the literature.?®

VI. CONCLUSION

We have presented a method to calculate the
tunnel behavior of interstitials in metals at 7T=0 K

in first-order perturbation theory. The full cou-
pling of the tunneling particle to the lattice is tak-
en into account. The tunneling process for heavy
interstitials is dominated by a small number of
resonant vibration modes, so that simpler methods
can be used for extrapolation. In the case of sim-
ply shaped energy surfaces, reasonable estimates
for the tunnel frequencies can be gained from the
knowledge of the resonant modes or the classical
activation energies and the tunneling geometries.
The quantitative values given suggest that tunnel-
ing should be observable in suitable interstitial im-
purity systems. Using the experimental values for
Al:Fe (E; ~15 meV, d ~0.06a),>7 the estimated
tunnel frequency would be v, =10*—10% Hz, de-
pending on the actual geometry and the details of
the potential surface. The method presented can
be generalized to deal with the effects at 7=40 K.
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