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Diffusion, mobility fluctuation, and island models of flicker noise
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Connections and equivalences among the diffusion, mobility fluctuation, and island

theories of the flicker noise are shown, and the usual division in two model categories,

based on the carrier-number and -mobility fluctuations, is so removed. To this end, the

diffusion-noise theory, as well as the previous island model, is applied to conducting

media containing localized states, the drift-velocity cross-correlation functions of the

hemimicroscopic motion of each carrier, which at random is trapped and released by the

islands, are computed, and, finally, the voltage noise spectrum at the device terminals is

achieved as a sum of Lorentzian spectra by means of the Wiener-Khintchine theorem and

the impedance-field method. It partly coincides with the one yielded, in the case of de-

fect sizes smaller than the Debye length, by the island model through the charge-

conservation principle, the Langevin method, the Schottky theorem, and the dipole-

current and impedance-field methods applied directly to each island. For both ap-

proaches, in order to obtain the total noise spectrum in the flickerlike form 1/fr, the de-

fect relaxation times, which the diffusion theory cannot yield, and the computation

methods of the island model are to be employed. The diffusion-noise model, instead, by

the computation of the cross-correlation functions of the hemimicroscopic motion allows

one to ascribe the flicker-noise origin also to the hemimicroscopic mobility fluctuation of
each carrier due just to the stochastic process of its trapping and releasing by the islands

during the drift displacement. Therefore the general validity of the island model, previ-

ously shown by its ability to yield an unitary synthesis of the flicker, burst, and genera-

tion-recombination noises, is now further extended and strengthened by its capability to

account for and to contain other noise-analysis methods, such as the diffusion-noise and

mobility-fluctuation models.

I. INTRODUCTION

Most models of the flicker noise, according also
to recent surveys, ' may be classified in two
categories based on the carrier-number or -mobility
fluctuation. Other approaches that put the origin
of the phenomenon in the temperature fluctuation6

or in the transport mechanisms, and that are not
comprised in such a classification, seem to be laid

to rest.
The recent island model, "which yields an un-

itary approach and synthesis of the flicker, burst,

and generation-recofnbination noises and which

contains also, as very particular case, the
McVfhorter model, ' is to be included in the

category of the carrier-number fluctuations.
The aim of this paper is to remove such a model

division in two classes and to show that the island

approach accounts for and contains the mobility-

fluctuation theory. ' ' To this end, as it has been

done for the island model, " the diffusion-noise
theory' ' is applied to conducting media contain-

ing localized states, the cross-correlation functions

of the drift-velocity components of the hemimicro-

scopic motion of each carrier, which at random is

trapped and released by the islands, are computed,
and then by means of them, of the Wiener-Khint-

chine theorem, and of the impedance-field method

(IFM), the voltage-noise spectrum at the device ter-

minals is achieved as sum of Lorentzian spectra.
Such a spectrum partly coincides with that ob-

tained, in the case of defect sizes smaller than the

Debye length, by means of the island model

through the charge-conservation principle, the

Langevin method, the Schottky theorem, and the
dipole-current and impedance-field methods re-

ferred to each island.
In both approaches, in order to carry out the to-

tal voltage-noise spectrum in the flickerlike form

1/f r from the sum of the shotlike spectra, the
defect-relaxation times, which cannot be yielded at
all by the diffusion-noise theory, and the computa-
tional procedures of the island model are then to
be used.

By computing the cross-correlation function of
the hemimicroscopic motion, the diffusion-noise
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approach instead allows one to ascribe the cause of
the 1/fr noise to the hemimicroscopic-mobility
fluctuation of each carrier due to the stochastic
process of its trapping and releasing by the islands

along the drift motion. It is, in this way, justified
theoretically how the mobility-fluctuation may be
the origin of the flicker noise, as it has been postu-
lated by several authors' ' on the basis of the
Hooge empirical formula which, on the other
hand, is accounted for in a direct and complete
way by the island model. "

Therefore, the island model not only yields a
unified approach of three important excess noises
such as the flicker, burst, and generation-recom-
bination noises, but it also accounts for and in-

cludes other significant analysis methods proposed
to explain the flicker noise, like the mobility-
fluctuation model and/or the diffusion-noise
theory applied to media containing localized states.

Moreover, the spectrum computation according
the island model and IFM is further developed by
means of the reciprocal theorem. ' A new expres-
sion of the noise variance, given as a function of
the local direct power density, is so achieved.

II. DIFFUSION-NOISE THEORY

A. Microscopic and hemimicroscopic motions

(2.4)

(2.5)

where

u(t) =ub(t)+ [u, (t) —ub(t)]

x g( —1)'W(t —t;) (2.6)

is the microscopic fluctuation about (v, ), or
(vb)„and

Ub(t)= —a+ g( —1)'W(t t;) b, ,— (2.7)

with

(2.8)

is the hemimicroscopic fluctuation of the velocity
about (v), due to the random transitions of the
carrier between the two conditions a and b, charac-
terized by the different drift velocities ( v, ), and

( vb)g.

i = —00, . . . , —1,0, 1, . . . , 00. Therefore, if the
carrier remains, on the average, in the a and b con-
ditions during the time fractions a and P, respec-
tively, the time average value ( v ), and the fluc-
tuation U(t) of v(t) become

The aim of this section is to compute, by means
of the diffusion-noise theory and the IFM, the
spectral density Si of the voltage fluctuations be-
tween two probe points M' and N' of a conducting
medium. To this end let us consider the case
where each charge carrier may be, at random, sub-
ject to either of two conditions c =a and c =b
characterized by the carrier velocity

v, (t)=( v, ),+u, (t),
where

(v, ),=p, g

(2.1)

(2.2)

v(t)=vb+(v, —vb) g( —1)'W(t —t;), (2.3)

where W(t t;) is the —unit-step function,
(t;+I ti) & 0 is a stoch—astic variable, and

is the microscopic drift velocity .due to an electric
field 8', p, is the corresponding microscopic mo-
bility, and u, (t) is the fluctuation about ( v, ), due
to any scattering process that does not change the
carrier condition c.

At any time t the carrier velocity v(t) may be
written in the form

B. Diffusion-impedance field noise formula

Sy ——g g J4q nDJk d x,
) ) k ) Bxj. Bxk

(2.9)

where q is the electron charge, n is the time aver. -

age value of the carrier density, and the impedance
Z =Z (X', r,f) is defined by Z =5V(M'X', r )/—5I,
5V being the phasor of ac voltage appearing be-
tween X' and M' when a small ac current of pha-
sor 5I and frequency f is injected in the point r
and it is extracted from M', Z~ is the complex
conjugate value of Z.

The diffusion coefficient D/k ——Djk(to) at
to=2irf, according to the Wiener-Khintchine
theorem, is given by

According to the diffusion-noise theory and the
IFM,"'4 ~ the carrier random motion U(t) super-
imposed to the steady noiseless motion ( v ), is the
cause of the device noise, and the spectrum Si of
the voltage fluctuation between two arbitrary probe
points X' and M' is given by the diffusion-
impedance field formula,



26 DIFFUSION, MOBILITY FLUCTUATION, AND ISLAND MODELS. . . 1793

Djk 2 Uj t Uk f +s e "' s

where Uj ( Uk ) is the U component along the xj (xk ) axis.

(2.10)

C. Cross-correlation functions and noise spectra

Equations (2.9) and (2.10) reduce the problem of calculating noise into the computation of the impedance
field VZ and of the cross-correlation functions ( U, (t)Uk(t+s) ).

When the correlation times r, and rb for u, and ub, respectively, due to the carrier scattering in the cor-
responding conditions a and b, are much less than the decay time w from a condition to the other, the ap-
proach of Shockley et al. ' extended to the three-dimensional case yields

( Uj(t) Uk(t +s) ) = (uj(t)uk(t +s) ) + ( Ubj(t) Ubb(t +s) ),
where

& u, (t)uk(t +s) ) =a & u„.(t)u, k(t) )e '5jk+P& ub, (t)ubk(t) )e '5jk

( Ubj Ubk(t +s) )=aPbjb, ke

(2.11)

(2.12)

(2.13)

In (2.12), 5jk =0 for jQk and 5&k = 1 for j=k takes into account that u,j and u,k are uncorrelated for jQk.
Moreover, according to the energy-equipartition theorem, holding at the thermal equilibrium, the following

is also so:

(u,j(t) ) =kTlm, , (2.14)

where k is the Boltzmann constant, T is the absolute temperature, and m, is the carrier effective mass of the
condition c.

Therefore, from (2.9)—(2.14) we have that the noise spectrum

Sv =Svr+Sv~

consists of a part

Syz ——f 4q nkT
7a 2+ P'b

IVZ dx,
m. (1+2~') mb(1+2b~')

(2.15)

(2.16)

which reduces to the Johnson-Nyquist thermal
noise (see the Appendix), and a part

Svt, ——f 4q n
2

(b, VZ) d x,
1+ C0

(2.17)

due to the hemimicroscopic fluctuation Ub(t)
about (v), .

The spectrum S~b holds true in the form (2.17)
if Z is real in the frequency band of interest for
Sva itself. If the r values are dispersed uniformly
on the sample with a distribution D,(r) and if the
factor that multiplies r/(I+Hco ) in (2.17) is a
slowly varying function of r, Sv~ may be written
also in the form

III. MOBILITY-FLUCTUATION NOISE

&U), =P s',
Ub(t) =by(t) 8',

where

p=apa+ ppb

(3.1)

(3.2)

(3.3)

%e want to show now that the noise Sv~ may be
ascribed also to the mobility fluctuation of each
carrier in its hemimicroscopic motion Ub(t). In
fact, the mean drift velocity (v), of the carrier
and the hemimicroscopic fluctuation Ub(t) about

it, according to (2.2), (2.4), (2.7), and (2.8), may be
written in the form

Sya ——J4q n ~(h VZ) drd x,
1+ co

(2.18)
b p, (t) = (p,, pb ) —a+ g—( —I )'W(t —t; )

which will be utilized later to compute the flicker
noise. (3.4)
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(3.5)

are the time-average value and its random fluctua-
tion, respectively, of the hemimicroscopic mobility
p(t)=P +hp(t) of the carrier.

Therefore, from (2.7), (2.9)—(2.11), (2.13), (2.15),
(2.17), and (3.2), the spectrum S&(r) of the mobili-

ty fluctuation bp(t) of each carrier at r is

4aP(p, —pb) r
S (r)=—

be set in the form

(Jo VZ) p, —ps
Svg —— n, p

4uPrD,
X 2drd X,

1+ co

or, more compactly

(3.11)

whereas its average value (S& ) = I S&D,dr
across the entire sample becomes

ra,
(S„)=4(hp' ), I ', dr „1+ N

(3.6)

( J VZ) (S„)
Syg= 2

d x
n p

where

Jo——qpn 8'

(3.12)

(3.13)

(3.7)

is the variance of hp(t).
Then, by following the computation methods of

the island model, " i.e., by setting 8„=in(r~) and

8G In(r/r——o), where ro is a reference arbitrary
time, and by indicating with DG(8G) the 8G distri-

bution, the spectrum (S& ) from (3.6) becomes

(bp ),DG( —8„)
Sq

is the steady-state current density due to a bias
direct current I injected in a driver point X and ex-

tracted from another M of the sample, M and N
being, in general, distinct from the voltage probe
points X' and M'.

Of course, if (3.9) holds true, the total spectrum

S~a given by (3.12) is also of 1/fr tyPe. The con-

ditions that may lead to (3.9) are examined in the
following section.

IV. ISLAND MODEL

(3.8) A. Physical model

(3.9)

of the hemimicroscopic-mobility fluctuation b p(t),
as postulated by several authors' ' on the basis of
the Hooge empirical formula, ' becomes of the
flicker type with a proportionality constant

(bp ),D ( 8)f-
Pp=

p
which, as a natural consequence of the present gen-
eral approach and in agreement with a recent
derivation of van der Ziel and van Vliet, ' is in-

dependent of the carrier number (see, however, Sec.
IV D).

Finally the spectrum S~a, in turn, from (2.2),
(2.4), (2.8), (2.18), (3.1), (3.3), (3.6), and (3.7), may

(3.10)

where fo is the frequency around which we consid-
er the spectrum, 8p=ln(2~fpro),

5=(dlnDG/d8G) le = —e,

and y=1+5."
Therefore, for a "wide" distribution DG of 8G,

"
the average spectrum

Pb =0, (4.1)

Now the problem to be solved is one of finding
the physical phenomenon and mechanism that give
conditions a and b, characterized by (i) different
mobility p, and pb, respectively, and, chiefly, (ii) a
wide dispersion of the logarithm ln(r/ro) =8G of
the decay time ~ between them, which is necessary
to account for the flicker noise existence over
many frequency decades and down to however low

a frequency.
Such a phenomenon may not be found in an in-

tervalley process, which gives a as the fast valley
and b as the slow valley, ' because it cannot give a
sufficient dispersion of ~. Instead, the mechanism
that satisfies both requirements (i) and (ii) very
well is the carrier trapping and releasing phenom-
enon occurring in conducting media containing lo-
calized states or, as previously called, " islands.
In fact, for them (i) the two conditions may be a
as the free carrier and b as the trapped carrier in
an island, and (ii) the decay time r, owing to its
dependence on the island relaxation times, may
have a sufficient dispersion.

In this case, since it is
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from (3.3) and (3.10) the constant

1' = &—G( ~o)fo5 (4 2)

also becomes independent from the microscopic
mobility p, of the free carrier. Moreover, we have

P=D, (S,) /n =F,
a=1,

(4.3)

(4.4)

where Dt is the island density and (Xz) is the
time- and ensemble-average value of the carrier
number of each island; since a+@=1, (4.4) holds
true with the assumption that P «1.

B. Model comparison

where the variance (b, V ), of the voltage fluctua-

tions is given by

(bV ),= I Svtdf

( Jo.VZ) —d x . (4.6)

Such relationships (4.5) and (4.6) are equal to
Eqs. (6.4) and (6.11), respectively, of Ref. 11 ob-

tained by means of the island model and IFM in

the case of island sizes smaller than Debye's

length.
Therefore, the island approach, as well as being

able to given a unitary model of the flicker, burst,
and generation-recombination noises, "accounts for
and contains those theoretical results that may be
achieved for the same physical phenomena by
means of the diffusion-noise theory and IFM, or
by means of the equivalent model, deriving from
itself, of the hemimicroscopic-mobility fluctuation.
The island model, however, is more general and

chiefly it does not have the intrinsic constraints
and limits of the diffusion theory that in practice
make it inapplicable for the excess low-frequency
noises.

In fact, for the validity of such a theory, firstly
the smallest volume elements EQ, into which the
sample can be divided for analyzing the noise,
must be many free paths in size (hemimicroscopic
paths among the islands in our case); that is, each

More generally, from (3.3), (3.11), (4.1), (4.3),
and (4.4), the spectrum Sv~ becomes

«V'},D, ( —e„)
fSvg ——

f s (av'), a, ( —0,)
(4.5)

EQ must contain very many islands vl ——DIAQ in
order that the random drift velocity Ub(t) of a car-
rier in a given volume hQ is not significantly
correlated with that in another neighboring volume
gg 5, 13

Such vl islands, moreover, must have the same
relaxation time v; =r, because only in this case
does the equation

g an„
dt

Anl;

i=1 i
(4.7)

(obtained by summing the relaxation equations of
the vl islands, " hnl; being the carrier-number

fluctuation of the ith island) reduce itself to the de-

cay equation d (b nb)/dt = b,nb/a—for the number

variation

vl

b,nb —— hn, = g—Ant;

of the carriers in the conditions b (trapped carriers)

and a (free carrier), respectively, in the considered

volume element AQ, as required by the diffusion-

noise theory.
Finally, as said in the Sec. IIC, in order to be

able to proceed from (2.17) to (2.18), which is re-

quired to carry out the theory, the quantities that
are distinct from ~ must be practically constant

throughout all the sample.
All these three very constrictive and limiting

conditions, which make the approach unlikely, do

not exist for the island model because it considers

and determines separately the independent noise

contribution of each single island by means of its

stochistic relaxation equation, the Langevin

method, the Schottky theorem, the vector dipole
current induced by the island itself, and the IFM.

Moreover, the island method allows us to deal

with the general case of islands of any nature and

size and, chiefly, to determine their relaxation

times, necessary to compute the noise spectral den-

sity, which the diffusion model can never yield.

Finally, the island-model method of computing
the noise spectrum in the form 1/fr from the sum

of the Lorentzian contributes of the islands is also

significant. Such a procedure, however, as above

shown, may also be applied to the diffusion and

mobility approaches.

C. Reciprocal theorem and impedance field

The island model itself may be further developed

by means of the reciprocal theorem' which, for
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the thermal equilibrium and no magnetic field,
states that

(4.8)

VZ = —Jo/oI, (4.9)

where o. is the conductivity and J o is the current
density due to the current I switched from the
driver points M and N to the probe ones M' and
N' In part. icular (4.9) shows that Vz a:0

Therefore, from (4.6) and (4.9) we obtain the re-

lation

where 5V' is the phasor of the ac voltage appear-
ing between the points r and M' when a small ac
current of phasor 5I' and frequency f is injected in
E' and is extracted from M'.

In fact, on the assumption that (4.8) holds true
also out of the thermal equilibrium and for any
value of 5I' and in particular for

~

5I'
~

=I, where-

I is the direct bias current fed through the driver
points M and X, and moreover if Z is real, which

happens at the low frequencies associated with
flicker noise, from (4.8) we have

the mobility-Auctuation assumption, ' whereby in
the semiconductors the coefficient of Hooge's em-

pirical formula' decreases when the impurity den-

sity increases. In fact, this result agrees with (4.3),
(4.5), and (4.6), or (4.10)—(4.12), according to
which E is inversely proportional to n when (Xq)
is a slowly varying function of n itself, " as may
happen for both low and high doping.

Another consideration to be made concerns the
flicker-noise dependence on the temperature. In
fact, when the carrier trapping and releasing from
the islands are due to the tunnel effect alone,
which, according to the previous generalization of
the McWhorter model, "' may occur for islands
both on the surface and in the bulk of the sample,
the island relaxation times, their distribution DG,
and the noise spectrum, according to (4.3), (4.5),
and (4.6), or (4.10)—(4.12), become independent of
the temperature. This has been observed in semi-
conductor devices.

The opposite trends occur when the same phe-
nomen. a are due to thermal activation processes. "
Of course, a more complex situation occurs when
both processes are present.

no I
which reduces to the form

(4.10)

(4.11)

when the probe and driver points coincide, i.e.
E' and M=—M— ', P=JO/o being the direct

power density dissipated at the point r.
If, for a homogeneous device, one has PQ = VI,

where V is the average voltage produced between

M and E by the bias current I and Q is the sample
volume, from (4.11) we obtain directly the usual re-

lationship"

(4.12)

The island model also accounts for; the experi-
mental result' utilized to justify and to strengthen

A relationship analogous to (4.10) has been found

by Vandamme and Bokhoven' by their considera-
tion on the sensitivity theorem in the electrical net-
works.

V. CONCLUSIONS

It has been shown that the Aicker noise of the
electronic devices —which, according to the previ-

ously discussed island model, is due to the local-
ized states and to the great dispersion of their re-
laxation times —may be accounted for, although
with approximations and limits, by means of the
diffusion-noise theory applied also to systems con-
taining islands. Through this approach it may be
ascribed even to the fluctuations of the hemimicro-
scopic mobility, i.e., the mobility that takes into
account the effects, on the drift velocity of the car-
rier, of its trapping and releasing processes from
the islands themselves.

The hypothesis, postulated by several authors on
the basis of Hooge's empirical formula, that the
average spectrum of the hemimicroscopic mobility
is of the flicker type pr p /fr, has been thus
proved theoretically and the expression of the con-
stant Pz has been achieved. In this way, the dis-
tinction between two model classes, based on the
carrier-number and -mobility fluctuation, has also
been removed, and the validity and generality of
the island model are further strengthened.

In fact, comparison shows that such a model,
since it starts directly from the island-Auctuation
phenomena, does not suffer the constraints, ap-
proximations, and limits of the diffusion and rno-
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bility approaches; however, it accounts for and
contains their results, when they may be considered
as correct.

Therefore, in conclusion, for such a capability to
justify, explain, and unify the methods and the re-

sults, although often partial and/or postulated, of
other significant approaches such as just the
diffusion-noise and mobility-fluctuation models,
and for the previously shown ability to yield an
unitary theory of the flicker, burst, and genera-
tion-recombination noises, the island model appears
once again to be a general and correct analysis tool
of the excess noises and, in particular, of the 1/fr
noise.

APPENDIX

ls, (jco)=qr, /rn, (1+jcor, ), (Al)

and in consequence, since an and Pn carriers are,
on the average, subject to the conditions a and b
for volume unit, respectively, the sample conduc-
tivity o.(jco) at co becomes

aV~~)=qn[ai'V~)+PpbV~)l (A2)

Therefore, from (2.16), (Al), and (A2), we have

S~ 4kT——f ~

P'Z
~

Re[o(jco)]d x . (A3)

On the other hand, the reciprocal theorem (4.8)
leads to the distributed power theorem'

R(co)= f ~

VZ
~

Re[o(jco)]d x, (A4)

where R (co) is the real part of the sample im-
pedance between the probe points M' and X'.

In conclusion, from (A3) and (A4) we have that
The microscopic mobility p,,(jco) at co of the

carrier, associated to its Brownian motion in the c
condition, is given by

'
Syz 4kTR (co),——

reduces to the Johnson-Nyquist thermal noise. '
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