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A new computational approach to calculating the electronic structure of thin films is

presented in detail. The local-density-functional formalism in the linear combination of
atomic orbitals approximation is used. The self-consistent solution of the resulting secu-

lar equations is made tractable through the use of efficient fitting procedures to approxi-

mate the charge density and its cube root. Feasibility is demonstrated by calculational re-

sults for an atomic hydrogen monolayer and an atomic beryllium monolayer. Compar-

ison of the beryllium results with known experimental data on the beryllium surface and

other calculations gives respectable agreement.

I. INTRODUCTION

The study of the electronic properties of solid
surfaces is becoming increasingly more important
as techniques dependent on surface properties take
pivotal roles in modern technology. Experimental
interest in surfaces has heightened correspondingly
in recent years, with greatly refined data coming
about in large measure because of improved vacu-
um techniques. The theoretical study of the elec-
tronic properties of extended systems thus faces the
challenge to develop new methods for understand-

ing the behavior of the surfaces of these systems.
One theoretical approach explored by several
groups' is to calculate the electronic properties
of a thin layer (an infinitely periodic structure in

two dimensions and of finite thickness in the direc-
tion normal to the plane of periodicity) with linear
combination of atomic orbitals (LCAO) methods

using the Hartree-Fock-Slater local-density-
functional method.

Here we present a new computational approach
to calculate the approximate two-dimensional band
structure and total energy of such a thin-layer sys-

tem. A preliminary description of this approach
(hereafter referred to as I), has already been

presented, with sample results for a simple atomic
hydrogen monolayer using only s-type Gaussian
basis functions.

The thin-layer system used possesses both sur-
faces and the periodicity in directions parallel to
the surface which is characteristic of a cleaved

bulk solid. A two-dimensional wave vector, Bril-
louin zone, etc., therefore exist and can be utilized.

By increasing the thickness of the slab the interac-
tions between the surfaces decrease and the proper-
ties of the semi-infinite solid may be approached as
a limit.

In the LCAO treatment of a local density model
such as Xa (for a review, see Ref. 5), the most dif-
ficult problem is efficient construction of the secu-
lar matrix. Most of the computational difficulties
arise from the need to evaluate matrix elements in-

volving p'~ (r) (where p is the electronic charge
density). A method of fitting p'~ to a linear com-
bination of two-dimensionally periodic fitting func-
tions in a manner equivalent to the scheme of
Dunlap et al. for molecular systems is developed
here. The forxnalism derived by Dunlap and
Mintmire for treating the charge density in the
molecular case cannot be used directly for extended
systems due to the long-range nature of the
Coulomb interaction, which results in singular in-

tegrals in the limit of a two-dimensionally periodic
slab. Here we devise a scheme equivalent to the
original molecular-density scheme but with proper
limiting behavior. Our work is similar to the tech-
niques discussed by Feibelrnan, Appelbaum, and
Hamann; the primary differences arise from the
fitting techniques utilized. The results may be ex-
tended easily to other local density models.

The methodology is tested on two systems: the
atomic hydrogen monolayer and the atomic berylli-
um monolayer. Both s- and p-type Gaussian atom-
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ic orbitals (AO's) were used. The results for the
hydrogen monolayer demonstrate the feasibility of
the method and illustrate some of the effects of
changes in basis sets and in the number of k
points considered in the surface Brillouin zone.
The atomic beryllium results further demonstrate
the feasibility of the method, as well as allowing
some comparison with experimentally determined
results such as the work function and Auger spec-
tra of the beryllium surface.

A two-dimensionally infinite periodic system
may be defined by the existence of two primitive
lattice vectors R+ and R2, which generate a group
of translations (R

~

R=IR, +R„rn and a are in-

tegers). Any translation by a member of this
group yields a point equivalent to the original
point. Using these two primitive lattice vectors,
we may construct a parallelopiped unit cell as

0
R

I

R0 2 0'

FIG. 1. Illustration of parallelopiped unit cell for the
two-dimensionally periodic monolayer. Note that the
unit cell extends to infinite distance in both directions
parallel to the z axis.

shown in Fig. 1.
We have extended the LCAO-Xa method of

Dunlap and Mintmire to these two-dimensionally
periodic systems. In this approach, the variational
principle is used in minimizing the local density
functional per unit cell, which has the form (in
Hartree atomic units)

E[p]=——, f d rgn;(k)'p, "(r;k)V''0';(r;k)+ f d rp(r) —g + —, f d3r' P--

Zg Z$+ —, g —- —+ f„d'r [pt(r)&, t(r)+pl(r) V,.i(r)],,~b ~R, —Rs
~

where V,„f is Slater's Xa exchange potential for
spin"up

&,„t(r)=— 3p, (r)
4m'

PJ(r;k) = g exp(ik. R)UJ(r —R) .
R

and the notation Q indicates an integration over
the parallelopiped unit cell.

The one-electron orbitals %';(r; k ) are created
from a linear combination of Bloch functions

P; ( r; k ) such that

4;(r;k) = g Cp(k)P~(r;k),
J

where the Bloch functions are sums of local func-
tions UJ ( r ),

A discrete set of evenly spaced R points is used to
describe the two-dimensional Brillouin zone by in-
voking periodic boundary conditions. %ithin this
framework we construct the one-electron density
p(r) as follows:

p(r)= g g n;(k)%';(r;k)V;(r;k) .

The variational procedure thus yields a secular
equation of the form

g H „(k)c„;(k)=E;g S~„(k)e„;(k),

where S~„(k) is the overlap integral between Bloch
functions defined by

S „(k)=f d3rg" (r;k)P„(r;k) . (7)

The spin-up effective Hamiltonian matrix elements
are defined as

Zm 3Pt
P„(r;k).
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The exchange fit as a tool for efficient handling of
the analytic behavior of p'~ was originated by
Sambe and Felton with extensions to the analysis
and computational method by Dunlap, Connolly,
and Sabin and Mintmire. In those previous
works the total charge density p( r ) was also ap-
proximated using a linear combination of a set of
charge fitting functions F (r ), called the charge
fit,

p(r)=g f F (r)=p(r) . (10)

The charge fit is introduced to reduce the number
of primitive integrals which must be computed.

For extended systems the fitting functions
G~(r) and F~(r) are composed of periodic sums
of localized functions G (r) and F (r), where a
localized function has the property that

lim r G (r)=0.
T—+00

These periodic sums may be expressed in the form

G (r)=QG (r —R),

The effective Hamiltonian matrix contains a
term with an integral proportional to p' ', one can-
not usually express such integrals in an analytic
closed form. One way of alleviating this difficulty
for molecular systems is to approximate p' (r) by
a linear combination of fitting functions G (r),
called the exchange fit,

p'"(r)=gg G (r) .

charge fit coefficients f~, let us briefly review the
methods for approximation charge densities in the
molecular case according to the procedures of
Refs. 6 and 7. Consider a prototypical molecular
charge density p( r ) such that p decreases more
rapidly than r in the limit of large r. Then de-
fine the electrostatic interaction U of a charge den-

sity with itself to be U = —,[p I p], where

, , pi(r)p2(r ')
[pi Ip2]= f d'r f d'r' (14)

where bp =p —p. Note that for the molecular
case, the fitting functions F are localized and
may be taken as equivalent with the functions I"

The fitting coefficients f„may then be generated
using Eq. (15), again by ordinary inversion.

Applications of these methods to extended sys-
tems requires a few modifications. The fitting
functions F~ are now formed from the periodic
sum of the localized functions F~(r ) as stated in

Eq. (12). The charge interaction expression

[pi I p2] must also be modified to avoid dealing
with infinite terms. The most convenient defini-
tion of this term, if pi and p2 are periodic extended
charge densities, is through the electrostatic in-
teraction peI unit cell:

I.et p be approximated by another density p as de-
fined in Eq. (10). The fitting techniques used in
the molecular case minimize the quantity [hp I bp]
to yield the equation

X[F IF.lf. =[F Ipl

with an exactly analogous relationship for F with
the F~'s. The exchange fitting coefficients g are
chosen using a conventional least-squares fitting
procedure in which minimization of the weighted
sum of the squares of the differences

r 2

gwj p'~ (rj)—gg G (rj) =0
J Nl

yields a matrix equation for the g's which is
solved, conventionally, by inversion. The set of
weights mj. is chosen to approximate numerical in-

tegration values over the unit ce11 of Fig. 1. This
procedure allows a reduction of the total number
of numerical integrations required, compared to a
process not using fitting procedures, by an approxi-
mate factor of X /X„, where X is the number of
orbital basis functions and N„ is the number of ex-
change fitting functions G~(r ).

Before explaining the procedure for choosing the

[pi Ip2]= f„d'r f d'r' (16).

which is analytically integrable in closed form for

Note that Eq. (16) is not identical with Eq. (14),
since the present integration is per unit cell. The
charge interaction term [pi I p2] is still non-

negative for p& ——p2 and p& having no singularities.
In addition, this expression is still invariant with

respect to interchange of pi and p2. This expres-
sion for the charge interaction is also convenient
because it satisfies two conditions:

(1) For F~(r) a periodic function formed from
the periodic sum of localized functions F ( r ) as in
Eq. (12), then

F (r)F„(r ' —R)
[F IF„]= d r d r'

r —r
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F (r) of Gaussian-type functions;
(2) [pi ~ pi] is finite if and only if one or both of

the charge distributions pi and p2 satisfy the
charge neutrality condition

rp r =0.
The first condition is evident upon inspection.

The second condition follows from consideration
of a limiting procedure which begins with a finite
assembly of identical unit cells. The initial assem-

bly is constructed with no embedded voids. The
limiting process then consists of arbitrary enlarge-
ment of the finite assembly, with the infinitely
periodic (in two dimensions) slab the ultimate re-

sult. Any such finite assembly has a periodic
charge density which satisfies the explicit con-
straint on asymptotic behavior required by the de-

finition of the molecular charge-density interaction

[pi ~ p2] of Eq. (14). It then follows from Eq. (14)
that the charge density belonging to a single unit
cell is

Eq. (19), save for the one corresponding to R= 0,
the contribution may be expressed exactly as a
multipole expansion. The behavior of the mul-

tipoles is such that the second condition is satisfied
(see Ref. 10 for details).

Thus the second condition leads immediately to
the observation that Eq. (15) as derived is not us-

able in a direct manner, since the density involved

is purely electronic and manifestly not neutral.
For any finite system Eq. (15) may be rewritten as

p —gfnFn (20)

irrespective of charge neutrality. In the limit
described above, however, the charge interaction
expression becomes that of Eq. (16), and the neces-

sary and sufficient conditions on charge neutrality
come into play with the result that if at least one
of the Fm's is not charge neutral, then the right-
hand factor in Eq. (20) must be charge neutral,
which implies

(21)

where the primed summation indicates a finite
number of terms. In order to carry through a
physically reasonable limiting process the single
unit cell is conceived as being the most nearly cen-
tral unit cell of the finite assembly. Similarly the
origin of coordinates is associated, for convenience,
with the central unit cell. Then for each term of

where

'9m= rFm r dl'p I (22)

We can reduce the problem to one of matrix alge-
bra if we introduce a nuclear lattice charge p~ to
each electronic density, thereby giving the requisite
cell-by-cell neutrality, to the interaction term in
Eq. (15). I.et us consider the identity

p —gf.F. — 1 —gf.n. [F np. I p~l n— piv p —X—f.F.
n 5 n

(23)

The first term of the right-hand side of Eq. (23) is zero according to Eq. (20). Equation (21) plus the addi-
tional requirement that [F —il piv ~ p~] be finite forces the second term of the right-hand side of Eq. (23)
to zero. The term [p~ ~ p —g„f„F„]must also be finite (again by charge neutrality) for thin films; there-

fore Eq. (23) reduces to

Xif [F Imps I
Fn Input ] [Fm Imps I P Piv] = 3m~ ~ (24)

where

~= px f gf F. — (25)

I

is an undetermined constant independent of the in-
dex m in Eq. (25). Restating Eq. (24) in matrix
notation yields

(26)
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where

~mn =[+m 'gmpN I
Fn 'QnpN] ~

=Pm '9 —PN IP P—w]

(27)

(28)

(29)

The solution for the coefficients f is then given

by

f = g [B 'I „(a„+Arl„). (30)

We see that the approximate electrostatic interac-
tion energy defined in Eq. (17) now has the form

U=gf. ~. , gf ~ .f—.— (31)
mn

= [p I p] ,
'

[p I p] —[—p
I piv ]+—, [PN I pn ]—

(32)

which is the electrostatic energy of the combined
electronic and nuclear charges with only the elec-
tron repulsion term being replaced by an approxi-
mate interaction. These fitting procedures have
been implemented computationally; some of the
more pertinent details of the implementation are
discussed in the context of the two applications to
which we now turn.

This set of equations is similar to the equations
resulting from a least-squares-fitting procedure
which includes a linear constraint equation. Thus
we may solve for A, as

zones and their irreducible regions for the square
and hexagonal lattices. The 16 evenly spaced non-

equivalent (by translation symmetry) wave vectors
generated by the above-mentioned periodic boun-

dary conditions are reduced by point-group sym-
metry to seven nonequivalent wave vectors for the
square lattice and four wave vectors for the hexag-
onal lattice [see Figs. 2(b) and 2(e)]. The original
calculation in I indicated that the square-lattice
structure possessed a lower equilibrium cohesive
energy per particle (—0.035 hartrees versus —0.005
hartrees) and thus a stable equilibrium geometry
relative to the hexagonal structure.

More extensive calculations have been performed
using a (3s, lp) orbital basis set where p-type func-
tions with exponents equal to 1.0 were added to the
3s basis as polarization functions. In addition to
the slight improvement in the basis set, a finer
wave-vector grid was used with the number of
nonequivalent (by translation symmetry) points in
the central Brillouin zone increased by 256. This
choice increases the number of nonequivalent
points [see Figs. 2(c) and 2(f)] in the Brillouin zone
from 4 points to 30 points for the hexagonal lattice
and from 6 points to 45 points for the square lat-
tice.

The resulting cohesive energies per particle and
virial ratios are presented as a function of the lat-
tice constant for the square and hexagonal lattices
in Tables I and II, respectively. A graphical
display of the cohesive energies per particle is

III. RESULTS

The atomic hydrogen monolayer was chosen as
the initial test case because atomic hydrogen con-
tains only one electron and may be treated ade-

quately with a small number of basis functions.
Calculations have been performed on two lattice
structures (square and hexagonal) with the value

of a chosen as —, for simplicity. Preliminary cal-

culations were reported in I which used a minimal
basis set of three s-type Gaussian functions taken
from van Duijneveldt. "

The values of the wave vector k were chosen in
I such that all orbitals were periodic over a transla-
tion equal to four times that of any primitive lat-
tice translation. Figure 2 illustrates the Brillouin

(a)

K T'

FIG. 2. (a) Central Brillouin zone for the square lat-
tice and irreducible regions containing (b) six and (c) 45
evenly spaced points. (d) Central Brillouin zone for the
hexagonal lattice with (e) four and (f) 30 evenly spaced
points.
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TABLE I. Calculated results for the square atomic hydrogen monolayer.

Lattice
separation

(a.u.)
Total energy

(hartrees} —V/T
Binding energy

(hartrees) (eV)

2.25
2.50
2.65
2.75
3.00
5.00'
5.00b

100.00

—0.4883
—6.4921
—0.4918
—6.4969
—6.4868
—0.4327
—6.4521
—6.4536

1.867
1.995
2.062
2.103
2.188
2.187
1.934
1.972

—0.0354
—0.0391
—0.0389
—0.0380
—0.6338
+ 6.6202
+ 0.0669

—0.963
—1.065
—1.057
—1.033
—0.920
+ 6.550
+ 0.024

'Non-spin-polarized solution.
"Spin-polarized solution.

made in Fig. 3. The cohesive energies are calculat-
ed as the total energy minus the energy of the
atomic monolayer at a lattice separation of 100 a.u.
As can be easily seen, these results differ markedly
from the results of I. Our earlier inference that
the square lattice is the energetically preferred
geometry at equilibrium is refuted by these more
recent results. Most of the difference between the
two sets of results appears attributable to the in-

crease in the number of Brillouin-zone points, since
the improvement in the basis from a (3s) basis to a
(3s, lp) basis is quite modest compared to the in-

crease of the total number of points in the Bril-
louin zone from 16 to 256.

It is to be noted that both Table I and Table II
contain two sets of results for the lattice constant
of 5.0 a.u. The use of the spin-polarized version of
the computer code at this particular lattice separa-
tion (and only at this particular choice) leads to
two stable (in the self-consistent iterative pro-
cedure) solutions that correspond to a non-spin-
polarized (NSP) and completely spin-polarized (SP)

solutions. %hich result is obtained depends on the
initial choice of fitting coefficients, since the use of
coefficients corresponding to an SP system of over-

lapping atomic potentials yields the SP result,
while starting with coefficients from the NSP state
at 3.0 a.u. yields the NSP result. The NSP and SP
results at a lattice constant of 5.0 a.u. evidently in-

dicate that the bands corresponding to the different
spins collapse at a lattice constant slightly less than
5.0 a.u. This conjecture was tested by calculating
the cohesive energies per particle for both the NSP
and SP modes at lattice constants equal to 6.0, 8.0,
and 12.0 a.u. Figure 4 illustrates the results for
these calculations and demonstrates the apparent
crossing of the NSP state and the SP state at a lat-
tice constant between 4.0 and 5.0 a.u. A similar
phenomenon has been reported for the crystalline
vanadium system which exhibits the same col-
lapse of bands of different spins to a doubly degen-
erate band as the lattice constant is decreased from
the separated atom limit.

Beryllium is an interesting system to study using

TABLE II. Calculated results for the hexagonal atomic hydrogen monolayer.

Lattice
separation

(a.u. )

Total energy
(hartrees)

Binding energy
{hartrees) (eV)

2.25
2.50
2.65
2.75
3.00
5.00'
5.00b

100.00

—6.4823
—6.4917
—0.4924
—6.4922
—6.4892
—6.4378
—0.4563
—0.4536

1.784
1.919
1.990
2.633
2.131
2.229
1.923
1.971

—0.6293
—6.0382
—6.6394
—6.0392
—6.0363
+ 0.6151
+ 6.0027

—6.797
—1.040
—1.073
—1.066
—0.987
+ 0.412
+ 6.072

Non-spin-polarized solution.
bSpin-polarized solution.
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FIG. 3. Cohesive energy per particle vs lattice con-

stant for square (0) and hexagonal (6) lattice struc-
tures of the atomic hydrogen monolayer.

the methods described in this work for several
reasons. Recent experimental measurements of the
work function of the (0001) surface of beryllium by
Green and Bauer' indicate that beryllium has a
work function of 5.1 eV, a value much higher than
previous measurements had indicated. Until the
results of Green and Bauer the recommended value
of.the work function according to the standard
reference' was only 3.9 eV. Although Green and
Bauer attribute this discrepancy in the work func-
tion to possible oxidation of the beryllium surface
in the earlier work, these differences in experimen-
tal results pose a question worthy of theoretical in-
vestigation. The interpretation of certain peaks in
the Auger spectra of beryllium' also poses ques-
tions appropriate for theoretical investigation using
surface electronic structure computational
methods.

In addition to the questions resulting from ex-
perimental study, beryllium is an interesting proto-
type system for studying the surface of metals.
With only four electrons per atom, beryllium
should require relatively modest amounts of com-
putational effort for an adequate treatment of the
surface. Beryllium is only weakly bound as a di-

mer, with a dissociation energy which is experi-
mentally estimated to be about 0.7 eV. ' The weak
binding of the dimer is also indicated by theoreti-
cal calculations such as the configuration interac-
tion calculations by Bender and Davidson, ' which
yield a strictly repulsive ground-state potential-
energy curve, and the self-consistent-pair —cou-

FIG. 4. Spin-polarized and non-spin-polarized.
cohesive energy per particle vs lattice constant for a
square-lattice atomic hydrogen monolayer. Dashed por-
tion of spin-polarized curve is extrapolated from the
solid portion of the line.

pled-electron-pair approximation (SCEP-CEPA)
calculations by Dykstra, Schaefer, and Meyer'
which lead to an estimate of the calculated dissoci-
ation energy as 0.03 eV at an equilibrium separa-
tion of about 8.5 bohr. Hartree-Fock calculations
by Bauschlicher, Liskow, Bender, and Schaefer'9
and by Jordan and Simons indicate the smallest
cluster that exhibits appreciable binding (OA6 eV
per atom) contains four beryllium atoms. This in-
dicates that the cohesive energy of the solid (and
presumably the monolayer as well) is probably due
in large measure to the delocalization and indeed
its extent can be assessed by comparing results for
the infinitely extended monolayer obtained from
the methods described in this work with the bind-
ing energies calculated by Bauschlicher ' on beryl-
lium clusters and with experimental results for the
real surface.

We have performed calculations on the atomic
beryllium monolayer using the (6s,2p) basis given
in Table III. The six s-type functions are taken
from van Diujneveldt's ' 6s basis for beryllium.
The two p-type functions are the same as used by
Bauschlicher in his cluster calculations. Prelimi-
nary calculations on the dimer were performed
with this basis using the molecular I.CAO-Xa pro-
gram and a plot of the binding energy versus the
nuclear separation is presented in Fig. 5. These re-
sults are consistent with the previously mentioned
results of Dykstra, Schaefer, and Meyer, and
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Type

Orbital basis
Exponent Type

TABLE III. Basis sets for the beryllium

Charge fitting
basis

Exponent Type

monolayer.

Exchange fitting
basis

Exponent

0.067 376
0.198210
1.767 558
6.819528

30.827 597
204.906 144

0.509
0.118
0.509
0.118
0.509
0.118

s
X +P
X +g

Z2

Z2

0.134752
0.396420
3.535 116

13.639056
61.655 194

409.812 29
1.018
0.236
1.018
0.236
1.018
0.236

s
X +g
X +JP

Z2

Z2

0.044 9173
0.132 140
1.178 372
4.546 352

20.551 731
136.604 096

0.339 33
0.079667
0.339 33
0.079 667
0.339 33
0.079 667

demonstrate the weak binding of the beryllium di-
mer as well as provide a check on the balance of
the (6s,2p) basis set.

Since beryllium possesses a hexagonal close-
packed structure in the solid, the calculations were
performed on a hexagonal lattice of beryllium
atoms. This structure is equivalent to a single
layer from the (0001) surface of the crystalline
solid. The beryHium lattice has the same
Brillouin-zone symmetry as that of the hexagonal
atomic hydrogen monolayer [Fig. 2(d)j. We used
the same array of 30 nonequivalent points in the
Brillouin zone for the beryllium as for the hexago-
nal atomic hydrogen monolayer calculations.

Table IV presents some results of our calcula-
tions giving the cohesive energies and virial ratios

0.05

(y 0.0
K
LU
X
LU

E9z -0.05-
Ch
Z
5)

-0.1.

(a. U.)

FIG. 5. Binding energy vs internuclear separation for
beryllium dimer.

of the beryllium monolayer as a function of the
lattice spacing. These results and Fig. 6 imply that
the beryllium monolayer has an equilibrium lattice
separation of 4.1 bohr and an equilibrium cohesive

energy of —2.64 eV per particle. Since the virial
theorem is valid for the Xu method, the virial ra-
tio —V/T should equal 2 at the minimum of the
cohesive energy curve where the derivative of the
cohesive energy with respect to the lattice spacing
equals zero. We see in Table IV that the location
of the cohesive energy minimum (predicted by in-

terpolation of the virial ratios to yield a predicted
lattice constant of 4.05 a.u. and an estimated
cohesive energy per particle at that lattice constant
of —2.63 eV) is in close agreement with that of the
actual cohesive curve. These equilibrium results
differ slightly from the bulk equilibrium separation
of 4.321 bohr and equilibrium cohesive energy of
—3.32 eV per particle, but not more than could
be attributed plausibly to the differences between
monolayer and bulk solid beryllium.

Baushclicher ' has performed calculations using
the Hartree-Fock method on various size beryllium
clusters with the same internuclear separation as
the bulk solid. For the various monolayer clusters,
he reports binding energies of + 0.22 eV per parti-
cle for a three atom cluster, + 0.07 eV per particle
for a six-atom cluster, —0.16 eV per particle for a
seven-atom cluster, and —0.63 eV per particle for
a 14-atom cluster. The largest cluster he con-
sidered was a 22-atom cluster in two layers which
yielded a computed binding energy of —0.89 eV
per particle. These cluster results apparently indi-
cate a trend in binding energies as the cluster size
increases which should be consistent with our
equilibrium cohesive energy of —2.64 eV per parti-



LQCAL-DENSITY-FUNCTIONAL METHODS IN TVfQ-. . . 1751

TABLE IV. Calculated results for the atomic beryllium monolayer.

Lattice
separation

(a.u.)

Total energy
(hartrees) —V/T

Binding energy
(hartrees) (ev)

3.80
3.90
4.00
4.10
4.25
4.321
4.50
5.00
6.00

100.00

—14.293 628
—14.296 508
—14.298 019
—14.298 351
—14.297 454
—14.296 885
—14.293 275
—14.275 816
—14.234 844
—14.201 443

1.993 70
1.995 53
1.998 80
2.001 49
2.005 86
2.005 66
2.008 37
2.01493
2.01263
1.99901

—0.092 185
—0.095 065
—0.096 576
—0.096 908
—0.096011
—0.095 442
—0.091 832
—0.074 373
—0.033 401

—2.5084
—2.5867
—2.6278
—2.6369
—2.6125
—2.5970
—2.4987
—2.0237
—0.9088

cle, although one may infer that much larger clus-
ters are necessary for a proper treatment of the
cohesive energy of the beryllium monolayer. This
is a point in favor of our earlier contention that a
primary cause of the binding energy of the berylli-
um monolayer is the delocalization of the electron-
ic charge over many nuclear sites.

Band energies were interpolated for 4096 points
in the Brillouin zone using a scheme adapted from
the method proposed by Monkhorst and Pack for
three-dimensional Brillouin-zone interpolations.
This method uses a discrete Fourier transform over
the 256 evenly spaced points in the complete Bril-
louin zone for which the band energies are corn

puted. Band energies at intermediate points were
then evaluated using the resulting Fourier expan-
sion. Figure 7(a) displays the valence bands and
lower empty bands computed for the beryllium

monolayer at the equilibrium lattice spacing of
4.10 a.u. The shape of the bands resembles quali-
tatively the bands reported by Loucks and Cutler
for crystalline beryllium, if we compare our results
with the solid energy bands for wave vectors lying
in planes parallel to the plane of the periodicity of
the monolayer. One reasonably may assume that
the discrepancy between our bands and those of
Loucks and Cutler is due to the differences be-

tween tht; monolayer and the crystal, and that the
addition of more layers would lead to multilayer
bands more in agreement with those of the crystal-
line beryllium solid. Further work is underway on
calculations involving more than one layer of
beryllium.

We estimate the work function of beryllium
from the negative of the Fermi energy of our cal-
culations. We find that our Fermi energy for the
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FIG. 6. Cohesive energy per particle vs lattice con-
stant for the hexagonal beryllium monolayer.
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FIG. 7. (a) Valence-band structure and (b} total den-

sity of states for the hexagonal atomic beryllium mono-

layer.
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monolayer of —3.80 eV agrees quite well with the
recommended value of Fomenko. ' However, the
study by Trickey et al. indicates that while the
choice of a equal to —, will yield reasonable

cohesive energies and bandwidths, one expects that
this value of a will lead to underestimating band

gaps and the Fermi energy. Thus the fact that we

anticipate our Fermi energy to underestimate the
work function, and that increasing the number of
layers will probably change the Fermi energy in a
manner not easily predictable, our estimated work
function of 3.80 eV is not necessarily in conflict
with the reported experimental work function of
5.10 eV. '

The density of states for the beryllium mono-
layer is presented in Fig. 7(b). The results are also
consistent and in qualitative agreement with the
density of states computed for the crystalline bery1-
lium solid. The relatively Oat region in the den-

sity of states at energies around —10.0 CV in Fig.
7(b) is understandable when one notices that the
bands in Fig. 7(a) are nearly-free-electron-like in
character. One can demonstrate that the density of
states for a two-dimensional electron gas will be a
step function. Thus the flat region of our density
of states is due to the nearly-free-electron-like
behavior of the bottom of the lowest band in Fig.
7(a).

Musket and Fortner have reported auger elec-
tron spectroscopy (AES) results for beryllium indi-
cating two peaks at 92 and 104 eV. Later work by
Suleman and Pattinson' indicates that the AES
peak at 93 eV was evidently due to impurities on
the beryllium surface, although they agreed with
the earlier conclusion of Musket and Fortner that
the peak at 104 eV was due to a (2p, 2p) XVV tran-
sition at the solid surface. The energy of this tran-
sition will equal the energy difference of an elec-
tron in the 2p band (e2&) and the energy of the
hole it fills in the core J shell (ez) minus the ener-

gy required to excite an electron from some dif-
ferent location in the 2p band (ez~ ). We may thus
find an estimate for the peak of the above men-
tioned transition by taking the difference
b,e=epq+cIp —ex. To find aPProPriate bounds for
our estimate (since we do not anticipate monolayer
results more accurate than 2 or 3 eV in light of
our previous discussion of the effects of adding
more layers to the beryllium system) we may con-
sider @2~ and t.2~ jointly equal either to the bottom
of the second band in Fig. 7(a), which corresponds

to the 2p, band, or to the Fermi energy. Since we
anticipate that the band energy for the core band
will not be very accurate, we will use the reported
results of —111 CV plus the work function. s De-
pending upon whether we use the experimental
work function or our estimated work function, we
find a range of 105 to 109 eV for our estimate of
the (2p, 2p) XVV Auger peak. Thus we find one
more source of agreement of our monolayer results
with those of the bulk solid, indicating that even
these simple mono)ayer calculations provide useful
information for describing the surface of the bulk
solid.

IV. SUMMARY

The chief objective of this work has been to
demonstrate the usefulness of a new combination
of computational techniques for studying the elec-
tronic structure of thin-layer systems. The physi-
cally reasonable results produced for the hydrogen
monolayer indicate that there are no inherent flaws
in the mathematical formalism. The beryllium
monolayer results further indicate the feasibility of
our approach as well as demonstrating the applica-
bility to experimentally interesting systems. The
comparison of our theoretically estimated values
for the equilibrium lattice spacing, equilibrium
cohesive energy per particle, and work function
with the experimentally determined quantities for
the beryllium system and with other calculated re-
sults indicates that even such a simple model as
thc IQOIlolaycl ylclds useful results. T11c prImary
difflculty with this approach as of now has been
the amount of computer time required to produce
adequately precise results for systems larger than
the atomic beryllium monolayer. Steps are
currently being taken to develop new algorithms
for the computer code to reduce this difficulty.
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