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The density-functional formulation of the generalized pseudopotential theory (GPT) set

forth in paper I of this set is recast in an optimum representation and more widely ap-

plied to empty- and filled-d-band metals. Optimization is achieved by making the most

advantageous separation possible of (i) the hybridization potential into volume-dependent

(5,.,~) and structure-dependent (h„~,) parts, and (ii) the nonuniform component of the
valence-electron density into screening and orthogonalization-hole contributions. The re-

sulting new definitions of these quantities permit the entire contribution of 6„,to the

total energy to be folded into the original framework of the theory, where 6„,was

neglected. The energy-wave-number characteristic I'(q) and overlap potential U,&(r) then

assume simpler and more computationally efficient forms, in which certain large numeri-

cal cancellations otherwise inherent in the calculation of physical properties are eliminat-

ed. The new representation also makes clearer the ranges of applicability of the empty-

and filled-d-band limits of the theory. The optimized GPT is shown to provide an excel-

lent description of the group-IIA metals Ca and Sr in the empty-d-band limit and of the

group-IIB metals Zn and Cd in the filled-d-band limit. Somewhat surprisingly, however,

a filled-d-band treatment is found not to be adequate in the noble metals because the

number of electrons effectively emptied out of the d states through hybridization (-
2

electron/atom) is not small relative to the nominal valence (1 electron/atom). It is fur-

ther shown that a much more accurate description of the noble metals can be expected by
allowing the d states to unfill and a self-consistent valence to be achieved in zero order,
and the first steps towards implementing the partially-filled-d-band limit of the GPT are
considered here. Finally, extensive applications of the optimized GPT that we have made

on the band structure, cohesion, liquid-metal transport, lattice dynamics, and structural

phase stability in 22 simple and d-band metals are summarized and compared with both

experiment and the density-functional calculations of Moruzzi, Janak, and Williams.

I. INTRODUCTION

Over the past ten years we have sought to extend
the spirit of simple-metal pseudopotential perturba-
tion theory to d-band metals in both a systematic
and rigorous way. ' For metals near the begin-
ning and end of the transition series, with empty
and filled d-bands, respectively, our work has
developed into a first-principles, generalized pseu-
dopotential theory (OPT) whose formal structure is
a direct generalization of the conventional nonlocal
pseudopotential theory of simple metals. ' This
paper, together with Ref. 7 (paper I of this set),
represent our most extensive efforts to refine and
widely apply the OPT to empty- and filled-d-band
metals.

In paper I, we completely rederived the internal
details of the GPT beginning from the Kohn-Sham

density-functional formalism. " We showed that to
a good approximation in d-band metals the total
self-consistent potential V(r), including its in-

herently nonlinear exchange and correlation contri-
butions, can be written in rigid-ion form, that is, as
a sum of position-independent, intra-atomic poten-
tials:

V(r) = g v(r —R;),

where R; is the position of the ith nucleus. This
allowed us to rigorously separate volume-dependent
and structure-dependent quantities and to obtain,
as desired, the electron density in the form

n(r)= n„„;t+g n „(r—R;)

+ g'S(q)nn„„(~)e' q'
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where S(q) is the usual structure factor and the
prime on the latter sum excludes the q =0 term,
and the total energy in the form

Eto, =&o(00)+E (Z')+Kg' ~S(q)
~

I'(q)

+ z g Uol( I Ri —RJ ~
), (3)

(4)

where 6„,& is the larger volume contribution. This
led to significantly modified forms for both the
energy-wave-number characteristic and d-state
overlap potential.

In this paper we complete the work begun in pa-
per I with a number of additional major refine-

ments, extensions, and new applications of the
GPT. In Sec. II, we first discuss an alternative,
and what we now believe is an optimum represen-
tation of the theory as applied to filled- and
empty-d-band metals. This optimum representa-
tion, which largely arises out of an internal
mathematical transformation of the results ob-

tained in paper I, is significant in several respects.
First, the characteristic functions can be defined
and written in more compact and transparent
forms. This adds, for example, considerable in-

sight into the role of the structure dependence of
the hybridization and suggests a general algorithm
for treating its effect in all d-band metals, includ-

ing transition metals. Second, the optimum GPT
is more computationally efficient as a whole and
slightly more accurate. Certain large cancellations
which occur in the calculation of physical proper-
ties, and which were achieved only numerically in

paper I, are now, in effect, accomplished algebrai-

where E~ is the electrostatic energy of point ions
oF charge Z'e in a compensating uniform back-
ground and the prime on the final sum excludes
the R; =Rj term. The uniform density n„„;~,core
density ngprep and oscillatory valence density 5n„,~,

as well as the energy-wave-number characteristic I',
d-state overlap potential v,~, and volume energy
term Eo, are all structure-independent characteIistic
functions which can either be calculated directly or
evaluated in a relatively straightforward manner
through matrix elements of a nonlocal pseudopo-
tential mo and a d-state hybridization potential h.
Moreover, in the process of developing Eq. (3), new
structure-dependent total energy terms were un-

covered, which arise from the small structure-
dependent part, Est „ofthe total d-state hybridi-
zation potential

cally. Finally, the new representation makes clear-
er the general limits of applicability of the theory
and additional evidence supporting its important
significance to group-IIA (e.g., Ca) and group-IIB
(e.g., Zn) metals is presented.

In Sec. III, the scope of the studies begun in pa-
per I is broadened to include full consideration of
the difficult case of the noble metals, with new and
very revealing results. In contrast to early expecta-
tions' ' and also to recent related work by
Dagens and co-workers, ' ' we find that the no-
ble metals can only be treated in a marginally ac-
ceptable way as metals having filled d bands, with
several ad hoc adjustments in the GPT required.
This limitation arises because the actual unfilling
of the d bands through hybridization in these met-
als is not quantitatively small (-—, electron/atom)
relative to the nominal sp-band occupation (1
electron/atom). We show that a much more accu-
rate description of the noble metals can be expect-
ed by treating these materials as transition metals
having partially filled d bands and the first steps
towards a complete theory of partially-filled-d-
band metals are considered here.

In Sec. IV, additional applications of the optim-
ized GPT are summarized and discussed. These
include detailed comparisons on band structure and
electron density with the full density-functional
band calculations of Moruzzi, Janak, and Williams
(MJW), ' as well as new results on cohesion,
liquid-metal transport, lattice dynamics, and struc-
tural phase stability in 22 metals. Concluding re-
marks are given in Sec. V.

II. OPTIMUM FORM OF THE THEORY

To arrive at the optimum representation of the
GPT, it is first necessary to reexamine the details
of both the hybridization potential 6 and the oscil-
latory valence density 5n„,~. With regard to the
former, we focus on the separation of 6 into a
volume-dependent and a structure-dependent con-
tribution, as in Eq. (4). We now take advantage of
the fact that this separation is not totally unique
and in practice can be done in two closely related
but distinct ways depending on how the free-
electron terms are handled. By definition, the total
hybridization potential acting on a localized d state
I4& is

where 5V is the difference in potential between the
reference Hamiltonian Ho of which

~ Pa & is an
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eigenstate and the total metal Hamiltonian
0=T+ V. The reference Hamiltonian is establish-
ed by our so-called zero-order pseudoatom con-
struction, as discussed previously ' and briefly re-
viewed in Sec. III, so that

0, r ~Res
5Vunif( )=

g Z 2
1 ZZ8 1 Z8

(3—«~ws» r»ws
WS

5V(r) =ui (r)+u~, (r) —V(r), (6)
(13)

where the total pseudoatom potential vp, is that
arising from a single-site component of the zero-
order charge density in the metal and v~„ is an ad-
ditional localization potential which tailors the spa-
tial tail of Pd(r) in such a way as to minimize the
effective strength of A. In paper I, the volume
component of 5 (there denoted by b,„,) was defined
as that arising from ui„and the structure com-
ponent (denoted by 5,',~c) as that arising from

v„,—V. Although this division is a natural one, it
is not optimum due to the fact that use —V actual-
ly contains a small structure-independent part,
5V„„;r,which is the difference between the single-
site, uniform-electron-gas potential u„„;r [Eq. (29)
of paper I] and the total uniform-electron-gas po-
tential V„„;~..

5Vunif =vunif Vunif .

where Z is the valence and Rws the %igner-Seitz
radius of the metal. Equations (5)—(13) remain
exact and only a redefinition of terms has occurred
at this point.

The principal significance of the new assignment
of volume and structure contributions comes in the
elimination of the otherwise large cancellations in-
troduced into 5V„, and hence ultimately into the
characteristic functions Ii and u,i. With the aid of
Eqs. (19) and (25) of paper I, 5V„~c can now be
reduced to the form

5V„,(r) = —g'u;, „(r—RJ)
jap

—g'S(q) z
—[1—G(q)]

q

X5n,.i(q)e' ",
In paper I, 5V„„;rwas expressed as the difference
between two large structure-dependent terms. This
led to Eq. (31) of paper I for 5V. In analyzing the
principal hybridization matrix element ( k

~

b,
~ Pd )

into volume and structure components, however,
the more desirable alternative is to absorb 5V„„;~
directly into the volume component of 5V and
write

5V=5 V„,)+5V„~, ,

where

where G is an exchange-correlation function [see
Eq. (26) and surrounding discussion of paper I]
and u;,„ is the ionic potential of a single zero-order

ps eudoatom:

Z
uion( )

Z unuc(r)+unuc-core(r) ~

a

with

Za Z
nuc-core(r) = nuc(r)+ucore( ) +uxc(

5V„)——v) +5V„„;g (16)

5V„,=vp, —V—5V„„;~,

with ~vol and ~stmc defined as

(12)

respectively. Then all uniform-electron-gas contri-
butions are removed from 5VstfQQ9 and 5Vgmf in Eq.
(9) can be calculated as

Here, as in paper I, Z, is the atomic number of the
metal under consideration, v„„, and v„„are the
direct Coulomb potentials arising from the nucleus
and filled inner-core and d states, respectively, and
v„, is the appropriate valence-core exchange™
correlation potential [Eq. (17) of paper I].

To take full advantage of Eq. (14) for 5V„~„it
turns out to be necessary to redefine the com-
ponents of 5n„,~. This electron density contains
both orthogonalization-hole and screening contri-
butions, but the actual distinction between the two
is also somewhat nonunique. In all of our previous
work' the separation has been handled by taking
the orthogonalization-hole contribution in its fami-
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liar simple-metal form, so that in real space'

= Z'-Z
5n,h(r) = n„„;r+g n,h(r —R;),z =Z+, f„„&kIp I

k&dk . (20)

where the hole surrounding each nucleus corre-
sponds to a density

n»(r)= —
i fk k [&r lp I

"&&"
I
r&+c.c.

(2n )

&r—Ip I
k&&k Ip I r&]dk,

(18)
with p the single-site, inner-core, and d-state pro-
jection operator

p= X 1~.&«.1,

and where Zo is the effective valence of the metal

[The k-space integration region in Eqs. (18) and
(20) is inside the free-electron Fermi sphere of ra-
dius k~.] The remaining terms in 5n»i were then
included, by default, into the screening electron
density 5n„, [Eq. (53) of paper I]. It has subse-

quently become clear, however, that one contribu-
tion to 5n„, has a definite orthogonalization-hole-
like nature, and it is now advantageous to redefine
the orthogonalization hole for a single site to ab-
sorb this contribution:

o - 20o
n,h(r ) =n,h(r )+ h2(k, r )d k,

(2~)'

(21)
where

& r
I yd & & pd I ~-i I

k &[& k
I dd & &6 I

r &
—

& k
I

r &]
Ii2(k, r)= g „„+c.c.

d

& r16&&dd I

~ALII

k &&k
I
~. i I kd &&~d I

r &+
( gvol)2

with ez flak /2m. In——Eq. (21), as well as in ap-

propriate equations below, the integration region is
restricted to k & kF with the top (minus) sign for
filled-d-band metals and to k & kF with the bottom

(plus) sign for empty-d-band metals. The effect of
h2(k, r) is to deplete additional election density

from the d region at the outer edge of the core in

the filled-d-band case, while to add electron density
to this region in the empty-d-band case. This is il-

lustrated in Figs. 1 and 2 where n,h and n,h are
compared for the cases of Zn and Ca, respectively.

With the orthogonalization hole defined by Eq.
(21), one then has

Z*=Z —f n,h(r)dr

2Qo
=Zo+ i f A2( k, q =0)dk, (25)

(2m )' k~& k„

I i l ~ ) i
1

0.0

a
m

~oval 5~0h+~~scr ~ (23)

with

Z*—Z
5n,h(r) = n„r+ g n,h(r —R;), (2'0

where the new effective valence of the metal is

I i i i I i (l i )

0.0 0.2 0.4 II.8 0.8 1.0 l.2

r/Iws

FIG. 1. Radial orthogonalization-hole density

u,h(r) =4mr n,h(r) for Zn, as calculated from the
present definition Eq. (21) (solid curve) and from the
simple-metal definition Eq. (18) (dashed curve).
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0.4

0.0

a

Calcium

hp(k, q)= f hp(k, r)e 'q'dr,
a»n Eq. (55) of paper I. Note, however, that
h~, and Ea' in paper I are here replaced by h„~
and Ed", respectively, encumbering the extra
volume contribution of 5V„„;f,as discussed above
for h„,i. The quantity Ea" is precisely defined as
the structure-independent component of the total
d-state energy expectation value

1

0.2
I

0.4
l

0.$ 0..0

rl8g0

l i l

1.0 1.2

~a =
& 0a l

~+ V
l 4a & =&a"+Ea' ', (29)

FIG. 2. Radial orthogonalization hole density u, q for
Ca, with the notation the same as Fig. 1.

Ea"=&4a I
T+Uv. I 4 &+ & Wa I

Ui..—~v-i
I 6 &

(30)

5n„,(r )=g'S( q)n„, (q)e' q ',
q

(26)
(31)

n„,(q)=n,,„(q)+
p I hp(k, q)dk .

(2~)' k~&k~

(27)

In Eqs. (25) and (27), h p(k, q) is the Fourier
transform

The quantitative significance of the new defini-
tions of Z* and n,b can be appreciated by compar-
ing Z* and Zo. This is done in Table I for 22
nontransition metals. As in paper I, we treat the
heavy group-IA and -IIA elements (K, Rb, Cs, Ca,
Sr, and Ba) as empty-d-bands metals (Z* &Zo ),
the group-IB and -IIB metals (Cu, Ag, Au, Zn, Cd,
and Hg) as filled-1-band metals (Z' y Zo ), and the

Z ifc (Z~ —Z)/Z

TABLE I. Magnitudes of the new and old effective valences Z* and Zo, as obtained
from Eqs. (25) and (20), respectively, for 22 nontransition metals.

Metal Z Z )f0 (Z*—Zo )/Z

Li
Na
K
Rb
Cs
Be
Mg
Ca'
Sr
Ba
Cu
Ag
Au
Zn
Cd
Hg
Al
Ga
In
Tl
Sn
Pb

1

1

1

1

1

2
2
2

1

1

1

2

2
3
3
3
3

1.0859
1.0877
1.1440
1.1743
1.2243
2.1515
2.1849
2.1332
2.2832
2.4905
1.5618
1.4626
1.5840
2.2737
2.3589
2.4374
3.2619
3.2479
3.3887
3.4670
4.4095
4.4957

1.0859
1.0877
1.1638
1.1994
1.2597
2.1515
2.1849
2.3939
2.4961
2.774S
1.1691
1.2234
1.2769
2.2417
2.3340
2.4005
3.2619
3.2479
3.3887
3.4670
4.4095
4.4957

0.0
0.0

—0.020
—0.025
—0.035

0.0
0.0

—0.130
—0.106
—0.142

0.393
0.239
0.307
0.016
0.012
0.018
0,0
0.0
0.0
0.0
0.0
0.0

0.086
0.088
0.144
0.174
0.224
0.076
0.092
0.067
0.142
0.24S
G.S62
0.463
0.584
0.137
0.179
0.219
0.087
0.083
0.130
0.156
0.102
0.124
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remaining elements as simple metals (Z'=Zo).
Two quantities of special interest here are the rela-
tive amount of additional charge depleted from the
d region of each core,

(Z"—Zo )/Z,

and the relative magnitude of the new orthogonali-
zation hole,

(Z' —Z)/Z .

It can be seen from Table I that the former quanti-

ty is less than 0.15 except in the case of the noble

metals, where it becomes several times larger.
Likewise, (Z*—Z)/Z remains acceptably small in
all but Cu, Ag, and Au, increasing to something on
the order of 0.5 for these metals. The latter is very
revealing and, in point of fact, symptomatic of the
basic difficulty one has in treating the noble metals
as having completely filled d bands. The large
(Z' —Z)/Z represents a relatively large redistribu-
tion of d-electron charge from inside to outside the
outer-core region, which is physically just the ef-
fect of unfilling the d bands. The practical prob-
lem in the noble metals comes in trying to accom-
modate this sizable shift in terms of the (assumed
small) first-order density 5n„,i.

An interesting connection can also be made be-

~,.i I ka&&A I ~-i
(E Evol)

(32)

in which case, for example, the matrix element

& k+ q ~

w(E-„}
~

k ) is the form factor on the con-

stant energy surface E=ek. Taking the first ener-

gy derivative of Eq. (32), one obtains

dw(E) ~-i I 6 & & 61~:i
dE (E Evol)2

Properly summing & k
~
dw(ek )idE

~

k ) over k
states then exactly reproduces Z*—Z:

(33)

tween our new definition of the orthogonalization
hole and the concept of the depletion hole in model
potential theory, which has recently been general-
ized to empty- and filled-d-band metals by
Dagens. ' ' In model potential theory, the mag-
nitude of the depletion hole is related to the first
energy derivative of the model potential. In the
GPT, the appropriate analog of Dagens's so-called
resonant model potential is the energy-dependent
pseudopotential

w(E)=v+ g (E E"")—~P )&P
a=c,d

+ X(~-iliad&&61+H c )
d

Z' —Z= „&k ip i
k)dk+ „,i dk

k&k& k~&k~ d (e-„Ed")— (34)

In Dagens's approach, the second term in Eq. (34)
becomes the quantity he calls —Zd~~, so that the
precise relation is Z' —Zo ———Zd~~. It is

noteworthy, however, that the values Bagens has
calculated' ' for —Zd~i in the noble metals and

Ca differ substantially from Z' —Zo in Table I.
In the noble metals his —Zd„~ is actually several

times larger than our Z*—Zo (compounding the

basic difficulty mentioned above), while in Ca his

value is about one-half of ours. As discussed in

Sec. III, the reasons for this appear to be related to
Dagens's modeling of the hybridization integral
&k

~

b,„,i( Pg).
Equally as important as the insight offered by

our new definition of the orthogonalization hole is

the formal significance of Eq. (21) for n, h to the
internal structure of the GPT as a whole. Specifi-

cally, there is now an intimate relationship between

n,h and the structure-dependent part of the hybrid-
ization potential when 5V„~, is given by Eq. (14).

I

As shown in Appendix A, the entire contribution
of b„, , to the second-order total energy reduces to
the simple electrostatic interaction

—g f ii,h(r —&i)5V„,(r —R;)dr . (35)

This replaces the relatively complicated series of
terms generated in the formalism of paper I [e.g.,
Eqs. (66) and (67)]. Furthermore, since 5Vst~, it-
self can be expressed in terms of fundamental
quantities, via Eq. (14), the additional contribution
(35}may be readily absorbed into the existing
framework of the theory. The actual energy
derivation which accomplishes this task parallels
that given in paper I and is also briefly discussed
in Appendix A. %e concentrate here only on the
new forms that our characteristic functions assume
in the optimized GPT and the relationship of these
results to the ones obtained in paper I.

The three major components of the total electron
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density are still defined by Eq. (2), with 5n„,i(q)
now divided into orthogonalization-hole and
screening terms according to Eqs. (21)—(28). The
new orthogonalization-hole quantities may be

directly calculated from these equations, while
comparably explicit formulas for the screening
density n„,(q) are obtained from Eq. (27) above
and Eqs. (47)—(54} of paper I:

4 ivp(k q) hi(k, q)
n„„(q)= dk+ — gk

(2tr} k&kp e~
k k+q F k k+q

where

(36)

with

ivp( k, q ) —= & k+ q I
ivp

I
k &

="«)+ X ( -—E"")&k+ql&.&&&.lk&+X(&k+ql~.. Ik &&& Ik&+ ),
c=c,d

(37}

v(q}=v;o,(q)+, [1—G(q)][n,b(q)+n, (q)],
and where

& ". + q I ~-i I dd & &61~-i I
k &

hi(k, q)=
d Evol

In the usual way, Eqs. (36) and (38}represent
simultaneous coupled equations for n„,(q) and v(q)
and may be combined to eliminate v (q) and find
n«r(q) As ab.ove, one has quite generally the re-
placements

(40)

(39)

I

smaller structure-dependent contribution E„~,:

Ebind E 01+Estru (43)

We define E„,to include the final two terms in
Eq. (2) plus the structural component of the elec-
trostatic energy,

EP Ed" (41)
E" '=N 'E (Z')+ „(Z'e)2/Rw—s . (44)

Etot =+(Ebind+Ecore } ' (42)

The valence binding energy in turn can be divided
into a large volume contribution E„,] and a much

in all hybridization terms translated from the re-
sults of paper I. This remains true throughout the
optimized GPT formalism. The actual quantita-
tive effect of these latter replacements is, however,
quite small and by themselves would not be espe-
cially significant.

To discuss the total energy as given by Eq. (3),
we first separate out the very large but uninterest-
ing core energy (per atom) E „from the valence
binding energy (per atom) Eb;„d..

Thus

E„,= E",, '+ g'
I
S(q)

I F(q)

+ —, g'v, i(R;}, (45)

Ep W[E„., +E,.„+—,
',' (Z'e)'/Rws]— (46)

for the energy constant in Eq. (2).
The volume-dependent energy E„,~ has the gen-

eral form given by Eq. (69) of paper I (Ref. 19),

where the prime on the final sum now excludes the
R; =O term. Note that the definitions (42) —(45)
imply the further relationship

E„„i=Er, +E,b+ f „ iv)'(k, O)[1+p(k)]d k
(2&)3 k &kF

ivli'(k, O)+hi(k, O)
+ f hi(k, O) 1+p(k) — „„dk

k&kF e k
—Eg' (47)
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where p(k) =
& k

~ p ~

k & and Er, is the free-electron binding energy

Er, ——Z—ep+Ze„,(n„„;f) —(Z—e) /Rws, (48)5 5

from Fq. (77) of paper I. As in paper I, wIi'(k, 0) is defined as the q =0 limit of wo(k, q) with the full po-
tential U replaced by the zero-order pseudoatom potential

~Pa =UImf+ UIOn

The quantity E,h in Eq. (47) is a small self-energy correction which takes account of the finite size of the
orthogonalization hole:

9 (Z' —Z) e i (Z' —Z)e rE,h = ——— + —, u,h(r) v,h(r) —
3 dr,

~ws ' ' '
Rws

(51)

in place of Eq. (70) of paper I and

where u,h(r) =4mr n,h(r) and v,h is the direct Coulomb potential arising from n, h Eq.uation (50) replaces
Eq. (62) of paper I.

The new energy-wave-number characteristic I' and overlap potential v„o~ now revert to more symmetrical
and compact forms in which there is no explicit appearance of extra terms arising from the structure-
dependence of the hybridization:

2Qv [wo(k, q)] 2h ](k,q)wo(k, q)+[hi(k, q)]
I'(q) = ——dk+ dk

(2m. )' k~"r e-—e- - k'kk k+q ( p
g-+ g-+

k k+q

2~e Qo
I G(e)[n. (e)I'+ [1—«e) ]in...(q) 1'I

q

vol(
~
Ri Rj

~

)= g—' 4~d~de(eF &ri-
d

r

I „ IS~v[(eh g~")IiJ3(k—)+2hi~'(k)]+gj'hJ3(k)Idk

b,j[2h j4'(k)+h ji'(k )]
e-—Edk

i i & j i j (Z —Z) j+( core+2noh)Vnnc-core+noh Voh Vnnc
ZQ

(52)

in place of Eq. (71) of paper I, where we have
maintained the shorthand notations

n'vj—:I n(r —R;)v(r —Rj)dr,

& rtrd
~
6„,i ~

k & & k
~
h„g

~ pd &

hji'(k) =
Evol

k

and

and where

jiJ4(k)=&6 Ik&&k I ~.oi I
4'& .

Here ittd and P& are d states centered on the sites i
and j, respectively. We continue to handle the spe-
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cial two-center matrix element k~d' by the procedure
developed in paper I, namely as the integral

AJJ= f g(r —R)[ui (ir —R;i)
—U~, (

~

r —R
~
)]P„(r—R;)dr .

O.ISI -I
I

i
i
1

0.02O -
1

1

O.O15—

Rnd

0~ scr~~scr
in addition to Eqs. (40) and (41). This is a rather
remarkable result and quite likely more general
than the special cases of filled and empty d bands.
We suspect, in fact, that the result is independent
of the filling of the d bands and hence applicable
to transition metall', although we do not as yet
have an explicit proof of this supposition.

In addition to the formal simplicity of Eqs. (51)
and (52), these expressions more closely reflect the
relative importance of the structure dependence of
the hybridization to calculated physical properties.
In Fig. 3 we show the normalized energy-wave-
number characteristic (with F in Ry a.u. )

(55)

FN(q) = (q Qo/4mZ' )F—(q).
for Zn calculated from Eq. (51) and those obtained
in paper I both with and without the effects of
5st~c included. The same comparison is made in
Fig. 4 for the overlap potential of Zn. From these
results, one can see that the apparent effect of6„,on the characteristic functions is much less
in the present formalism than in the formalism of
paper I, although clearly still significant. Of
course, since the optimized GPT equations given
above are, apart from the replacements (40) and
(41), only a mathematical transformation of the re-
sults of paper I, almost the same calculated physi-
cal properties are obtR1ned from e1thef formalism.

Here the accuracy of Eq. (53), whose m =0, 1, and
2 components are the direct analogs of the familiar
tight-binding matrix elements —ddo. , —ddt, and
—dd5, is further tested through band-structure cal-
culations, as discussed in Sec. IV below.

It is interesting to note that our new total energy
expressions, Eqs. (42) —(53), have the same forms
they would had we simply ignored the structure
dependence of the hybridization and retained our
original definitions of the orthogonalization-hole
and screening densities, i.e., n,h and n„„making
only the replacements (40) and (41). In other
words, one can view the entire effect of b,«~„. as
being achieved by the simple substitutions

& oh~~oh (54)

0.010—

I

1.O
I

2.4

tilk)

I I

2.O
I

3.2

FIG. 3. Normalized energy-eave-number characteris-
tic I"'~(q) for Zn as calculated from the present opti-
mized theory via Eq. (51) (curve marked 0) and from
the formulation of paper I (Ref. 7) both vnth (curved
marked R) and without (curve marked S) the structure
dependence of' the hybridization included.

This is shown in Tables II and III for Ca and Zn,
respectively.

The range of physical properties considered in
Tables II and III, as well as below, has been ex-
panded over paper I to include full consideration

I
I

L
Zinc

2.1—

-2.0—

/
/
/I

/
/

/
/

/
I

l

O.IO 0.05 1.OI 1.$5 1.10
I

1.15 1.20

FIG. 4. Overlap potential u,i(r) for Zn, where d~N is
the fcc nearest-neighbor distance and the notation is
otherwise the same as Fig. 3.
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TABLE II. Calculated properties of Ca with four different treatments of hybridization in the generalized pseudopo-
tential theory (GPT). Quantities listed include the cohesive energy E„h (Ry), equilibrium lattice constant a (a.u. ), bulk
modulus B (Mbar), resistivity of the liquid metal p~ (p,Q cm), fcc-bcc phase-transition temperature T, (K), the fcc, bcc,
and ideal hcp values of E„,(Ry), Brillouin-zone-boundary phonon frequencies v(q) (10' Hz), and zero-point vibra-
tional energy Eph (Ry). Remaining energies are given in Ry.

Hybridization:
Volume

Structure

Band structure
X4 —1 )

X4 —X)
L2 —I )

L2 —L)
EF—I )

None
0
0

0.36
—0.01

0.28
—0.29

0.35

Paper I
hp,
0

OPT'
Paper I

hp,

Present

0.36
0.07
0.28
0.05
0.30

Experiment MJWb

0.34
0.09
0.30
0.07
0.30

Cohesion

Eblud

E,]

Q

—1.430
0.100

11.0
0.29

—1.475
0.146

—1.478
0.148

—1.480
0.150

10.7

0.22

—1.458d

0.135'
10.6'

0 15'

0.165
10.0

0.17

Liquid Transport:

PL. 9.8 31.5 31.5 31.5 23.0g

Structural stability:
T=0 phase

high-T phase
Tc

~bcc ~fcc
Estruc Estruc

hcp fcc

hcp (1.63)
bcc
195

0.000 34
—0.000 31

fcc
bcc
660

0.001 67
0.000 80

fcc
bcc
590

0.001 75
0.00090

fcc
bcc
582

0.001 69
0.00091

fcc'
bcc'
721"

5.92
4.24
5.77
2.57
0.001 75

Lattice dynamics
v(q): L[100] 5.91 5.37 5.30

T [100] 3.99 3.88 3.84
L[111] 5.92 5.22 5.14
T [111] 2.43 2.36 2.33

0.001 71 0.001 60 0.001 58 0.001 64'

'All calculations, except of the lattice constant, refer to the observed density (a =10.6 and Qo ——294.5).
Reference 18. All calculations refer to the computed equilibrium density (a =10.0 and Qp=251. 4) and the fcc struc-

ture.
'Calculated for the observed fcc structure.
dReference 21.
'Reference 22.
fReference 23.
~At the melting temperature of the metal from Ref. 24.
"Reference 25.
'Inferred from the observed Debye temperature Tz ——230 K by the Debye formula Eph 8 k+TQ.

of the band structure and cohesion. This allows us
to now make a direct comparison with the density-
functional calculations of MJW in addition to a
comparison with experiment. We shall elaborate
on these results in greater detail in Sec. IV. We
wish only to emphasize here the very good overall
description that the optimized OPT provides for

the properties of Ca and Zn once a full treatment
of the hybridization has been taken into account.

III. NOBLE METALS AND PARTIALLY
FILLED d BANDS

We now turn our attention to the more challeng-
ing case of the noble metals. Originally, we con-
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TABLE III. Calculated properties of Zn with four different treatments of hybridization in the generalized pseudopo-
tential theory (GPT). Notation and units are the same as in Table II.

Hybridization
Volume

Structure

Band structure
X4 —I ]

X]—X4
X5—X)
L2 —I )

L]—Lp

I25 —I i

EF—I I

None
0
0

0.68
0.12
0.0
0.54
0.03
0.22
0.72

Paper I
hp,
0

GPT'
Paper I

hp,
I

Present

0.68
0.23
0.11
0.54
0.13
0.20
0.77

Experiment Ms~b

0.72

0.12
0.55
0.16
0.20
0.82

Cohesion

Ebind

a
8

—2.144
0.107
7.36
0.58

—2.126
0.088

—2.136
0.098

—2.137
0.099
7.46
0.63

—2.111'
0.099f
7.43~

0.60'

0.129
7.30
0.82

Liquid Transport:

pz. 18.3 38.9 38.9 41.2 37 4"

Structural stability:
Stable phase

bcc fccE, —Est
hcp fcc

Estruc Estruc

hcp (1.64)
0.003 11

—0.00052

hcp (1.72)
0.005 46

—0.00095

hcp (1.94)
0.005 60

—0.001 19

hcp (1.96)
0.005 71

—0.001 28

hcp (1.86)

Lattice dynamics
v(q): L[100] 4.83 5.33 3.89 3.92

T [100] 3.55 3.48 2.77 2.76
L[111] 4.77 5.55 4.03 4.08
T [111] 2.62 2.77 2.53 2.57

0.001 50 0.001 58 0.001 22 0.001 23

All calculations, except of thc lattice constant lefcl to the obscrvcd dcnslty (a =7.43 and Qp= 102.7).
Reference 18. All calculations refer to the computed equilibrium density (a =7.30 and Qp ——97.16) and the fcc struc-

ture.
'Calculated for the fcc structure.
In the quantities X& —X4 and X5—X&, the upper and lower X& energies, respectively, are used.

'Reference 21.
Reference 22.

IReference 23. The c/a axial ratio is in parentheses.
"At the melting temperature of the metal from Ref. 26.

sidered these metals to represent the ideal testing
ground for the filled-d-band limit of the GPT.
Our initial applications, ' in fact, were generally
encouraging in this regard, although the calculated
results were certainly not of the quality seen in
Tables II and III. Nonetheless, we expected that
subsequent refinements in both the theory and its
implementation would greatly improve the situa-
tion. This has not proven to be the case. %Phile

such refinements have been steadily forthcom-
ing ' ' and have had a large positive impact on the
application of the GPT to other metals, basic diffi-
culties with the noble metals persist until one prop-
erly accounts for the unfilling of the d bands.

As suggested in Sec. II above, the inherent prob-
lems with a filled-d-band treatment of the noble
metals are intimately related to the makeup of the
electron density. The GPT implicitly demands
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nunif =Z~+p (58)

for r &Rws, and is set to zero (to preserve charge
neutrality) for r & Rws. The core density,

(59)

where the sum is over occupied inner-core and d
states, is then calculated self-consistently in the
presence of n;r, using atomic boundary conditions
on the inner-core states and applying the localiza-
tion potential v~ to the d states through the
Schrodinger equation

with

(T+ „+0 )~P }=E"~P }, (60)

0, a=c
» &A~ I

Ui —
I
da&

(61)

and
0, i &Rws

u~uu(r) = ' (62)
Vp(r/ Rws 1), r—&Rws .

The r dependence of u~ as r~uo gives the d
states convenient Gaussian-type tails while the de-

gree of localization is controlled by the single con-
stant Vp. One may usefully think of Vp as impos-
ing an effective boundary condition on P&(r ) at
r =Rws. As Vo —+ 00, the anti-bonding-like condi-
tion

4(Rws)=0 (63)

is obtained, while as VO~O the bondinglike condi-
tion

~A(Rws) =0
Br

(64)

is approached (although never actually reached in
practice). The intermediate Andersen condition

Rws 8'd(Rws) = —34«s) (65)

gives a d state corresponding to the approximate
center of the d band and can be obtained by iterat-

that the zero-order pseudoatom density,

pa unif+ core &

represents a good first approximation to the actual
electron density in one Wigner-Seitz cell of the
metal, so that the first-order oscillatory density

5n„,~
is indeed small. In actually constructing the

pseudoatom, the uniform density is taken at its
value in the metal,

D2(X5)=—co, (67)

and the bottom of the d band (the Xi level in the
fcc structure), as given by the bonding condition

D2(Xi) =0, (68)

where the logarithmic derivatives are evaluated at
r =Res

(iii) For filled (or partially filled) d bands, the d
basis states P~ should actually correspond to the d
band in the tight-binding sense. That is, the ener-

gy EP should mark the center of the d band, so
that condition (65) is approximately satisfied, and
the hg should correctly describe the structure of
the d band.

For ideal applications (e.g., Ca and Zn) a sub-

stantial range of Vp will work with (i) being the

most important of the above criteria to be satisfied.
In the case of empty-d-band metals, vp~ is indepen-

dent of P~ and hence Vp, so that criterion (ii) is an

insensitive test, while criterion (iii) is of no impor-
tant concern. For filled-d-band metals, P~ is na-

ing Vo.
The arbitrariness in U~ and Vp simply reflect

the arbitrariness in selecting a basis state, in this
case t4. As we have discussed previously, ' there
is a built-in insensitivity in the OPT to the choice
of Vp over wide ranges of values. In practice, one

seeks optimization and the following criteria
represent the practical requirements of a suitable

range:

(i) The d states P~ must be localized to the de-

gree that the effective strength of the hybridization
potential 6 is minimized or at least weak, as mea-

sured by the matrix elements ( k
~
h„,~ ~ P~ ) and b,j

and the requirement

(66)

This necessitates a substantial value of Vp normal-

ly Vp)10 Ry. *

(ii) The zero-order pseudoatom electron density
must be adequate to produce a good overall band

structure for the metal. In particular, the position
and width of the d band must be correctly estab-

lished. A simple and direct test of this can be
made through the logarithmic derivatives Di(E) as-

sociated with the pseudoatom potential vp which
can be readily compared against those of a self-

consistent band-structure potential. The critical
points of comparison are the top of the d band (the

Xs level in the fcc structure), as marked by the an-

tibonding condition
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oo, empty-d -band metals

25 Ry, full-d -band metals ' (69)

and, except for the noble metals, these values have
been maintained throughout this paper.

This ideal situation is to be strongly contrasted
with that in the noble metals. If one insists on
keeping the d states completely occupied, so that
Z=1, then it is impossible to simultaneously satis-
fy all three of the above criteria. This can be seen
from Fig. 5, where we have plotted (dashed lines)
the top (Xs) and width (X5 —Xs) of the 1 band in
Cu vs Vo, as determined by Eqs. (67) and (68), and
compared the results against the values calculated
from a self-consistent band-structure potential, as
obtained by the linear-muffin-tin-orbitals (LMTO)
method. One sees that although our calculated
position and width of the d band vary slowly (ap-
proximately logarithmically) with Vo, they only
asymptotically approach the band-structure results
as VO~O, remaining too large for Vo & 0. On the
other hand, criterion (iii), as measured by Eq. (65),
is satisfied for Vo ——5.4 Ry, while criterion (i) re-
quires Vo ) 10 Ry. Thus a good electron density

turally well localized, so that not only is u~, weak-

ly dependent on Vo but the d band is also very nar-
row. Consequently, neither (ii) nor (iii) are
discriminating tests. Our now considerable experi-
ence with such cases ' * has led to the universal
prescription

1(), —ImI gg(e~)tan-'
7T' E~"+ReI ~q(cz) eI—

(70)

where I ~(E) is the so-called d-state self-energy
and the Fermi level e~ is determined by the free-
electron formula

fP 3m Z
m o

(71}

and band structure in the noble metals necessitates
a spatially delocalized d state ( Vo-0), while a
weak hybridization potential demands a highly lo-
calized d state ( Vo & 10 Ry). This basic difficulty
cannot be overcome through any modification in
the form of the localization potential vi and is, in
fact, only resolved when the d states are allowed to
unfill.

We have extended our zero-order pseudoatom
method to permit partially occupied d states and a
self-consistent valence Z. The additional equations
governing the self-consistency follow quite natural-

ly from the general formalism set forth in Ref. 2
and are essentially the relations describing the in-
teraction of a bare ion placed in a free-electron gas.
The number of d electrons Z~ retained by the ion
is given by the phase-shift condition

10
~z(E~)

~LNTO

K
y05-

I I

X,

Z+Zd =Z.—Z. (72)

where Z, is the number of inner-core electrons per
ion. The self-energy I ~(E) can be directly ex-
pressed in terms of d-state hybridization quantities.
Specifically,

Additionally, Z and Z~ are constrained by the con-
servation of electrons condition

0.3—
XI -XI

„~lNTO

I ~(E)=— HJ de-„if(E,E—}, —
k

I

2.5
I I

votly) where H denotes principal value and

FIG. 5. Top (X5) and width (X5—X3) of the d band
in Cu vs localization potential parameter Vo in Eq. (62),
as determined from logarithmic derivatives of the zero-
order pseudoatom potential U„, via Eqs. (67) and (68).
Bashed lines refer to a pseudoatom with filled d states
and a valence Z =1, while solid lines refer to a pseudoa-
tom with partially-filled d states and a self-consistent
valence. Shown for comparison are the corresponding
self-consistent linear-muffin-tin-orbital (LMTO) values
of Ref. 28.

with

and

f(e-„,E)=Qok [(E—Eq"}P(k)+b,„„(k)]2,

(~
~

A oi ~ yg) 4ir~ oi(k}I2 (k)

(74}

(75)

(76)
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Here Y2 (k) is the usual 1=2 spherical harmonic.
Equations (70)—(72) then represent three simul-
taneous equations in three unknowns: Z, Zd, and

eF F. or a full self-consistent treatment, these
equations must be iterated to solution in conjunc-
tion with the defining Eqs. (57)—(62) of the pseu-
doatom.

We have calculated such self-consistent pseudoa-
toms for Cu as a function of Vc. The new self-
consistent valence Z so obtained varies little with

Vo but remains significantly greater than one in all
cases: 1.66 &Z & 1.78 for 2.5 & Vc & 250 Ry. More
importantly, the large redistribution of electrons
accompanying the unfilling of the d states leads to
just the lowering of band energies needed to satisfy
all three excellence criteria stated above, as can be
seen in Fig. 5. In particular, the position and
width of the d band now match the LMTO values
for sufficiently large Vc to satisfy both criteria (i)
and (iii). The Andersen boundary condition (65) is
met, in fact, for Z =1.66 and Vo ——14.6 Ry and
adequately represents the desired condition of op-
timization. We have tested the sensitivity of these
results by repeating the pseudoatom calculations in
Cu under pressure (i.e., at smaller atomic volumes),
where corresponding LMTO logarithmic-derivative
data was available to us, maintaining Eq. (65) in
each case. A comparison of resulting LMTO and
pseudoatom band energies at several different den-
sities is made in Fig. 6, where we have also includ-

1.0

Copper
l.ITS

~ Plaudoatom

ed calculated values for the bottom of the p band
(the L2 level in the fcc structure), as determined

by

Di(L2 )=0. (77)

The agreement is clearly excellent in every respect,
confirming the significance of our approach.

We are now in the process of extending the full
optimized GPT of Sec. II to partially-filled-d-band
metals. This work will be reported in later papers,
but one available result is of direct interest to the
present discussion, namely the magnitude of the
oscillatory density 5n„,~. As required by the for-
mal structure of the theory, this quantity is indeed
found to be small when a self-consistent valence is
used as the basis for the calculation. This is
shown in Table IV, where approximate values for
the componenets of the total electron density, Eq.
(2), are given at the midpoint between nearest
neighbors in Cu. For comparison, corresponding
values obtained from a comparable filled-d-band
description of Cu are also listed.

%e have further calculated zero-order pseudo-
atoms across the 3d transition series from Ca to
Zn. The self-consistent valences so obtained are
plotted in Fig. 7, where it is seen that Z remains
relatively constant (Z-1.5) until one reaches Zn,
with both Ca and Cu appearing as natural
members of the transition metals. With respect to
our present concern, the crucial factor which
separates Ca from Cu is the different quantitative
relationship between the self-consistent and nomi-
nal free-atom values of Z in the two cases. For
Ca, the former valence is 1.59 while the latter is 2,
so that maintaining an empty-d-band description
of the metal implies a maximum first-order elec-

0.0—
K

Normal
Oenllty

0.70
I

L00
)

2.002AO

aws{I.u.)

FIG. 6. Band energies in Cu under compression as
determined from the logarithmic derivatives of self-
consistent pseudoatom [Eqs. (57)—(62), (65), and
(70)—(72)) and LMTO (Ref. 28) potentials via Eqs. (67),
(68), and (77).

Qon unit

2Qpn core

Qo5nyg]

Qpn

Filled d band

(Vp ——5.4 Ry)

1.00
1.66
0.86
3.52

Paritally-filled d band
( Vp ——14.6 Ry)

1.66
1.26
0.19
3.11

'Note Qpn„„;f——Z.
"Calculated as sn„,~

——(Z Z)/00+2—n,h+ ( n„, ),
where (n, ) is a spherical average of Eq. (26).

TABLE IV. Approximate components of the normal-
ized electron density, Qpn, at the midpoint between
nearest neighbors in fcc Cu as calculated from a filled-
d-band treatment of the metal and from a partially-
filled-d-band treatment with a self-consistent valence.
In both cases, the basis d states satisfy the Andersen
boundary condition (65).
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I I I I I I I I I I

2.0 — 0 0 0 O 0 0 0 0
Copper

V ~
~ O~~~«e

K
P 0N—

0.02—

o Free Atom

~ Self-consistent
Psendoatom

t I I I I I I I I I I I

Ca Cc TI V Cr In Fe Co 01 CI Za

0.0

-0.01—

0.0 1.0
l

2.0

klkF

gr

3.0 i.

FIG. 7. Self-consistent valence across the 3d transi-
tion series as obtained from the pseudoatom defined by
Eqs. (57)—(62), (65), and (70)—(72). Shown for compar-
ison is the nominal free-atom valence.

tron density perturbation of -20%. For Cu, on
the other hand, one has Z =1.66 self-consistently
versus Z= 1 for a filled-d-band description, a
much larger 66%%uo perturbation. Finally in Zn, the
self-consistent valence is 2.28 as compared to a
free-atom value of 2, only a —15% perturbation.
Thus our self-consistent valence description of the
metal confirms the adequacy of the empty- and
filled-d-band treatments of Ca and Zn, respective-
ly, while separating out Cu for special treatment.

To complete the argument, we should comment
on the recent work of Dagens and co-workers, 13—17

which suggests, on the surface at least, a different
conclusion. Dagens's resonant-model-potential
(RMP) scheme is the first serious attempt to
develop a model potential analog to the GPT and
the success of the full-d-band limit of the RMP in
calculating such things as phonon frequencies and
structural energies in the noble metals is both
noteworthy and surprising in light of the above
discussion. Our purpose here is not a detailed
comparison between the GPT and RMP schemes,
which, in any case, would be difficult due to the
vastly different details of the two methods, but we
can offer a tentative explanation of the apparent
paradox. The success of Dagens's full-d-band
treatment of the noble metals, we believe, stems
from the fact that the RMP scheme is ultimately a
parametrization which relaxes certain inherent
theoretical constraints, in particular, the con-
straints among the spatial extent of the d states,
the electron density, and the form of the hybridiza-
tion integral h„,i(k). Dagens begins with an arbi-
trarily chosen form for b,„,i(k), namely

' 1/2
Ad kp

h„g(k) =
2 j2(kRM)

kp —k

FIG. 8. Hybridization integral 6„,1(k) in Cu for
Z =1 under various conditions of d-state localization.
Curves 1, 2, and 3, respectively, refer to Vo ——5.4, 100,
and Oo Ry in Eq. (62). Curve 4 is the corresponding re-
sult of Dagens (Ref. 15).

where A~ and R~ are parameters and kpR~ is the
first nonvanishing zero of the l =2 spherical Bessel
function j2. He maintains a nonoverlapping repre-
sentation (i.e., v, i ——0) by constraining the model
radius RM to be less than half of the nearest-
neighbor distance in the metal. In the GPT this
corresponds to an ultralocalized d state Pd of ap-
proximately the same spatial extent. Localizing Pd
has the effect of pushing out A„,i(k). in k space, as
shown in Fig. 8, so that Dagens s hybridization in-
tegral is much more extended than even that aris-
ing from the Vo~ ao limit of our scheme. In the
context of our previous discussion surrounding Eq.
(34), this explains Dagens's relatively large calcu-
lated values of Z~ for the noble metals, since an
integral of b,„,i(k) over k & kz is involved. At the
same time, of course, it creates the theoretical
dilemma of a very poor zero-order electron density
and a large 5n„,i, as we have discussed. Dagens's
scheme effectively sidesteps this difficulty by not
separating zero- and first-order components of the
electron density in determining his remaining
parameters (e.g., 3&). Instead, he requires only
that angular components of the total electron den-
sity be constrained through the matching of ap-
propriate logarithmic derivatives to an external cal-
culation of the same in the interstitial region sur-
rounding each ion. To obtain the latter, he intro-
duces a so-called %igner-Seitz neutral atom'
{similar to our zero-order pseudoatom) with a d
component of electron density established not by
an antibonding condition like (63) [or Pd(R~) =0,
which would be consistent with his h„,i], but rath-
er by the bonding condition (64). As we have seen
above, this procedure does indeed produce a good
electron density with Z= 1, although clearly such a
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construction has no self-consistent link to the
RMP theory itself. Nonetheless, RMP parameters
so determined are expected to yield the correct in-
terstitial density and this in turn appears to be in-
strumental in Dagens's success.

In the context of the optimized GPT, it is also
possible to obtain a workable, although less reli-
able, filled-d-band description of the noble metals
through ad hoc adjustment in the formalism of
Sec. II. This can be done via the following recipe:

(i) In the spirit of Dagens, choose a highly local-
ized d-state representation (Vo »10 Ry) and drop

Uolte

(ii) Compensate for the fact that EP (and also
the core levels E,"') then lie way too high in energy
by adding to E~N' a large negative core shift E„;

(iii) Treat E„as an adjustable parameter to ob-
tain the best overall description of the metal.

For illustrative purposes, we have adopted here
such a scheme with Vo ——100 Ry and
E„=—0.4317, —0.3293, and —0.4035 Ry in Cu,
Ag, and Au, respectively. This scheme was used
to obtain the noble-metal results listed in Table I
and is also applied to the calculation of physical
properties in Sec. IV below. With regard to the
latter, the level of achievement of our original
work on the noble metals' is approximately
recovered. It is entirely possible that a more suc-
cessful recipe could be found, vis-a-vis that of
Dagens, but we have not pursued this since it
seems clear at this point that any filled-d-band
treatment of the noble metals is at best a stopgap
measure.

IV. APPLICATIONS

We summarize in this section extensive calcula-
tions that we have made on the properties of the

22 nontransition metals. Except in the case of the
noble metals, these results represent an unaltered
application of the optimized GPT described in Sec.
II, with the only external input to the calculations
being the atomic number Z„ the valence Z, and
(for convenience} the atomic volume Qo. As in pa-
per I and above, we treat the heavy alkali and
alkaline-earth metals in the empty-d-band limit of
the theory, the group-IIB metals in the filled-d-
band limit and the remaining metals in the
simple-metal limit. For the noble metals, we
present results obtained from the ad hoc filled-d-
band scheme introduced in Sec. III and, in the case
of Cu, our currently available results from the
partially-filled-d-band extension of the optimized
GPT, also discussed in Sec. III.

A. Band structure

We have shown above that certain critical
features of the band structure can be estimated
from the logarithmic derivatives associated with
the zero-order pseudoatom potential. A more com-
plete (and slightly more accurate} description of
the band structure can be obtained by setting up a
full secular determinant of the hybrid nearly-free-
electron tight-binding (H-NFE-TB) form. To do
this, one begins with a pseudo-Hamiltonian matrix
expressed in a plane-wave, localized-d-state repre-
sentation. Following Pettifor, ' one can then make
a set of three exact transformations to effectively
orthogonalize the basis functions and remove all
energy dependence from the off-diagonal matrix
elements. For the case of narrow d bands, one can
also simplify the exact result by neglecting in each
entry of the transformed matrix all terms higher
than first-order in smallness. Then the secular
determinant for the band structure E(k) has the
simple H-NFE-TB block structure

[ek o —E(k)]5o G,+(k —G~ wo
~

k —G'&

-&q, ~~„., ~

k-G & [Ed E(k}]4m—g e '&NIi
'

I
~

I
((~'&

j~
=0, (78)

where G and G' are reciprocal-lattice vectors. In
this determinant five d states and all reciprocal-
lattice vectors are spanned, but in practice only a
small number of the latter are required to give a
good description of states below the Fermi level.

For our purposes, the important feature of Eq.
(78} is that the matrix elements which directly

I

determine the band structure are a subset of those
which govern the characteristic functions of the
Sec. II. Thus comparing the predictions of Eq.
(78) with the full local-density energy-band results
of MJW gives us an independent check on the reli-
ability with which we calculate these matrix ele-
ments and hence the characteristic functions them-
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selves. This comparison is made in Table V. In
obtaining our results in Table V, as well as Tables
I and II above, we have employed the simplest pos-
sible analytic description of the states involved in
each case. (The specific formulas used are given in
Appendix B.) Bearing this in mind, the agreement
between the GPT and MJW band energies is gen-
erally excellent. The most notable exceptions are
the ad hoc filled-d-band results on the noble met-
als, where the d band has been pushed too low in
energy in each case by the core shift chosen.
Smaller core shifts would obviously do better for
the band structure, but at the same time would
worsen the description of other properties.

B. Electron density

Another interesting property for comparison
with the calculations of MJW is the electron densi-

ty. From our perspective, the most revealing place
to test this quantity is in the interstitial regions be-
tween iona. In Table VI we list our values for the
normalized total electron density, Qon, and its
components, evaluated at the midpoint between
nearest neighbors in the 22 metals under considera-
tion here. Also given in Table VI are MJW's cal-
culated values of Qon In. this case, the compar-
ison is somewhat less precise than with other prop-
erties because of the spherical averaging (i.e., the
muffin-tin approximation) inherent in the MJW
calculations. Physically, one expects a local max-
imum in the electron density at the midpoint be-
tween nearest neighbors, so that the MJW values
should represent an approximate lower bound at
that point. This expectation is clearly borne out in
Table VI, where one sees that our calculated results
generally follow the trends of MJW but are larger
in magnitude. Also evident from Table VI is the
fact that our internal theoretical requirement

TABLE V. Selected band energies for 22 nontransition metals, as calculated from the generalized pseudopotential
theory (GPT) and compared against the theoretical results of Moruzzi, Janak, and Williams (MJW, Ref. 18). The
values listed refer to the bcc structure in the alkali metals and Ba and to the fcc structure otherwise. All energies are
given in Ry.

EF—I ) Ed —1 l' L2 —I i Lj —L2" X4 —I ) X, -X4b X5—X)
GPT MJW GPT MJW GPT MJW GPT MJW GPT MJW GPT MJW GPT MJW

Li
Na
K
Rb
Cs
Be
Mg
Ca
Sr
Ba
Cu'
Cu'

Ag
Au
Zn
Cd
Hg
Al
Ga
In
Tl
Sn
Pb

0.30 0.26
0.24 0.26
0.16 0.18
0.15 0.16
0.13
0.93
0.52
0.30
0.27
0.23
0.72
0.71
0.56
0.63
0.77
0.64
0.65
0.84
0.81
0.70
0.68
0.80
0.77

0.63
0.59
0.43

0.30 0.57
0.26 0.61

0.52
0.69 0.49
0.69 0.30
0.53 —0.03

—0.13
0.80 0.21
0.63 —0.05

—0.02
0.82
0.84 —0.42
0.68 —0.49

—0.41
—0.98
—0.80

0.48
0.48
0.18

0.21
—0.08

—0.31
—0.47

0.56 0.47
0.39 0.39
0.28 0.30
0.26 0.29

0.61 0.61
0.57 0.61
0.48 0.50
0.51
0.54 0.55
0.44 0.44
0.44
0.49 0.48
0.50 0.52
0.42 0.42
0.40
0.42
0.40

0.34
0.46
0.36
0.44
0.13
0.11
0.13
0.01

—0.05
—0.00

0.01
—0.06
—0.05

0 37e

0.37'

0.16
0.11

0.02
—0.04
—0.03

0.30 0.41
0.02 0.04

—0.05 —0.07
—0.07 —0.10

0.81
0.81
0.66

0.80
0.77
0.65
0.69
0.68 0.72
0.58 0.56
0.55
0.61
0.60
0.50
0.48
0.49
0.46

0.62
0.64
0.52

0.76 0.67
0.50 0.51
0.36 0.34
0.33 0.28

0.39
0.52
0.43
0.51
0.23
0.21
0.23
0.10
0.07
0.10
0.11
0.06
0.07

0.26
0.31
0.29
0.40
0.11

0.18 0.11
0.15

0.08
0.04
0.04

0.40
0.08 0.06

—0.07 —0.09
—0.08 —0.08

0.27
0.27
0.26

0.12
0.11

'The MJW results refer to Ed ———,I » +—,I ».
L~ and X~ are the lower levels for Ca and Sr and the upper levels otherwise.

'Partially-filled-d-band GPT treatment with a self-consistent valence of Z =1.66,
Ad hoc filled-d-band GPT treatment, as described in Sec. III of the text.

'J. F. Janak, A. R. Williams, and V. L. Moruzzi, Phys. Rev. B 6, 4367 (1972).



DENSITY-FUNCTIONAL FORMULATION OF THE. . . . II 1771

TABLE VI. Approximate components of the normalized total electron density, Qpn, at
the midpoint between nearest neighbors in 22 nontransition metals, as calculated from the
generalized pseudopotential theory (GPT) in the manner of Table IV. Band-structure values
of Qpn obtained from the work of Moruzzi, Janak, and Williams (MJW, Ref. 18) are shown
for comparison. Results refer to the bcc structure for the alkali metals and Ba and to the
fcc structure otherwise.

Metal

Li
Na
K
Rb
Cs
Be
Mg
Ca
Sr
Ba
Cu'
Cub

Ag"
Au'
Zn
Cd
Hg
Al
Ga
In
Tl
Sn
Pb

Qpn Unif

1.00
1.00
1.00
1.00
1.00
2.00
2.00
2.00
2.00
2.00
1.66
1.00
1.00
1.00
2.00
2.00
2.00
3.00
3.00
3.00
3.00
4.00
4.00

2Qpn core

0.00
0.03
0.10
0.15
0.26
0.00
0.01
0.08
0.15
0.55
1.26
1.43
1.92
2.78
0.67
0.95
1.39
0.01
0.19
0.38
0.58
0.15
0.26

GPT

Q06n„,)

0.07
0.07
0.09
0.10
0.10
0.14
0.15
0.11
0.18
0.09
0.19
1.07
0.91
1.10
0.27
0.30
0.38
0.21
0.12
0.21
0.23
0.22
0.26

Qpn

1.07
1.09
1.19
1.25
1.36
2.15
2.16
2.19
2.33
2.64
3.11
3.50
3.83
4.88
2.94
3.25
3.77
3.22
3.31
3.59
3.81
4.37
4.52

MJW

Qpn

1.08
1.11
1.20
1.23

2.03
2.12
2.16
2.26

2.73
2.73
2.88

2.68
2.80

2.98
2.75
2.88

'Partially-filled-d-band GPT treatment with a self-consistent valence of Z = 1.66.
"Ad hoc filled-d-band GPT treament, as described in Sec. III of the text.

unif &&~ va]

is well satisfied in all cases except the filled-d-band
noble metals.

C. Cohesion

The calculation of the cohesive energy E„i, in

the context of the GPT was discussed at length in

Ref. 8. In that paper we reduced E„i, to a differ-

ence in the free-atom valence energy, Eb';„'d, and
the corresponding metal binding energy plus zero-

point vibrational energy, Eb d+Eph.
atom 0

coh Ebind Ebind Eph .

The specific calculations of E„;„~and E~i, in Ref. 8

were made on the basis of the characteristic func-
tions of paper I. As shown in Tables I and II
above, the effect of optimization on the former
quantities is typically small, a few percent or less,
so that the detailed analysis and comparison of

E„i,with MJW made in Ref. 8 remains essentially
intact and will not be repeated here. In the case of
the noble metals, only first-order calculations of
Eb;nd were considered previously. These have now
been extended to normal second-order calculations
within the framework of our ad hoc filled-d-band
scheme. The net impact is only 10% or less in
each case. A11 of our present calculated values of
E„h are summarized and compared with experi-
ment in Fig. 9.

%e have now extended our investigation of
cohesion to include the volume dependence of E„h
in order to obtain both the equilibrium lattice con-
stant and the bulk modulus. The former is deter-
mined in the usual way by requiring that the inter-
nal pressure,

vanish at equilibrium, while the latter is obtained
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Qo 2kF

pl. ——C
3 I a(q)[w(q)] q dq,3

i
0

(83)

2.D

2.D 3.$
Experiment

FIG. 9. Cohesive energy as calculated from the gen-
eralized pseudopotential theory (GPT) via Eq. (79) and
compared against experiment (Ref. 22). Results for the
noble metals were obtained from the ad hoc filled-d-
band scheme discussed in Sec. III of the text. All values
are given in eV.

by the method of homogeneous deformation
through the defining relation

(81)

In both cases we calculate E„z on a suitable mesh
and take the volume derivatives numerically. We
have so far made actual calculations of the lattice
constant and bulk modulus for only a few selected
metals, but we expect that these results are
representative. Values for the prototype empty-d-
band metal Ca and the prototype filled-d-band
metal Zn were given above in Tables I and II,
respectively, and show reasonably good agreement
with both MJW and experiment. The effect of hy-
bridization on cohesion is seen to be quite impor-
tant in Ca and smaller but still significant in Zn.
Favorable results have also been obtained in the
simple metals Be and Al, the only other cases test-
ed to date.

D. Resistivity of the liquid metal

Electron transport properties for the metals
under consideration here depend on the form fac-
tor

w(q)=wo(k~, q)+hi(kz, q) .

A simple calculation which offers some test of
w(q) is that of the liquid-metal resistivity by the
well-known Ziman formula '

where C is a constant and a(q) =N
~
S(q)

~

is the
so-called intensity function. Near the melting
point of the metal, a (q) is very nearly a universal
function and for q & 2k' can be calculated to a
first approximation by the familiar liquid hard-
sphere model with an assumed packing density of
0.45, as proposed by Ashcroft and Lekner (AL).
Using the AL intensity function and solid-density
form factors and volumes, we have calculated pL
for the 22 nontransition metals. These results are
displayed and compared with experiment in Fig.
10. Corrections for the true a (q) function and
liquid volume are both typically in the 10—15%
range, so that the agreement for the lighter non-
noble metals is reasonable. The larger discrepan-
cies for the heaviest metals (Au, Hg, Tl, and Pb)
are possibly explained by our nonrelativistic treat-
ment of these elements. However, similar discrep-
ancies are also seen in Sr, Ba, and Cd. These may
reflect to some extent a sensitivity of the calculated
results to the hybridization potential. Certainly,
the effect of hybridization on p~ is quite large in
both the heavy alkaline-earth metals (a factor of 3
to 6) and the group-IIB metals (a factor of 2 to 3),
as seen in Tables I and II.

Experllieet

FIG. 10. Liquid-metal resistivity as calculated from
the generalized pseudopotential theory (GPT) via Eq.
(83) and compared against experiment (Refs. 24 and 26)
at the melting temperature of the metal. The result
marked Cu (Z =1.66) was obtained from the partially-
filled-d-band extension of the GPT, while the remaining
noble-metal results were obtained from the ad hoc
filled-d-band scheme, as discussed in the text. An ex-
perimental resistivity has not been reported in the litera-
ture for Be. Also not shown are the calculated (154)
and measured (338) resistivities in Ba. All values are
given in pQ cm.
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In the noble metals, both the unfilling of the d
band and the liquid volume effect are also impor-
tant factors. We have calculated pL for Cu on the
basis of our partially-filled-d-band treatment of the
metal, using a T-matrix generalization of Eq. (82)
for the form factor. As shown in Fig. 10, this
reduces the calculated resistivity by about one-
third. A similar reduction is also expected in the
noble metals by doing the calculation at the true
liquid volume, ' and clearly in Cu this is about
what is needed to reconcile theory and experiment.
It is of interest to point out that our present
filled-d-band form factors for the noble metals are
actually very similar to those of our original treat-
ment, ' and the much higher calculated values of
pL, obtained here are due not only to the use of
solid-density parameters but also to the intensity
function employed. Our previous calculations of
pL ln the nobler metals' used the experimental
a (q) of Wagner et al., " which are substantially
different than the AL function, especially for Cu.
A number of more recent structure factor measure-
ments on liquid Cu,"however, suggest the former
data to be in error and the AL a (q) to be approxi-
mately correct.

E. Phonon spectrum

The calculation of the phonon spectrum ' '
directly tests the structural component of the total
energy, E„„through the characteristic functions
F(q) and u,i(r). We have computed both fcc and
bcc phonon frequencies v(q) along the [100], [110],
and [111]symmetry directions in all 22 of the met-
als under investigation here. Except for the noble
and relativistic metals, our results generally display
the observed canonical behavior and may be quan-
titatively judged by the values of v(q) at the
Brillouin-zone boundaries. These values are given
in Table VII and are compared with experiment in
the cases where data is available. The alkali metals
Na, K, and Rb show expected good agreement but
the frequencies for the other light simple metals,
Li and Al, are 10—30% too large. In the latter
cases, however, one can proportionally reduce the
magnitudes of the calculated frequencies by modi-

fying the choice of pseudopotential. This can be
done most successfully in the case of Al, where a
small core shift E„added to the E""in Eq. (37)
will bring the overall calculated phonon spectrum
into 3% agreement with experiment. The model-
potential studies of Dagens, Rasolt, and Taylor
on selected simple metals suggest a possible physi-

cal significance to this core shift. These workers
found, in the context of the density-functional for-
malism, that a model potential adjusted to repro-
duce ionic-potential phase shifts led to phonon fre-
quencies that are also too large by 10—30% in Li
and Al, but that a model potential adjusted to
reproduce the nonlinear screening electron density
of a single ion lowered the calculated frequencies
and in the case of Al led to the same good agree-
ment with experiment. The implication here is
that the core shift is folding into the pseudopoten-
tial neglected higher-order nonlinear screening ef-
fects.

In the case of the noble metals, the calculated
zone-boundary phonon frequencies from our ad
hoc filled-d-band scheme are also reasonable, but
the shapes of the spectra are not adequate, espe-
cially in Cu, as shown in Fig. 11. In fact, the
present Cu phonon spectrum is quite similar to our
original result with experimentally unseen, Kohn-
type anomalies in all the same places. (Compare
Fig. 11 with Fig. 11 of Ref. 3.) These features are
not present in the RMP calculation of Upadhyaya
and Dagens, ' ' who found generally good agree-
ment with experiment in both Cu and Ag. We are
hopeful that the partially-filled-d-band treatment
of the noble metals will greatly improve the GPT
situation, but the necessary characteristic functions
F(q) and u,i(r) are not as yet available to be tested.

In the heaviest simple metal Pb neither the mag-
nitude nor the shape of the observixi phonon spec-
tra is well produced by our calculation. As seen in
Table VII, the computed zone-boundary frequen-
cies range from 8% to 55% too large. In additior
the experimental phonon branches have rather
unique features which are not obtained in our cal-

$.0—

M
K 5.0

I 4.0

L0 0.5
Normalized Wave number

FIG. 11. Phonon spectrum for Cu as calculated from
the ad hoc filled-d-band scheme of Sec. III of the text
{solid lines} and compared against experiment {points;
Ref. 42).
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GPT

TABLE VII. Longitudinal (I.) and transverse (T, TI, and T2) phonon frequencies at the
Brillouin-zone boundaries in 22 nontransition metals, as calculated from the generalized

pseudopotential theory (GPT) and compared against experiment. All values are in 10' Hz.

Metal GPT Expt. GPT Expt. Expt. GPT Expt.

bcc structure:
Li
Na
K
Rb
Cs
Ba

fcc structure:
Be
Mg
Ca
Sr
Cu'
Ag'
Au'
Zn
Cd
Hg
Al
Ga
In
Tl
Sn
Pb

L[100]
27.74
8.02
5.30
3.48
7.82
4.41
4.03
4.46
3.28
2.55

10.74
3.62
3.51
2.76
2.79
2.44

7.25'
4.95"
4.61"

9.67'

1.86'

L[100]
10.60 8.82'
3.64 3.S8'
2.17 2.21~

1.35 1.385'
1.04
2.81

T[100]
20.65

5.68
3.84
2.43
5.79
3.38
2.83
3.15
2.23
1.70
6.93
1.32
1.69
1.29
1.48
1.38

5.13
3.4
2.75

5.81

0.89

L[110]
11.87 9.00
3.82 3.82
2.34 2.40
1.49 1.50
1.19
3.23

L[111]
27.75
7.99
5.14
3.41
7.33
4.20
3.94
4.59
3.39
2.65

10.82
3.92
3.68
2.91
3.51
2.95

7.30
5.1

4.70

9.64

2.185

T) [110]
2.18 1.90
0.85 0.93
0.47 0.55
0.27 0.34
0.21
0.47

+111]
14.37
3.82
2.33
1.48
2.95
1.83
1.49
2.78
1.87
1.45
4.95
1.17
1.20
0.86
1.14
0.96

3.42
2.25
1.86

4.18

0.89

T2[110]
6.30 5.70
2.57 2.56
1.50 1.50
0.92 0.96
0.68
1.87

'Ad hoc filled-d-band GPT treatment, as described in Sec. III of the text.
At 98 K from Ref. 37.

'At 90 K from Ref. 38.
~At 9 K from Ref. 39; the T~[110] frequency is at 4.3 K from Ref. 40.
'At 12 K from Ref. 41.
At 49 K from Ref. 42.
'At 296 K, estimated from Fig. 1 of Ref. 43.
"At 296 K, from Ref. 44.
'Measured at 80 K by Ref. 45 and quoted from Table 2 of Ref. 46.
'At 100 K from Ref. 47.

culation, while at the same time certain anomalies
are calculated which are not observed. This sug-
gests to us that our nonrelativistic treatment is
probably not adequate for describing the phonons
in any of the heavy metals (Au, Hg, Tl, and Pb).

We have not as yet attempted to calculate pho-
non spectra for other lattice structures, but this
would clearly be of interest in both the hcp metals
(Be, Mg, Zn, and Cd) and the polyvalent metals
with complex structures (Ga, In, and Sn), where
ample experimental data is available for compar-
ison.

F. Structural phase stability

An even more demanding test of the characteris-
tic functions F(q) and U,~(r) comes in the calcula-

tion of the relative energies of different crystal
structures and the attempt to predict stable phases
and phase transitions. The energy differences in-
volved are indeed small: 10 to 10 Ry, but a
clear and favorable pattern emerges if one is dis-
criminating in one s application. To show this, let
us first remove from consideration those metals for
which trouble is expected a priori. These are (i)
the heavy metals (Au, Hg, Tl, and Pb), because of
neglected relativistic effects, (ii) metals with strong
pseudopotentials and/or likely covalent effects (Li,
Be, Ba, and Sn), because of neglected higher-order
terms, and (iii) the remaining noble metals (Cu and
Ag), brause of the unreliability of our ad hoc
filled-d-band scheme. This leaves 12 of our origi-
nal 22 metals. Predictions of low- and high-
temperature stable phases and phase-transition
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temperature for these 12 metals are given in Table
VIII and compared with experiment. The low
temperature T =0 predictions are based on a com-
parison of the structural energies for fcc, bcc, sc
(simple cubic), diamond, and hcp (1.5 &c/a & 2,0)
structures at constant volume. Zero-point vibra-
tional energies were determined to be negligible ex-

cept in the alkali metals, but even there the results
are not qualitatively altered. Extension of the cal-
culation to finite temperature was made by consid-
ering the structural component of the total (elec-
tron plus phonon) Helmholtz free energy,

F„,=E„,+(kgT/N)

Xgln I 2 sinh[Ii v(q)/2k' T]I, (84)

and determining whether or not the bcc structure
is stabilized at high temperature in the manner of
Ref. 5.

The overall agreement with experiment exhibited
in Table VIII is good, with the few qualitative er-

rors easily explained. Consistent with experiment,
we find that in all metals where a high-temper-
ature transition to the bcc structure is not observed

(Mg, Zn, Cd, Al, Ga, and In), the bcc structure is
inherently unstable, as the entire Ti [110]branch
of the bcc phonon spectrum has imaginary fre-

quencies. But in metals which do exhibit the bcc

structure at some temperature (Na, K, Rb, Cs, Ca,
and Sr), no such instabilities are found and reason-
able transition temperatures T, are also predicted.
In that regard, our incorrect prediction of stable
T =0 hcp structures for the heavy alkali metals
can be viewed as a small quantitative error in the
calculation of T, . Indeed, had we done the calcu-
lations in these metals at slightly smaller atomic
volumes, we would have found the observed bcc
structure stable at T =0. We furthermore find
that for those metals exhibiting distorted structures
(Zn, Cd, Ga, and In), the fcc structure is also un-

stable against distortion, with imaginary phonon
frequencies occurring in the low-q modes of one or
more of the transverse branches. In the cases of
Zn and Cd, the structure dependence of the hybrid-
ization appears to account for the observed high
c/a axial ratios, as shown in Table III. In Ga and
In, the observed orthorhombic and tetragonal
structures have not as yet been considered, but this
would clearly be of interest.

Of the ten metals we have excluded from con-
sideration in Table VIII, only for Li and Be are the
correct T =0 structures obtained from a similar
treatment. Both of these metals are hcp at low
temperature, but the observed c/a axial ratios (1.64
in Li and 1.57 in Be}are not accurately predicted
(1.61 in both Li .and Be), and in Be there is some
evidence' that the qualitative ordering of structur-

TABLE VIII. Predicted low- and high-temperature stable phases and transition tempera-
ture T, (K) in 12 nontransition metals, as calculated from the generalized pseudopotential
theory (GPT) and compared against experiment. For hcp phases the c/a axial ratio is given
in parentheses.

Metal

Na
K
Rb
Cs
Mg
Ca
Sr
Zn
Cd
Al
Ga
In'

hcp (1.63)
hcp (1.63)
hcp {1.63)
hcp (1.62)
hcp (1.63)

fcc
fcc

hcp (1.96)
hcp (1.88)

fcc
sc
fcc

hcp (1.63)
bcc
bcc
bcc

hcp (1.62)
fcc
fcc

hcp (1.86)
hcp (1.89)

fcc
Ga-I
fct

T=0 Phase
GPT Expt.'

bcc
bcc
bcc
bcc
hcp (1.63)
bcc
bcc
hcp (1.96)
hcp (1.88)
fcc
sc
fcc

bcc
bcc
bcc
bcc
hcp {1.62)
bcc
bcc
hcp {1.86)
hcp (1.89)
fcc
Ga-I
fct

High-T Phase
GPT Expt. ' GPT

43
33
37
25

none
582
516

none
none
none
none
none

Expt.

-36
none
none
none
none
721'
830'

none
none
none
none
none

'Reference 23.
"Reference 48.
'Reference 25.
The observed Ga-I structure is orthorhombic and was not considered in the GPT calcula-

tions.
'The observed fct structure is a tetrahedral distortion of the fcc structure and was not con-
sidered in the GPT calculations.
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al energies is not correct either. In the case of the
noble metals, the structural energies obtained with
our ad hoc filled-d-band scheme show very similar
behavior to those we found previously, with dis-
torted hcp structures favored to occur.
Dagens, ' ' on the other hand, has found the ob-
served fcc structure to be stable in RMP calcula-
tions.

It is also instructive to consider the phase stabili-

ty question as a function of pressure. In our origi-
nal work on the alkaline-earth metals, we calculat-
ed the slope of the bcc-fcc phase line, dT, /dP, up
to about 20 kbar in Ca and Sr. For both cases we
found a positive slope in qualitative agreement
with experiment for Ca, although not for Sr.
Optimized GPT calculations confirm the Ca re-
sult, but Sr as yet has not been reinvestigated. In
addition, both GPT and self-consistent I.MTO cal-
culations of the structural energy differences up to
tenfold compression have very recently been made
on the third-period simple metals Na, Mg, and
Al. ' The two methods show excellent qualitative
agreement in their respective predictions as a func-
tion of pressure.

V. CONCLUSIONS

With the optimization of the GPT, we believe

we have come close to realizing the full potential
of generalized pseudopotential methods for empty-
and filled-d-band metals. The optimized GPT not
only adds simplicity, elegance, and computational
efficiency to the density-functional formulation of
the theory presented in paper I, but it has allowed

us to discern more clearly the limitations of the
empty- and filled-d-band treatments. The heavy
alkaline-earth and group-IIB metals have been con-

firmed to be ideal for applications in these limits.
» Ca, Sr, Zn, and Cd, d-state hybridization effects
are both important and accurately described by the
optimized GPT set forth in Sec. II. In contrast,
we have shown that rather severe difficulties occur
in a filled-d-band treatment of the noble metals,
with ad hoc adjustments required to provide even a
marginal description of these materials.

Our optimized version of the GPT, of course,

does not preclude the possibility of even further re-
finements and we fully expect these to occur in all
limits of theory. For example, in the manner of
Dagens, Rasolt, and Taylor, it may well be possi-
ble to fold single-site, higher-order nonlinear
screening effects into the pseudopotential and hy-
bridization potential. At this point, however, we
anticipate, as in the case of simple metals, that
such refinements will be in the form of fine tuning
of the optimized formalism we have developed
here.

The more important priority at present is to ful-

ly develop the partially-filled-d-band extension of
the GPT, which we briefly introduced in Sec. III.
We have shown very clearly, in the case of Cu at
least, that allowing the d states to unfill and a
self-consistent valence to be achieved in zero-order
provides an excellent starting point for the descrip-
tion of the metal. The development of correspond-
ing characteristic functions has been accomplished
for the electron density and is currently in progress
for the total energy. This latter work will be re-
ported in detail at a later time.

Note added in proof. Since the completion of
this work, experimental phonon spectra in Ca have
been reported by two separate groups: U.
Buchenau, H. R. Schober, and R. %agner, J. Phys.
(Paris), Colloque C6, 395 (1981), and J. Zarestky,
C. Stassis, B. N. Harmon, and R. M. Nicklow,
Bull. Am. Phys. Soc. 27, 274 (1982). Both sets of
measurements are in very good agreement with

optimized GPT predictions, as will be discussed in
a future publication. The former experimental
zone-boundary frequencies for the L [100],
T[100],L [111],and T[111]phonons in Tables II
and VII are approximately 5.0, 3.7, 4.8, and 2.3,
respectively.
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APPENDIX A

In this appendix we outline the modifications in the total energy derivation of paper I that lead to Eq.
(35) and Eqs. (43)—(52) of the text. Our starting point is Eq. (21) of paper I for the total energy E„,.
Dropping, as in paper I, the final group of negligible terms in that equation and further separating off the
core energy as in Eq. (42) above, gives
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3
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5nvai + i g core" nuc-core ~

l,J
(Al)

where we have used the definition (16) and the notation is otherwise the same as in paper I. The term

g 5Eu includes first- and second-order band-structure contributions to E„, and is of the form
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where Er», represents all additional second-order terms, which remain the same as in paper I except for the

general replacements (40) and (41). The second-order contribution of the structure dependence of the hy-

bridization to the total energy is contained entirely in the first-order components of Eq. (A2). The term in-

volving ( k
I Wp —V

I
k ) can be manipulated as in Eq. (60) of paper I to yield exactly
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The corresponding hybridization term can be analyzed by noting
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where we have expanded the denominator in powers of (pd I 5V„,
I pd ). The dots in Eq. (A4) represent

(negligible) third- and higher-order terms. Writing out her~, in terms of 5Vsr~, and comparing the terms in

large parentheses in Eq. (A4) with the definition of h2(k, r) in Eq. (22), leads immediately to the result

2Qp (k
I
6

I pd )(pd I
6

I
k ) 20p

+N i f g dk=+N f [hi(k, O) —J h2(k, r)5V„,(r)dr]dk
(2ir)' k~&kF d (2n. )

p

The final term in Eq. (A3) and the final term in Eq. (A5) then combine to give the net second-order contri-
bution (35) from the structure dependence of the hybridization. Equation (A2) thus reduces to

+5E =N, fk k wIi'(k, O)[1+p(k)]dk+ f hi(k, O)
2IIo, - - - - wIi'(k, O)

(2~)3 k &k+
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ftunt f+U pa gft oh5 Vstruc + n untf( Vunif ~p unif ) +Erest
I

Using Eq. (A6) in Eq. (Al), subtracting and adding a term , 5—noh5V,h, and using the following results:

(A6)
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leads immediately to Eqs. (43)—(52).

(Z' —Z)
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a

APPENDIX B

We summarize below simple analytic formulas
derived from Eq. (78) and used to calculate various
band energies in Tables I, II, and V. For the I
point, retaining a single plane wave (G=O) puts
the bottom of the conduction band at

r, =&OI w,
I
o&=w, (o,o), (81)

while the d-like I 2s and I ~2 states in the fcc struc-
ture have energies

Then one has

Xi ———,[& (kp)+Eg+D]

+ I —,
'
[g (k, ) E,—D]'+40~5'„.,(kp) j '",
3 9

X2 ——E~ ——,dd o+2ddm ——,dd 5,
X3——Ed +3ddo. —4ddm —3dd5,

X4 ——8(kp),

(85)

(86)

(87)

(88)

and

I 2s ——Ed+3ddo. +4dd~+5dd6 (82)
and

Xs ——Ed —3ddo —ddt,

where we have defined kp ——2m. /a,
I )2

——Ed+ 2 ddo+6dd~+ —,dd5 . (83)

(84)

For the X point in the fcc structure, two plane
waves are adequate (

I
6

I
=0, 4m/t2) in Eq. (78).

The quantities ddo. , dd~, and dd5 represent theI =0,1, and 2 components of the integral —b,g, as
given by Eq. (53), with

I
R; —Rz I

equal to the
nearest-neighbor distance. The energy Ed marks
the center of gravity of the unhybridized d bands
and to a good approximation one finds in practice

3 2E~-=5I2s+ —,I ~2.

and

D = , ddcr 6ddfr+ —,d—d5, —

A (k) =eh +wp(k, o)+wp(k, —2k),

(810)

(811)

(812)8(k) =eh +wp(k, o)—wp(k, —2k),
with wp(k, q) and b,„,t(k) given by Eqs. (37) and
(75), respectively.

Well outside of the d bands [i.e., E(k) »E~ or
Ed »E(k)], one may usefully fold down the secu-
lar determinant (78) into the plane-wave form

[e- -—E(k)]5-- + & k —6
I

wp
I
k —G'&+/ & "—&

I ~.oi I 4 & &4a I ~.oi I
"—6'&

k —G GG' E(k )—Ed
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where now only the reciprocal-lattice vectors 6
and G' are spanned. Equation (813) can be used
to obtain the following band energies at the L
point in the fcc structure, retaining two plane

waves (~G
~

=0, ~3 2m/a):

Xi =W(ko) (816)

and

—dd5=0 and the X~ and I.i levels of interest are
given by

L, = —,[A(k, )+Ed] +t —,[A(ki) —Ed]

+4(orb, „,i(k i ) )
' (814)

and

L2 ——8(ki), (815)

where k, =V 3n/tt In E.q. (814) the plus sign is

for ez & Ed and is appropriate for the upper L,
state in filled-d-band metals, while the minus sign
is for Ed & ez and is appropriate for the lower L i

state in empty-d-band metals.
In the simple-metal limit, h„,~

——ddo =ddt.

Li ——A(ki) .

Finally, the true Fermi level Ez can be approxi-
mately calculated to first order as

E,=;+&k,
~
w.

~
kF &

& kF
I

~ o1 I (bd & & kd I
~ o1 I

k F &

+
d eF —Ed

=eF+wo(k+, 0)+h, (kF, O)

for empty- and filled-d band metals and as Ep =ep
for partially-filled-d-band metals with a self-
consistent valence.
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