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Nonlinear ionic pseudopotentials in spin-density-functional calculations
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A new method for generating and using first-principles pseudopotentials is developed to
treat explicitly the nonlinear exchange and correlation interaction between the core and

the valence charge densities. Compared to existing potentials, the new scheme leads to
significant improvement in the transferability of the potential. In particular, the spin-

polarized configurations are well described with a single potential. The need for separate

spin-up and spin-down ionic pesudopotentials is, thus, eliminated. The method can easily

be implemented with minimal increase in computational effort. Results for both atoms

and solids are demonstrated.

I. INTRODUCTION

In the past several years, the pseudopotential ap-
proach coupled with the density-functional scheme
has had tremendous success in describing the elec-
tronic and structural properties of rionmagnetic
systems. ' In this paper, we propose a method
which makes it possible to extend these calcula-
tions to magnetic systems. With a single spin-
independent ionic potential, the method incor-
porates the local-spin-density approximation ' to
the exchange and correlation energy into the pseu-
dopotential scheme. Problems such as those con-
cerning properties of magnetic materials, spin-
density waves, magnetic effects on surfaces, local-
ized impurity states in defects, etc., can now be
treated with the same ease and accuracy as in the
nonmagnetic case. In addition the accuracy is in
many cases improved even in the paramagnetic
limit.

In an earlier scheme for introducing magnetic
effects into pseudopotential calculations Zunger

proposed constructing separate ionic potentials for
the spin-up and spin-down electrons. In this spin-

dependent pseudopotential approach, the ionic
pseudopotential in the solid depends on the spin
density of the valence electrons, and it is obtained

by interpolation between the ionic potentia1 for the
paramagnetic atom and that of the fully spin-
polarized atom. We shall show that it is unneces-

sary and, in fact, often undesirable to employ these
spin-dependent ionic pseudopotentials.

In the density-functional formalism, ' the total
energy of the ground state is given as a functional
of the total electron charge density,

E.t =TIpI+E-IpI+E-Ipj+E-I pI

where the various terms represent the kinetic ener-

gy, the electrostatic interaction of the ions with the
electrons, the electrons with the electrons, and the
exchange and correlation energy, respectively. The
exchange and correlation energy is usually approxi-
mated by some local (nonlinear) function of the
charge density, and the kinetic energy is found
from the gradient of the now obtainable single-

particle wave functions. Thus,

E;,„=I V;,„(r)p(r)d r,
~ I p(r")p(r) d3,d3

ir' —ri
E„,= J e„,[p(r)]p(r)d r . (4)

The charge density, in the pseudopotential for-
malism, is divided into core and valence contribu-
tions, and the energy of the core is assumed to be
constant and subtracted out. Furthermore, the
core contribution is often completely neglected, and
the total energy is given by the above expressions
with the total charge density replaced by a (pseudo)
valence charge density, and V;,„replaced by the
pseudopotential. All interaction between the core
and valence electrons is thus transferred to the
pseudopotential. This implies a linearization of
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the interaction which can only be an approxima-
tion to the kinetic energy and the explicitly non-
linear exchange and correlation energy. If the core
and the valence charge densities are well separated
in space this will introduce no serious errors, as
can be seen from the many successes of the
method. However, if there is significant overlap
between the two densities, the linearization, in par-
ticular of the exchange and correlation, will lead to
reduced transferability of the pseudopotential and
to systematic errors in the calculated total energy.

In the spin-density formalism the exchange and
correlation energy depends on the local spin densi-
ty as well as on the charge density. This addition-
al spin dependence introduces additional nonlinear-
ity, and it is the errors introduced by the lineariza-
tion described above that have made it necessary to
use spin-dependent ionic pseudopotentials. The
scheme to be described, on the other hand, treats
these nonlinear terms explicitly, and the need for
separate spin-up and spin-down ionic pseudopoten-
tials is thus eliminated. Moreover, the approach
leads to significant improvement in the transfera-
bility of the potentials and therefore will yield
more accurate results both for magnetic and non-
magnetic systems.

The remainder of the paper is organized as fol-
lows. In Sec. II the formulation for incorporating
the nonlinear interaction of the core and valence
densities into self-consistent pseudopotential calcu-
lations is presented. Section III describes the de-
tails of the calculation. Results obtained using
local-density- and local-spin-density-functional cal-
culations on both atoms and solids are discussed in
Sec. IV. Finally in Sec. V a summary and some
conclusions are given.

II. THEORY

Simple procedures " have been formulated to
extract first-principles ionic pseudopotentials from
atomic calculations. For example, in the norm-
conserving pseudopotential scheme of Hamann,
Schliiter, and Chiang (HSC), angular-momentum-
dependent screened atomic pseudopotential, V, are
first constructed with the constraints that:

(I) The valence eigenvalues from the all-electron
calculation and those from the pseudopotential cal-
culation agree for a chosen prototype configura-
tion.

(2) The all-electron wave functions and the
pseudo-wave functions agree beyond a chosen core

radius, r, .

With these constraints, HSC showed that the po-
tentials have two centrally desirable properties.
The electrostatic potential produced outside r, is
identical for the all-electron and the pseudocharge
distribution; the scattering properties of the all-
electron atoms are reproduced with minimum error
as the electronic eigenvalues move away from the
prototype atomic levels. These two properties en-
sure a reasonable transferabihty of the pseudopo-
tentials. The final bare-ion pseudopotentials, V;,„,
are extracted from the neutral potentials by sub-

tracting from each neutral V the Coulomb and ex-
change and correlation potentials due to the pseu-
dovalence charge density, p"(r). For example, for a
given angular momentum component I and spin
component o., the ionic potential is given by

V;,„(r ) = V ( r ) —V„[p"( r )]
—V„,[p'( r ),P( r )],

where

p"+(r)—p" (r)
P(r) =

p"(r)

is the spin polarization of the valence charge with
the + and —signs denoting the spin-up and
spin-down electrons, respectively. Ionic potentials
generated this way for the nonmagnetic case, i.e.,
g=O, have been shown to be highly accurate in

many applications. ' The basic assumptions in the
above procedure are the frozen-core approximation
and a decoupling of the core charge in the deter-
mination of the exchange and correlation potential
seen by the valence electrons. The frozen-core as-

sumption, however, implies a single ionic pseudo-
potential which is independent of the spin polariza-
tion of the valence states. It is the second approxi-
mation that gives rise to the spin-dependent ionic
potentials in previous work. In the HSC approach,
the total exchange and correlation potential is im-

plicitly written as the identity

V„,(p"+p', g) =[V„,(p'+p', g) —V„(p",P)]
+ V„,(p",g"),

where

p"+(r) p" (r)—
g(r) =

p"(r)+ p'(r)

Notice that g can be quite different from the
valence polarization defined in Eq. (6). In the con-
struction of the ionic potential, the terms in brack-
ets are included in the ionic potential as part of the



core properties. Since V„, is a nonlinear function
of the charge density, ' ' the valence charge does
not cancel, and the ionic pseudopotentials are
dependent on the valence configuration. This
feature is highly undesirable since it reduces the
transferability of the potential. In particular, for
magnetic applications, the spin-density distribution
of the electrons can be extremely different both in

magnitude and in profile as one goes from the
atomic case to the various condensed-matter sys-
tems. ' It is therefore unlikely that any interpola-
tion formula between spin-up and spin-down po-
tentials generated from atoms will work satisfac-
torially.

The dependence of the ionic pseudopotential on
the valence charge apparent from Eq. (7) can be re-
moved in a simple and straightforward way. We
replace Eq. (5) by

The total exchange and correlation potential, in-

cluding the nonlinear core valence term, is now
subtracted out of the neutral potential. ' As we
shall demonstrate in Sec. IV the result is an ionic
potential highly transferable and essentially in-

dependent of the spin polarization and the proto-
type atomic configuration.

it is therefore very important to treat the effect of
the core charge as a perturbation, and a change in
the total energy as a result of this correction
should be small. Second, for the implementation
in plane-wave-expansion methods, we would like to
represent all quantities in Fourier space. Although
it does not enter the Hamiltonian matrix, the full
core charge, with its very high Fourier corn-
ponents, is still impractical to use.

Fortunately both of the above concerns can be
resolved by observing that the core charge has sig-
nificant effect only where the core and the valence
charge densities are of similar magnitude. It is
without importance close to the nucleus where
most of the core charge resides. We can therefore
replace the full core charge density with a partial
core charge density which is equal to the true
charge density outside some radius ro and arbitrary
inside. Tests show that ro may be chosen as the
radius where the core charge density is from 1 to 2
times larger than the valence charge density. In-
side rp we construct a partial core density equal to
some function that matches onto the true charge
density at ro, is easy to Fourier transform, and
gives the smallest possible integrated charge densi-

ty. We have found that the spherical Bessel func-
tion jo best fulfills these criteria. Thus the core
charge in Eqs. (8) and (9) is replaced by

A sin(Br)lr if r &ro

In the employment of the new potential, the core
charge must be added to the valence charge when-
ever the exchange and correlation potential or ener-

gy is computed. Within the rigid-core approxima-
tion, this core charge remains the same in all appli-
cations. Therefore, in addition to the usual s, p,
and d potentials, we need to retain the core charge
density which is computed once and for all in the
same atomic calculations as the pseudopotentials.

In an atomic calculation there is, of course, no
. difficulty in representing the core charge. In a
bulk calculation, however, there are two practical
considerations that must be made. In any pseudo-
potential calculation there are small, but inevitable
errors in the calculated valence charge density.
Usually this leads to a negligible error in the total
energy, but when the core charge is added, any
inaccuracy in the valence charge density inside the
core region is multiplied by the core charge and
the error in the total energy mill increase propor-
tionally. To ensure the accuracy of the calculation,

where 3 and 8 are determined by the value and the
gradient of the core charge density at ro.

IV. NUMERICAL RESULTS

The new method has been tested for spin-
polarized atomic silicon, molybdenum, and also for
metallic sodium. For the atoms we have per-
formed parallel all-electron and pseudoatom calcu-
lations using pseudopotentials with and without the
core correction. In both cases the local-spin-
density formulation of Gunnarson and Lundqvist
was used. The pseudopotentials were generated
from the paramagnetic atoms using a suitably
modified HSC scheme. The valence configurations
were 3s'3p for silicon and 4d 5s' for molybde-
num. The potentials were then used to calculate
the pseudoatoms in the configurations with the
largest possible spin polarization. The resulting
term values and the difference in the total energy
between the paramagnetic and the spin-polarized
atoms are given in Table I. %'e observe that the
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TABLE I. Atomic term values and total energy differences between paramagnetic and

fully spin-polarized atoms. Paramagnetic configurations are 3$'3p' for Si and 4d'5s' for
Mo. All energies are in eV. h,E is the total energy difference between the paramagnetic and
the spin-polarized configuration. {Superscripts indicate the electron occupation and the +
signs denote the spin configuration for each orbital. )

Si

TeHI1

values

Total
energy

3$ +
3p +
3$0

3p

h,E
error

All
electron

—12.76
—5.79
—7.55
—1.21

—3.58

No
core

—12.82
—5.81
—5.63
—0.43

—4.05
13.1%

Full
core

—12.76
—5.80
—7.56
—1.21

—3.61
0.7%

Partial
core

—12.76
—5.80
—7.55
—1.20

—3.62
1.0%

Mo

TeH11

values

Total
energy

5$ +
4d-
5s—0

error

—5.24
—4.79
—2.01
—2.08

—4.35

—5.51
—4.71

—1.02

—8.46
94.6%

—5.24
—4.81
—2.00
—2.06

—4.38
0.8%

—5.25
—4.80
—1.89
—2.05

—4.52
3.9%

linear pseudopotential is marginal for spin-
polarized silicon and inadequate for molybdenum.
The core correction is capable in both cases of
correcting the error, and the partial core does al-
most as well. %e note that without the correction
the unoccupied levels are too high in energy. In
the case of silicon, this reverses the energy levels
for the occupied p state and the unoccupied s state,
making the fully spin-polarized atom seem stable.
In molybdenum the improvement is even more
striking. The uncorrected calculation overestimates
the energy difference between the paramagnetic
and spin-polarized configuration by almost a factor
of 2. With the correction the error is reduced to
an acceptable level.

The solid was tested by generating two pseudo-
potentials with different valence configurations.
Here we used the formulation of Hedin and
Lundqvist" for the exchange and correlation.
These potentials were then used to calculate the
static structural properties for sodium. For a per-
fectly transferable potential these properties should
be independent of the configuration used for gen-
eration. The amount by which they change there-
fore measures the transferability. In Table II we
give values for the calculated lattice constant and
the bulk modulus. The first of the two potentials
was generated with the highly ionic configuration
3s '3p ' 3d ', whereas for the second potential
we used the neutral configuration 3so.83&o.&3do

TABLE II. Lattice constants and bulk moduli for
sodium in the body-centered-cubic structure calculated
with and without the core correction for two different
pseudopotentials. Potential 1 was generated with the
ionic configuration 3s '3p '3d ' and potential 2 with
the neutral configuration 3$0.83&o.i3do.

Without
core
correction

Potential
number

1

2
change

Lattice
constant

(A)

3.58
4.02

—11.0%

Bulk
modulus

(10' J m )

1.63
0.97

68.0%

With
partial core
correction

1

2
change

4.03
4.09

—1.3%

0.95
0.95
0.6%

All electron'

'Reference 17.

4.08 0.9

As could be expected, the pseudopotentials generat™
ed from the neutral configuration give the best re-
sults. The corrected potentials show excellent
transferability but the uncorrected potential derived
from the ionic atomic configuration fails miser-
ably '

The results that we obtain for the structural
properties of sodium depend strongly on the choice
of the exchange and correlation potential. The
reason for this is probably related to the large
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compressibiliy of sodium. The bulk modulus is
less than one-tenth of that of aluminum. Small
changes in the correlation energy can therefore
have a large effect. For this reason we have
chosen to compare with an all electron calcula-
tion' using the same type of correlation. The ex-

perimental values' a=4.23 A and 8=0.68X10'
Jm are somewhat different than the calculated
numbers. We have also performed calculations us-

ing Wigner's interpolation formula for the correla-
tion, ' and we then obtain results in reasonable
agreement with the experiment.

We have shown that significant improvement in
the transferability of pseudopotentials can be ob-
tained by including a. partial core charge in the
treatment of the exchange and correlation. The in-

creased transferability is of particular value in

magnetic systems and has eliminated the need for
special spin-polarized potentials. In some special
cases, like the alkali metals, we find improvement
even for nonmagnetic systems.
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