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We present a perturbative theory for the thermodynamic properties of a mixed-valent

impurity in a metal. The impurity has two ionic configurations f" ' and f"
(nondegenerate and nq-fold degenerate, respectively) with energies ep and (ef+p), the

difference (ef eo)—being small. They mix via hybridization with conduction electrons

(matrix element Vkf). We show that for D & (ef—ep) & —nqA ln{D/nqA) a Brillouin-

Wigner perturbation theory is convergent. Here 6=
~

Vkf
~

p(p) is the virtual level width

and 2D is the conduction-electron bandwidth, p(p) being the density of states at the

Fermi level. The expansion parameter is the inverse of the orbital degeneracy nq. Since

this is large {6to 8), the expansion is quite convergent, and the lowest-order theory is

accurate. This is checked by calculation of higher-order terms for various values of
(ef EQ). In the above range of (ef—eo) the f-electron number is seen to change from

(n —1) to about (n —1)+0.80, so that there is a perturbative theory for a strongly-

mixed-valent impurity. Hybridization stabilizes the singlet f" ' relative to f", the

maximum stabilization energy (level shift) being approximately nod 1n(D!n~h) for Ep=Ef.
This singlet ground state has been obtained variationally by Varma and Yafet, and from

renormalization-group arguments by Haldane, and by Krishnamurthy, Wilkins, and

Wilson; the Brillouin-Wigner perturbation theory has been used earlier by Bringer and

Lustfeld. However, the recognition of (1/n~) as an expansion parameter and the

consequent simplification of the theory are new. Physical properties such as va1ence,

susceptibility, and specific heat are calculated as a function of (k&T/6) for various

values of {ef—ep). A simple way of including the effect of alloying pressure is described.

Many characteristic properties of metallic dilute and concentrated mixed-valent systems,

such as the temperature dependence of valence, the positive T slope of the low-

temperature susceptibility P(T), the broad maximum in it, the relation between P(0) and

the Curie-gneiss temperature of high-temperature susceptibility, are qualitatively

explained and quantitatively characterized for the first time. The results are directly

applicable to dilute and nondilute alloys. They can also be applied to concentrated

perfect lattice systems except at the 1owest temperatures where relatively small intersite

coupling leads to a uniform Fermi-liquid ground state. The Kondo limit, i.e., the nearly-

f"-valent singlet which occurs for (ef—e, ) && —nqA, is not described by the present

theory.

I. INTRODUCTION AND SUMMARY

In the last decade or so, rare-earth-element ions
of a large number of lanthanide metals, intermetal-
lics, alloys, and compounds have been found to ex-
ist in a non-integral- (or mixed-) valent state. Nor-
mally, because of the smallness of the 4f orbital
and its weak overlap with conduction-band states,
the 4f ion retains its atomic identity; it is in its
Hund's-rule, integral-valent ground state. Howev-

er, in mixed-valent systems, two configurations,
namely 4f" (energy eI) and 4f" ' (energy eo) plus
a conduction electron at the Fermi level (energy p)

are energetically close. The difference (ef —eo —p)
is small, and the ion appears to fluctuate between
two atomic configurations. Such systems exhibit a
range of characteristic properties, such as absence
of long-range magnetic order, a broad maximum in
the magnetic susceptibility, heavy Fermi-liquid
behavior at low temperatures, extreme sensitivity
of electrical properties to disorder, etc., which are
not well understood. ' Theoretically the problem
is difficult because of the need to describe simul-
taneously localized, strongly correlated f states, ex-
tended conduction-electron states, and transitions
between them.
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In this paper, we present a first-principles theory
for the mixed-valent impurity, i.e., for a single
non-integral-valent ion in a metal. The impurity
problem is of great importance in this field for
several reasons. First, there is direct experimental
evidence that many mixed-valent alloys behave like
dense impurity systems. For example, the magnet-
ic susceptibility of Ybi „Y„CuA1 (Ref. 5) is pro-
portional to the yttrium concentration x. The
resistivity of CePd3 is very sensitive to disorder,
but the final resistivity of slightly disordered
CePd3 is the same in size and temperature depen-.

dence irrespective of the source of disorder, e.g.,
nonstoichiometry or metal-ion substitution. This
suggests that any kind of disorder breaks up elec-
tronic coherence, and if sufficient returns one to
the dense impurity limit. Second, a number of di-
lute mixed-valent alloys, e.g., Eu in ScA12, Ce in
La„Thi „, and Ce in Th, have been experimen-
tally studied. Their physical properties are found
to be quite similar to those of concentrated sys-
tems' in many respects. Third, extension of
methods used in our work to two impurities and to
the lattice shows that in metallic strongly-mixed-
valent systems, intersite coupling energies are
smaller than single-site energies. Therefore their
thermodynamics is accurately described by the in-

dependent impurity limit. This idea has been used

by one of us (Ramakrishnan) to discuss quantita-
tively" the mixed-valence phase transition in Ce
and its alloys. To summarize, the independent im-

purity limit illuminates a number of properties of
dense mixed-valent systems and is of direct experi-
mental relevance.

We describe here a theory where the two ionic
configurations are treated exactly and the admix-
ture effect is treated perturbatively. The small ad-
mixture is characterized by a matrix element Vk~
for transition from f" to f" ' plus a conduction
electron in the state k. The appropriate formalism
(a many-body version of Brillouin-Wigner pertur-
bation theory) was developed by Keiter and Kim-
ball, ' and was applied to the present problem by
Bringer and Lustfeld' who obtained many of the
results described here. It is not clear, however,
that perturbation theory will work for mixed-valent
systems, since even a small hybridization has a
large effect when the configurations are close in
energy, i.e., when Vj,j is not much less than

&o P I

=
I &/ ——&o

I

—=
I &/ I

~

We show here that there is a small expansion
parameter in the mixed-valence regime. It is

(1/ni ) where nx is the orbital degeneracy of one
of the configurations (f" for concreteness; we as-
sume f" ' to be nondegenerate). This expansion
parameter is essentially a phase space factor; inter-
mediate states involving f" are ni„ times as
numerous as those involving f" '. If, in addition,
they have similar energies (as happens when

~ e/
~

=0), the resulting corrections are in the ratio
n@.1. Since for the lanthanides rare-earth ni varies
from 6 to 8, this large-n limit is realistic.

The theoretical formalism is outlined in Sec. II.
The partition function has rigorously the same
form as iri the absence of hybridization, but with
the "bare" energy levels ey and eo replaced by real
renormalized energy levels E~ and Eo. The
Brillouin-Wigner series for these has a diagram-
matic representation. E~ and Eo depend on tem-
perature T and on model parameters, namely

nx, e/, virtual level width b [= ~ Vq/ ~
p(p)], and

conduction-electron bandwidth 2D. In the lowest
order (Sec. III) and for T=O, Eo &E/ when

Ef & noh —ln(D/ni b, ) = e„ that i—s, the ground
state is a singlet. ' ' The stabilization energy has
the maximum value of nearly e, for e/=0 (where

Ef is n i„ times less), and decreases smoothly as e/
decreases. The higher-order correction for Eo (Sec.
IV) is found to be of relative order [ni ln(D/

1

ni)] ' = » at T=O and e/&0. The correction
increases smoothly as e~ decreases, and for
E/ —e„ is about 25%. Calculation of valence
(Sec. VA) shows that (n/) changes in the regime
D &Ef & —e, from (n —1) to (n —1)+0.8, and we
therefore conclude that much of the mixed-valent
regime is accurately described by lowest-order
Brillouin-Wigner perturbation theory.

Renormalization-group' (RNG) and scaling' '
analyses of the asymmetric Anderson model
(nx=2) suggest two regimes: For e/& 61 (Dn/—
6) the magnetic configuration f" is disfavored, the
moment never forms, the relevant fixed point is
qualitatively similar to f" ', and is described as
empty orbital (f for n =1)' or mixed valent. '"
For ZJ & —b, ln(D/5) the magnetic configuration
is favored, the valence is high and nearly integral,
and there is a weak residual exchange or Kondo
coupling involving only the states of the f" config-
uration. This leads to a Kondo singlet ground
state. In the former regime, RNG analysis be-

comes difficult with nonuniversal behavior, mar-
ginal operators, eic., whereas in the latter regime it
is very successful. The perturbation theory dis-
cussed here is simple and accurate for e~ & —e,
but does not, at least in low order, describe the
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Kondo regime. However, it is in the former re-

gime that there is a large range of valence (approx-
imately 0 to 0.8) rather than in the latter (approxi-
mately 0.8 to 1.0). For e, & ef & —e„ the most im-

portant effect is configurational admixture or fluc-
tuation, whereas for ef (—e„ the configuration is
essentially f", and spin fluctuations within this
configuration are basic. The former is directly due
to hybridization Vkf, whereas the Kondo-spin ex-

change is an effect of second order in Vi,f. In both
regimes, however, basic model parameters scale
logarithmically with bandwidth D, so that a scal-
ing theory is possible. In the mixed-valence regime
the parameter is the effective f-level energy' and
in the Kondo regime it is the effective exchange
coupling J.

High orbital degeneracy is relevant in several

ways. It increases the singlet stabilization energy
ni-fold, and extends the mixed-valent regime by
the same factor. Over this range, a perturbative
(Brillouin-Wigner) theory is adequate, with (I/ni )

as the expansion parameter. We discuss later (Sec.
V) the fact that in this local Fermi liquid, self-

interaction effects are small, of relative order

(1/ni ) in both mixed-valent and Kondo regimes.
Anderson has stressed the significance of high or-

bital degeneracy and has recently discussed the
ways in which (1/ni ) appears as an expansion

parameter in the mixed-valence probletn' for both
the impurity and the lattice.

The single mixed-valent impurity is a good start-

ing point for some properties of the lattice. How-

ever, the perfect-lattice ground state is not an in-

coherent superposition of impurity ground states.
The qualitatively new effects of intersite coherence,
such as a semiconducting ground state, resistivity
of the pure metallic system vanishing as T~0,
and development of a new, perhaps small energy or
temperature scale for the Fermi liquid, are not dis-

cussed here.
We use here the lowest-order Brillouin-Wigner

perturbation theory to calculate physical properties

of the mixed-valent impurity as a function of Z~,

ni, b„D, and temperature T (Sec V). The .valence

n„, specific heat C„(T},and susceptibility X(T) are
discussed, and calculated results are presented for
typical values of ( ef /5) and (5/k~T). (The re-

sults depend only weakly on D, and in practice n~
does not vary much, being 6 for Ce and Sm, and 8

for Eu and Yb.) In comparisons with experiment,
electrochemical or alloying pressure effects,
describable as variations of ef with n„, should be
included. We show how this can be done simply.

One should now be able to analyze experimental
results in terms of meaningful microscopic param-

eters, check their consistency, and to make sys-

tematic predictions. Many general features of
mixed-valent alloys, e.g., the ratio between X(0)
and the slope of C„(T) at low temperatures, ' ' the
ubiquitous positive T slope in X( T}near T=0,
and the maximum in it are obtained and explained.
In the concluding section (Sec. VI), we discuss

some related questions, e.g., Fermi-liquid theory
and phenomenological two-level models for the
mixed-valent impurity.

II. PERTURBATION THEORY

A. The Hamiltonian

The two rare-earth-ion configurations can be
represented as

l
A, ) and

l
0). The former denotes

the ni states of f", which are degenerate with en-

ergy ef. A magnetic field can lift the degeneracy,
in which case the energy levels will be denoted as
ei. The latter, f" ', is nondegenerate, with energy
E'p which can be set at zero without loss of general-

ity since only (ef ep) is re—levant. The Hamiltoni-

an, written in terms of projection operators2' in the
basis

I i), 10), is

(H I »= g (—ef V)X4+—AX'oo

+ g (Ek —P)&k Ok

k'R i+ g(I »e 'X"ak.+H ')
A,,k

The first two terms describe the ion at site i; X'ii
projects it on to the state

l
A, ) and XIIo to the state

l
0). The third term describes .conduction elec-

trons in eigenstates k with energy ok. The last is
a hybridization term whereby the ionic configura-
tion changes by emission or absorption of a con-

duction electron. Vk~ represents the matrix ele-

ment schematically; a proper description with ex-

plicit regard for Hund's-rule correlation, symmetry
conservation, etc., is given by Hirst and by
Muller-Hartmann. The Hamiltonian (1) is obvi-

ously related to the Anderson Hamiltonian. The
local orbital is n-fold instead of twofold degenerate
and the on-site repulsion U= oo, i.e., other config-
urations such as f"+' and f" are assumed to
have such high energies compared to ef or eo that
they can be ignored. In lanthanides, experimental-

ly U & S eV so that the above configurations are
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quite far away in energy. The idea is to perform
perturbation theory in configurational change, i.e.,
in Vk~. This involves statistical averages over
products of projection operators X,b which are nei-

ther fermions nor bosons, since their (anti-) com-
mutators are projection operators and not c num-

bers. ' Consequently, there is no Wick's theorem,
i.e., high-order products of such operators cannot
be split up into products of uncorrelated pairs.
The sequence of configurational changes is impor-
tant. One thus does not have a Feynman diagram-
matic theory, but a theory where processes are
represented by time-ordered diagrams (Goldstone
diagrams). The formalism has been developed by
Keiter and Kimball, ' and by Bringer and Lust-
feld' based on the general theory due to Balian
and de Dominicis. " %e present here the results.

The grand partition function can be written in a
quasiparticle form

Z e
—PQ Tr[e P(H PN'i]— Z —y e

t i

where Z, is the free-conduction-electron partition
function, i denotes the states I0) and

I
A, ), and

the real statistical quasiparticle energies E; are
given by the Brillouin-signer equation

E, =~, +r, (E, ),
where I";(E;)is the energy shift due to the pertur-
bation, and can be calculated as follows: Draw di-

agrams with initial and final states i and urithout

only i in the intermediate state. The state
I

A, ) is
denoted by a wavy line and

I
0) by a dotted line;

the basic interaction vertex Vk~ is shown in Fig. 1

where the conduction electron is absorbed [Fig.
l(a)] or emitted [Fig. 1(b)]. Starting fmm

I

A, ) or

I
0), the only sequence of configurational changes

allowed is flip-flops between them. Thus a general

(0) (b)

Io&I

lo&

lo& '
I

I

FIG. 2. Lowest-order Brillouin-signer terms for the

energy shifts of the states (a)
I
0) aud (b)

I
i(, ).

f» I
I'kk I'

Ec——ac+ g Ec (eI ek—) '—
fk+

I
I'k»

I

'
Ef ~f+ X Ef—(60+»k )

(4b)

The next-order correction to Eo is shown in Fig. 3

(a)
I

lo&I

(c)

term consists of this sequence, and of band-elec-
tron lines joined in a particular way. The latter are
represented by lines directed upwards [particles, en-

ergy ek, occupation factor (1—fk )] or downwards
(holes, energy —ek, occupation factor f» ). An in-

termediate state m, corresponding to the interval
between two successive interactions, has an energy
E obtained by adding the f-configuration energy
and electron energies. %ith this state, we associate
an energy denominator (E; E~ ). For—example,
we show in Fig. 2 the lowest-order Brillouin-
%'igner corrections; these correspond to the equa-
tions

lo&

IO&

I

lo
I

FIG. 1. Elementary hybridization vertices. In (a), an
initial nondegeuerate f" ' configuration labeled

I
0) de-

cays into a degenerate f" configuration labeled
I

A, ) and
a conduction-band hole labeled k (dotted, wavy, and
straight lines, respectively). (b) shows process
f"~f" '+ conduction electron. Vertex has an ampli-
tude Vkq.

FIG. 3. Some higher-order energy-shift diagrams. (a)
shows the only diagram corresponding to energy shift of
the state

I
0) which is of fourth order in V»i. In (b),

the double wavy line stands for the dressed inter-
mediate-state (

I
lI, ) ) propagator which results on sum-

ming an infinite repeated sequence of diagrams for it, of
which (a) is the first term. In (c) the double-dotted line
is similarly the dressed

I
0)-state propagator.
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where the intermediate-state
~

A, ) hybridizes with

The lowest-order Brillouin-Wigner result [Eq.
(4)] can be obtained in other ways. The variational
ground-state approximation used by Varma and
Yafet's for ni =2 is equivalent to Eq. (4a) at T=0.
The diagrammatic method shows how the
Brillouin-Wigner expression results from an
infinite-order resummation of the Rayleigh-
Schrodinger expansion in powers of Vk~ and
represents it in a compact, physical way. It is easy
to look at higher-order terms (for an impurity as
well as for the lattice) and to examine the possibili-

ty of a convergent theory. The many-body tech-
nique is the only one that can be extended to calcu-
late response functions"' ' and to the lattice. '

In the Brillouin-%igner theory, while nominally
the expansion is in powers of Vki, the actual ex-
pansion parameter is not known a priori, since in
Eq. (7a) for the energy shift Eo, it enters the
right-hand side also as an intermediate-state ener-

gy, and thus is not given explicitly. [The
Rayleigh-Schrodinger expansion gives a shift
—nqhln(D/~ef

~
) at T=O for Eo which diverges

at
~ ef

~

=0. Thus the expansion parameter is
known, but diverges in the interesting regime. ] We
find the expansion parameter in Sec. IV by
evaluating higher-order corrections to Eo and Ef.
We first discuss the lowest-order result Eq. (4) in
the next section.

P(x) —[1n(2D/2mk&T) —,—ln(1+4u )

+(1+6u ) '], (7)

where u =(x/2mksT). The formula (7) is exact in
the two limits

~

u
~

&&1 and
~

u
~

&&1 (low and
high temperatures, respectively), and gives the lead-
ing low-temperature correction (—„u ) exactly,
and the high-temperature correction quite closely
[the exact value is —1.963+8.4u, whereas the
value from Eq. (7) is —1.693+8u ]. It is accurate
to within a few percent throughout.

B. Ground state

The zero-temperature limit of Eqs. (5) is simple:

D
Eo ——eo —n~ ln

I
Eo —&f I

(8b)

D
Eo ——eo —n~ ln (9a)

and

D
Ef——ef —ln (9b)

For large energy differences between configurations
(

~ ef
~

&&1), the results Eq. (8) reduce to straight
perturbation theory, i.e.,

III. LO%EST-ORDER RESULTS

A. General form

The lowest-order expressions (4) are easily in-

tegrated, e.g., for a band of width 2D and density
of states (per spin) p(p). The result is

The ground state is a singlet for ef »1 and is a
magnetic multiplet for ef »1. For—ef Eo=O, ——
i.e., when the two configurations are degenerate,
hybridization lowers the energy of the singlet n~
times that of the multiplet. Further, to leading
logarithmic order,

&o =&0+rii.d0 &f»—
Eg ef +P( Ef—eo)——,

(Sa)

(Sb)

D
Eo ———n~ ln

Ply
(10)

where energies are in units of b, =
~

Vki
~

p(p) and

D 2m.kg T
t))(x)= —ln + ln

1 i[x/+ "~ 2+2.... (6)

g(y) being the digamma function. Equations (Sa)
and (Sb) are to be solved for Eo and Ef, and the
free energy obtained using Eq. (2). Because Eq. (5)
is basic, we give here a simple but accurate inter-
polation formula for P(x), namely

so that hybridization stabilizes the singlet by an
energy much larger than 6, the virtual level width.
The factor n~ is due to the number of degenerate
f" configurations with which f" ' can admix, and
the logarithm is due to the larger effect of lower-
energy hole excitations. As mentioned in the In-
troduction, ni ln(D/ni )-20 typically As ef de-.

creases from zero, Eo and Ef approach each other,
and at approximately

ef = nx 1n(D/ni ) =- —e,—,

they are equal. For ef & —e„ the ground state is a



26 THEORY OF A MIXED-VALENT IMPURITY 1803

magnetic multiplet and has energy Ef. The
singlet-multiplet crossover, which occurs at ef —0
in the absence of hybridization, is pushed down to
—E'~ in this order. Fig. 4 shows the ground-state
energy as a function of ef. The dotted line is the
result in the absence of hybridization; the ground
state is f" ' with energy 0 for Ff & 0 and is f"
with energy ef for ef &0. The full line is the
lowest-order Brillouin-Wigner result, the crossover
point e, being shown by a dot.

C. High temperature

As temperature increases, thermal smearing
reduces the effect of states close to the Fermi level.
At sufficiently high temperatures, the low-energy
cutoff is ks T rather than the renormalized level
shift. The quasiparticle energies are

2
D EO ~f

Eo———n~ ln —1.96+8.4
2~kg T 2n.kg T

(1 la)

(1 lb)

—1.96+8.4 Ef

(1 lc)

(1 ld)

The level shifts are weakly temperature depen-
dent. The high-temperature form [Eqs. (11b) and
(1 ld)j is attained at To &

~ ef ~
/2nkz .if the two

configurations are far apart in energy, i.e., when

~
ef

~

&&e,. Thermal degeneracy, namely popula-
tion in the ratio 1:n~, requires much higher tem-
peratures

kgb & ~Eo(Ts) Ef—(T~) ~,

namely k~ Tg &
~ ef

~

. In the interesting mixed-
valence regime

~
ef

~

&e„To varies only slowly
with e~, and the more stringent of the constraints
(1 lb) and (1 ld) leads to kjr Tp & 3 in the entire
range —15 &Zf & 10 for D =200, n~ =6. ks To is
thus a factor of 5 to 10 less than the ground-state
energy lowering

~

Eo( T =0)—ef
~

due to hybridi-
zation. The thermal degeneracy temperature T~ is
somewhat higher but is still significantly less than

~
Eo(T =0) ef ~

. —For example, at ef 0, ——
ksTo ——2.54, k&T& ——10.0, while

~
Eo(0)

~

=15.6,
and at ef ———10, k&TO ——1.4, k&T~ ——5.5 with

~

Eo(0)—Ef
~

=8.8. Thus in the mixed-valence re-

gime, even the thermal degeneracy temperature
(times ks) is substantially lower than the ground-
state energy. This has the obvious consequence
that the temperature scale over which the suscepti-
bility, for example, changes, is smaller than that
corresponding to the ground-state energy (see also
Sec. V).

As temperature decreases, one smoothly passes
over to the zero-temperature limit Eq. (8). The re-
normalized levels Eo and Ef are temperature
dependent and can cross. For example, for

(E'f (0, at high temperatures Ef while at low
temperatures Eo lies below Ef. The effect of hy-
bridization builds up as temperature is lowered,
and pushes Eo down.

-10 D. Kondo effect

—20

-30

10-30 -20 —10 0
f LEVEL POSITlON Eg

FIG. 4. Ground-state energy E~ plotted vs the f-level
position ey, both in units of hybridization width 5, for
bandwidth D =2006, and degeneracy factor n&=6 Eg
in the absence of hybridization, in first-order Brillouin-
%'igner perturbation theory and with second-order
theory, are as labeled. Full circle is the monmagnetic-
magnetic transition point in first-order theory.

The lowest-order approximation leads to a mag-
netic ground state for ef & —e, . This is qualita-
tively incorrect since the ground state is a sing-
let. ' ' In this Kondo regime, at very high tem-
peratures kz T &

~ Ef ~, the configurations are de-
generate; at lo~er temperatures, a local moment
forms since the renormalized f" configuration lies
lower. This is the temperature regime described
well by the above approximation. At exponentially
lower temperatures,

transitions within the f"manifold and associated
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conduction-electron scattering lead smoothly to a
singlet. This effect is absent in low-order
Brillouin-Wigner perturbation theory; perhaps
infinite-order resummation is needed.

IV. HIGHER-ORDER PERTURBATION
THEORY

As mentioned earlier, one does not a priori know
the expansion parameter in a Brillouin-Wigner per-

turbation theory, especially when the initial states
are quasidegenerate. We therefore calculate Ep
and Ef (at T =0 for concreteness) to next order.
The fourth-order term for Eo is shown in Fig. 3(a),
and describes the effect of hybridization on the
intermediate-state

l
A, ). Such a process occuring

repeatedly shifts the intermediate-state energy, so
that Ep, correct to the first two nonvanishing or-
ders, is given by'

D dx
Ep ——ep —ng

Eo+—
I of —ln[D/( —Eo+x)]]+x

(12a)

Ef——e)—
Ef +x—+ [eo—ni ln[D/( Ef +pi—„+x)]I

(12b)

The logarithmic term in the energy denominator
describes the higher-order shift. Vertex corrections
appear in sixth order.

We have numerically calculated Ep and Ef using
Eq. (12) for various values of ef with ni„=6 and
D =200 (in units of 6). The results are shown in
Fig. 4. The ground-state energy for T(f ——0 differs
by 3% from the lowest-order estimate. An analy-
tical estimate is obtained by expanding the energy
denominator in Eq. (12a), and retaining only the
first correction to Eq. (Sa). The error is seen to be
of relative order (1./

l
Eo Ff l

) where —Eo is the
lowest-order Brillouin-Wigner result. At e~——0,
this is

I

the intermediate configurational states [Eq. (12)] by
hybridization effects.

The results of this section show that higher-
order approximations such as Eq. (12) used by
Bringer and Lustfeld' are of limited utility for
calculating properties of mixed-valent systems,
since if the higher-order term is important, this
theory is poorly convergent.

V. PHYSICAL PROPERTIES
OF THE MIXED-VALENT IMPURITY:

VALENCE, SPECIFIC HEAT,
AND SUSCEPTIBILITY

D
n~ln =0.04 .

We now discuss the physical properties of the
mixed-valent impurity in the lowest-order approxi-
mation.

As ef decreases, the correction increases. The
lowest-order stabilization energy

l
Eo Zf is in-

error by 30% at ef=—e, and by 100% at
ef- —4n~. The correction ss always of one sign;
namely the higher-order Ep is lower than the
lowest-order result. This can be understood in
variational terms. The ground-state wave function
leading to Eq. (Sa) for Eo now has, in addition to
the Varma-Yafet term, ' a term with an electron-
hole pair, i.e., a term of ihe type

Xckk'AA'
l
0~

kk'

This improves the ground-state energy. We also
note that the multiplet-singlet crossover energy is
pushed to lower values of Zf. This is an expected
level-repulsion effect due to the pushing apart of

The occupation probability of either configura-
tion is a measure of the valence. We define it as
the probability that f" is occupied, i.e., the valence
1s

(13a)

Obviously n„= 1 if the configuration is pure f"
and n„=0 if it is pure f" '. Now, quite generally,

Here I'p and I'~ are the renormalized level-
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occupation probabilities, i.e., 1.0

Pp [e—— '/(e '+nie f}] p94(15a}
=T=

and
0.8

Pi [e—— f/(e '+ni„e I)] .
—pE —pEO —pE

(15b)
0.7

Ep and Ey are given by Eqs. (5a) and (Sb), so that
the derivatives in Eq. (14) are

0.6
UJ
O
Z
4J

0.5

dEO =1—[1—ni P'(x)]
x ={Eo—ef )

(16a)
0.4

=[1—P'(x)] (16b) 0.5x =Ef—eo

The level-shift integral P(x) is given by Eq. (6) and

from Eq. (7) P'(x) is approximately
0.2

01 I I I I

-24 -18 -12 -6 0 6
f- LEVEL POSITION Eg

I

12P'(x) =— [(1+4u ) '+3(1+6u2) 2],
2m' T

FIG. 5. Valence at zero temperature as a function of
Zf (in units of 6). Full curve is the first-order result

and the dotted curve is the valence calculated from
second-order perturbation theory.

(17}

nondegenerate to degenerate always characterizes
most strongly-mixed-valence systems, e.g., a-Ce,
metallic SmS, and Sm86. If the two ionic configu-
rations are degenerate (on an energy scale ni b,), so
that Eq. (19) holds, a change of (D/b ) by a factor
of 4 (say from 200 to 50) changes n„ from 0.28 to
0.38 (for ni 6)——

We see (Fig. 6) that the decrease of valence with
temperature is generally quite large; for example at
ef =0, it decreases from 0.86 (=—,) at high tem-

perature (T = 00 } to 0.28 at zero temperature.
Changes of this (and larger) size have been seen in
Eu systems, e.g., dilute Eu in ScA12, as well as the
intermetallics EuCu2Si2 (Ref. 10) and EuPd2Siz, '

the valence being measured directly via the isomer
shift or electric field gradient. In other systems,
e.g., Yb~ „Y„CuA1, the valence is believed to
change little from its T = oo value, and in some
cases to even increase slightly with decreasing tem-
peratures at low temperature. This variety of
behavior is due to an alloying pressure effect which
we now discuss.

In the above calculation, we have assumed that
Ef —(ef p) does not —change when valence
changes. This is unrealistic. As the valence de-
creases, the conduction-electron number increases

This is a function of ni and ef (in units of 6), and

depends weakly (logarithmically) on D/h. We
plot it in Fig. 5 as a function of ef for ni„=6 and
D/6=200. The valence fraction with the higher-
order correction, namely that derived from Eq.
(12a), is shown for comparison. It is clear that for

Zf ) e,=—16, lowest-order perturbation theory
is quite accurate. In this regime, n„changefsrom
0 (ef »e, ) to 0.3 (ef =0) to 0.80 (ef= e,), i.e., —
from low to almost integral high valence. The ef-
fect of hybridization on valence is strong, though it
can be treated accurately in perturbation theory.
For the special case of configurational degeneracy,
i.e., ef ——0, we find

n„=ln(D/ni„)/[1+in(D/ni )] (19)

only weakly dependent on (D/ni ) It is interest. ing
that a valence ratio of approximately 2:1 or 3:1 for

where u =(x/2irks T).
The valence [Eq. (14)] is calculated by solving

for Ep and Ef [Eq. (8)] using, for example, the ex-

plicit form Eq. (7) for P(x), and then Eqs.
(15)—(17).

At low temperatures such that k~ T &&( Ep-
+ef ), the impurity is in the renormalized singlet

state
I
0}and the occupation of

~

A, } is exponen-

tially small. One then has

n„=nil(ni+ef Ep) . — (18)
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correspondingly. In a metal this extra number
stays in the vicinity of the impurity (approximately
within a screening length). There is an increase in
the electronic kinetic energy, as well as in the
Coulomb attraction between the greater ionic
charge and the conduction-electron charge. The
total energy of the impurity system, i.e., its heat of
solution or alloying, is a function of valence and
therefore constrains the size of valence change. If
the system is not infinitely dilute, the Fermi level

goes up as valence decreases, so that e~ decreases.
This effect tends to reduce the valence change.
For relatively small changes in the conduction-
electron density, this alloying pressure effect is
described by the equation

so that at T =0 (where e~=—15) the valence is
0.50 rather than 0.28. An interesting possibility is
of an upturn in the valence at low temperatures.
The valence change goes as T, the coefficient be-

ing proportional to

n„(1 n„)—
1+g

n~h

so that for g sufficiently negative, the slope can be
negative. For positive g, we see that as expected,
the zero-temperature valence can be quite small,
the f level having been pushed up (e/=29 at
T =0) for r) =30.

e/(n„) =eI+rl(1 n„),— (20) B. Specific heat

(1 n„)—being the extra conduction-electron number
per impurity. For g =0, there is no alloying pres-
sure and e~ is constant. If the only effect is a
Fermi-level shift, r) = —c/p(p) (0 where c is the
concentration of mixed-valent ions and p(p) the
density of conduction-electron states at the Fermi
level. However, other effects (e.g. , increased
Coulomb attraction) can make g less negative and
change its sign. For q ~0, there is a tendency to
transfer charge to the host.

The valence of an impurity for two typical
values of rl is shown in Fig. 7. The f state is at
the Fermi level, i.e., e~ ——0 at high temperature.
As temperature decreases, the valence decreases,
and the f level is pushed down by alloying pressure
for g &0. This tends to keep the valence constant,

ksT
C„(T)= n„

( Eo+e/)— (21)

The specific heat is linear in T as might be expect-
ed for a singlet ground state. A finite-temperature
calculation shows a Schottky-type peak at about

1T=, iso eI—

The specific heat C, of a mixed-valent impurity
is directly obtained from the Eqs. (2) and (3) for
the thermodynamic potential. Using the standard
thermodynamic formula C„=—T(B 0/BT ), we
see that it is expressed in terms of Eo, E~, and its
temperature derivatives. At low temperatures, only
the renormalized singlet is occupied, and the
specific heat is

0.9—
= T=coLIMI

6g = -15.0

0.7

0.6

& 0.5

04

I I I I I

0 4 ' 8 12 16 20 24 28 52
TEMPERATURE

FIG. 6. Valence as a function of temperature (in
units of 5) for various values of (ey/6) as shown. The
high-temperature limit is indicated.

C. Spin susceptibility

The ground state of the mixed-valent impurity is
a singlet in which hybridization admixes the mag-
netic configuration f". It is therefore polarizable,
i.e., its energy depends on the magnetic field. %e
calculate the polarizability as a function of tem-
perature and explain the observed unusual but
characterisitc X(T), namely Curie-%'eiss behavior
at high temperatures, a maximum or broad hump
at lower temperatures, and then a Aattening out.
In many systems, at still lower temperatures there
is a rise in X(T) and then saturation [e.g. , CeSn3
(Ref. 31) and CeA13 (Ref. 32)]. It is not clear
whether this is an extrinsic effect due to impuri-
ties, or whether it is a lattice effect with a charac-
teristically smaller energy scale. ' The theory
described here does not handle either possibility.

In a magnetic field, the energy levels of the de-
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generate configuration split, i.e.,

Eg =E'f —gJXH,

where gJ is the gyromagnetic ratio of the magnetic
ion and A, the magnetic quantum number

[—J&A, &J and (2J+1)=ni]. Assuming no
conduction-electron polarization, it is easy to show
that the susceptibility is given by

n, y"(x)
X(T)=ggJ(J+1)—, Po

3 1 —niP'(x) ~=z, ~/

(22)

where P(x) is the hybridization energy-shift func-
tion defined in Eq. (6). Using the approximate for-
mula Eq. (7) for P(x), the susceptibility X(T) can
be directly calculated once Eo and Ef are known.
We now discuss the results for high and low tem-
peratures.

2. Lou temperature

The ground state is a polarizable singlet, and the
susceptibility is

2. 1 Pcrfnv
X(T=0)=X(0)=—

3 IEo —&/I

where
~
Eo E/

~

—is the singlet stabilization energy.
The ratio of the susceptibility to specific heat has
the noninteracting Fermi-gas value, i.e.,

(26)

Including the next-order correction leads to the ra-
tio"

I. High temperature
I
EO —e'/

I

(27)

At temperatures so high that the levels are effec-
tively degenerate (T & max[@/, ni ln(D/ni )]),
Po 1/(ni +1)——and Pi =1/(ni+1), and

X(T)= —,gg J(J+1) 1

n~+1 AT
' (23)

&1Y'( —, )0= =0.845 . (24)

Our result for a general n~ is that the Weiss 8 is
the same, independent of n~. However, the Curie-
Weiss form is valid only over a narrow tempera-
ture range.

The leading high-temperature correction ' is a
Kondo logarithm and not a Weiss (0/T ) when

ef « —noh.

i.e., Curie law with a slightly [ni /(n~+ 1)] re-

duced moment. Such a regime has been identified,
for example, in Yb alloys by noting that the
valence ratio is close to 1:n~. In good moment or
Kondo systems, for T» Tk (an exponentially
small temperature), one has a Curie law without
the factor ni /(ni„+ 1) since only the configuration
f" is occupied. At much higher temperatures,
T &

~ e/ ~, the above behavior occurs. The first
correction as temperature is lowered has been cal-
culated by Hewson and by I.ee and Chakravar-
ty. They find (for the case ni ——2) that
X(T)=(A /T)[1 —(8/T)], where the Weiss

The deviation of this Wilson ratio from unity is a
measure of the many-body effects in the local Fer-
mi liquid. Clearly the effects are small for
6f )p —e, . In the Kondo limit, Nozieres and Blan-
din find (for ions like Ce or Yb where one of the
ionic configurations is nondegenerate) that

8'=1+ 1

n~ —1
(28)

To relative accuracy (1/ni ), one has a nonin-

teracting local Fermi liquid for all ef. This is
probably why the phenomenological theory of
Newns and Hewson is successful.

For nonzero but low temperatures only the re-
normalized singlet is occupied (the contribution
from E/ is exponentially small) and one has

+X(0)'(ks T)'
g(T) =g(0) 1+ (2—n„+ —,n„)

(p,rrii„/3)

(29)

The most noteworthy thing is the positive slope of
the T term, a well-known feature of mixed-valent
systems. The physical reason is the increase in
singlet polarizability with temperature. The van
Vleck polarizability depends inversely on the
sepal ation

~

Eo —ZJ'
~

between the singlet ground
state Eo and the magnetic excited state ef. This
separation decreases as temperature increases, since
the smoothening of the Fermi distribution reduces
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the effect of low-energy hole excitations and thus
diminishes the hybridization lowering of Ep. We
notice from Eq. (29) that the slope of the T term
is roughly proportional to X(0) since n„varies
rather slowly with f-level position [e.g., as F/
moves down from 0 to —e„X(0) increases by a
factor of 20 but n„onl yby a factor of 2.5]. This
dependence of the T coefficient on X(0) has been
experimentally verified in studies of the
Ce(lnxA1~ „)3system by Lawrence. Lawrence
and Beal-Monod propose a paramagnon-theory
explanation for this behavior. However, these sys-
tems are characterized by a low energy for valence
or charge fluctuations. Since this occurs between
magnetically different states, there is an attendant
spin fluctuation. There is no indication of proxim-
ity to a ferromagnetic instability; the system is

very strongly correlated, i.e., (U/nb, )=10 =ao,
rather than close to unity (paramagnon regime).
The paramagnon idea does not explain why the T
term is always positive. In that theory, the slope
depends on derivatives of the f-band density of
states, and could have either sign.

%'hile there have been earlier numerical compu-
tations of the susceptibility in which a similar
low-temperature curvature was found, ' ' our
work for the first time identifies the physical
cause, provides an explicit expression for the term,
and connects it with mixed valence.

We have briefly discussed, in the section on
valence fraction {Sec.V A), the energetic constraint
on valence change, parametrized by g. For a given

g, the low-temperature susceptibility can be expli-
citly obtained, and is

r

ATX(T)=X(0) I+~'
Eo —e

P1V

2—7l +V

(1 n„) (—2 —n„)

(n„(1 n„)+—nag ') (30)

The second term on the right-hand side is the
correction which vanishes if rI =0, i.e., if the
change in valence does not affect e/. If g is posi-
tive (i.e., valence tends to change), the positive
slope is reduced while it is increased if g is nega-
tive.

In Fig. 8, we plot X(T) vs T for some typical

0.9

0.7

0.6
Oz

05

0.3

0.2

I

values of e/, g being assumed zero. The max-
imum in X(T) is quite prominent, and occurs at a
lower temperature as e~ decreases. The maximum
is due essentially to thermal depopulation of the re-
normalized f level which reduces its Curie-type
(1/T) contribution exponentially with decreasing
temperature. Using the form Eq. (22), the tem-
perature of the maximum can be calculated to be

1

~m» —
2 I @0

This fits the numerical results of Fig. 8 fairly well.
The decrease at low temperatures is quite large, the
ratio [X,„/X(T=O)] being typically 3 or 4. The
mixed-valent system YbAlz has a ratio of about
2.5. In general, however, the ratio is in the range
1.3 to 1.4. The reason most likely is the alloying
pressure effect. We show for illustration in Fig. 9
the case g= —20.0, and ey ——0.0 at high tempera-
tures. The susceptibility maximum (Fig. 9) shifts
to a much lower temperature, and is not so prom-
inent, the ratio [X»/X(0)] being =1.3.

0.1
0

I I I I I I I

4 8 12 16 20 24 28 52

TEMPERATURE VI. CONCI. UDING REMARKS
FIG. 7. Valence as a function of temperature (in

units of 6) for e~ ——0, i.e., configurational degeneracy,
for alloying pressures (in units of 6) as shown.

We conclude by briefly discussing two alterna-
tive ways of describing the single mixed-valent im-
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or (T + T, )'~ and Boltzmann statistics with this
temperature. T, is a measure of the admixture
effect. In later work, Sales' associates a width I J.

with the level EJ (i.e., a Lorentzian density of
states) and assumes that the configurations are
thermally occupied according to Fermi statistics
rather than Boltzmann statistics appropriate to
such levels. In both models, the valence ratio is
given by the relative thermal population of the
broadened levels; they are not quasiparticle levels
with some amplitude for both bare ionic configura-
tions as discussed above. We do not find that the
effect of hybridization can be described as done by
Wohlleben and Sales. Nor can our final results for
X(T) or valence n„(T) be simply parametrized in
terms of T, or (E~,I Ji. The numerical parameters
(EI,I'Ji deduced from fitting the susceptibility data,
for instance, cannot be ascribed a basic signif-
icanc, e.g., I

z as configuration fluctuation rate, or
be compared with, say, spin lifetimes (i.e., width of
X(q,co)).

B. Fermi-liquid theory

The hybridization between the f configuration
and the conduction electrons affects the latter. At
low temperatures, the state of the system is deter-
mined by hybridization effects to be a singlet so
that there are no internal degrees of freedom to the
impurity. Thus the state can be described entirely
in terms of the effect on conduction electrons. If
the local Fermi liquid has no self-interaction, then
phase shifts 5i(e) in the f channel suffice.

It seems clear, as discussed in Sec. V C, that the
self-interaction in the local Fermi liquid is weak,
of relative order (1jni ) The zero. -temperature
phase shifts satisfy the Friedel sum rule,

of hybridization and alloying pressure. As the
multiplet level E~ is progressively occupied with
increasing T, there is spin-disorder scattering of
conduction electrons and the potential phase-shift
parametrization becomes invalid. However, for
ground-state and low-temperature properties it is a
simple and physically attractive model.

We now outline the generalization of the results
obtained here to the lattice. The intersite coupling
as calculated in perturbation theory ' ' appears
to be small for strongly-mixed-valent systems and
is only via the conduction electrons. By neglecting
many-body correlations between singlet states at
different sites, one has a band-structure problem
where the conduction electron scatters from site to
site, each site being a resonant level parametrized
as above. This is the familiar transition-metal
band-structure problem with the following special
features. Because of the Friedel sum rule con-
straint [Eq. (31)], the f-excitation band is nearly
empty, having at most one excitation per site.
Secondly, the spin-orbit coupling energy A,L S is
much larger than h. ' Direct evidence for this is
the dependence of the susceptibility on the full
atomic Hund's-rule moment rather than the spin-
only moment. Thus the conduction-electron
scattering is in channels with fixed mJ rather than
fixed (m i,m, ). This renormalized and modified
band-structure problem is, we believe, a good first
approximation to the strongly-mixed-valence lat-
tice. It enables one to discuss such questions as
the possibility of gaps in the density of states, ori-
gin of extreme sensitivity to disorder, effect of
banding on energy, and the possibility of two tem-
perature scales (b, for the band Fermi energy and
ni„b for the single-impurity stabilization energy).

1—+5i(ez) = 5(eF ) =n, ,
7T

(31)
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where we have assumed that the phase shift in the
ni„channels are equal (as they are in the absence of
a magnetic field). As emphasized by Newns and
Hewson O~n„&1 and not the total number off
electrons. Newns and Hewson describe the phase
shift 5(e) by a resonant-level model with two
parameters, a virtual level width 6",and an effec-
tive f-level position e~ . It can be shown that a
correspondence b =6 and e~ (E& Eo) repro-—— —RL

duces approximately the zero-temperature results
of this paper. However, the resonant-level model
is useful only for very low temperatures
kii T(( (Ef Eo ) since Eo and E~ depend on tem-
perature both due to temperature-dependent effects
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