Contribution of optical phonons to the elastic moduli of PdH_x and PdD_x

B. M. Geerken, R. Griessen, and L. M. Huisman

Natuurkundig Laboratorium der Vrije Universiteit, Amsterdam, The Netherlands

E. Walker

Laboratoire de Physique de la Matière Condensée, Université de Genève, Switzerland (Received 21 December 1981; revised manuscript received 23 April 1982)

Sound-velocity and ultrasonic-attenuation measurements were carried out on dilute α phase and concentrated α' -phase PdH_x and PdD_x alloys between 10 and 300 K. Both the bulk modulus B and the angular shear modulus C_{44} of α' -PdH_x(PdD_x) are lower than those of pure Pd, as expected from the lowering of the acoustic-phonon branches at the Brillouin-zone boundary observed in neutron scattering experiments. The tetragonal shear modulus C', on the other hand, increases with hydrogen or deuterium concentration. As a consequence, at 0 K the Debye temperatures of PdD_{0.652} and PdH_{0.66} are almost equal to that of Pd (Θ^{D} =276 K). A marked isotope effect is found in the temperature variation of all elastic moduli, the temperature coefficients dC_{ii}/dT being significantly more negative for the deuterides. This isotope effect, which is due to the different energies of the optical phonons in PdH_x and PdD_x , is well described by a quasiharmonic model in which the transverse- and longitudinal-optical phonons are treated as Einstein oscillators with different Grüneisen parameters γ_t and γ_l . The Einstein temperatures are $\Theta_t^{\rm H} = 650$ K, $\Theta_l^{\rm H} = 910$ K in PdH_{0.66}, and $\Theta_l^{\rm D} = 450$ K, $\Theta_l^{\rm D} = 640$ K in PdD_{0.652}. Our analysis implies that $|\gamma_l - \gamma_l|$ is large compared to the average optical-phonon Grüneisen parameter $\overline{\gamma} = \frac{1}{3}(\gamma_l + 2\gamma_t)$ determined from thermal-expansion measurements. For the longitudinal mode C_L the ultrasonic attenuation exhibits a maximum around 220 K which is interpreted as being due to a reorientation of pairs or clusters of vacancies in the hydrogen sublattice under uniaxial strain. For the shear modes the increase in attenuation is approximately 1 order of magnitude higher than in C_L . This strong temperature dependence of the attenuation has, however, no measurable influence on the C_{ij} .

I. INTRODUCTION

An accurate description of the proton-hostmetal ion potential is required for a good understanding of the properties of metal hydrides, many of them exhibiting remarkable isotope effects. Most of our knowledge of this potential comes from neutron scattering measurements of the frequency of the hydrogen (or deuterium) vibration in a lattice. Additional information on the proton-host-metal ion potential has also been derived from measurements of the thermal expansion or elastic moduli, or from the hydrogen (deuterium) concentration dependence of the equilibrium lattice spacing of the host metal. For all the transition-metal hydrides investigated so far the absorption of H or D produces a substantial dilation of the host lattice. Since the mode-Grüneisen parameters are normally positive, this dilation of

the lattice is expected to result in a lowering of the phonon frequencies. For PdH_x (and PdD_x), however, neutron scattering experiments show that the frequency ω_t^H (or ω_t^D) of the transverse-optical phonons remains constant for alloys in the α' phase. As shown in Fig. 1., data obtained from superconducting tunneling seem to indicate that a decrease in ω_t^H (and ω_t^D) occurs only above 90 at. % H or D in Pd. Two characteristic features of Fig. 1, namely, the ~16% higher transverse frequency for the dilute α -PdH(D) phase compared to that of the concentrated α' -PdH(D) phase, and the slightly anharmonic ratio $\omega_t^H/\omega_t^D = 1.04\sqrt{2}$ of transverseoptical-phonon frequencies, has been confirmed furthermore by Rush,¹⁷ who recently obtained $\omega_t^H = 68.5$ meV and $\omega_t^D = 40$ meV for α' -PdH(D), and $\omega_t^H = 59$ meV and $\omega_t^D = 40$ meV for α' -PdH(D).

The constancy of ω_t in α' -PdH_x and PdH_x could be due to an anomalously small Grüneisen

26

1637

©1982 The American Physical Society

FIG. 1. Hydrogen (deuterium) concentration dependence of the transverse-optical-phonon frequencies in PdH_x and PdD_x [\bullet , inelastic neutron scattering (Refs. 1–10), \times , superconducting tunneling (Refs. 11–15) \Box , Raman scattering (Ref. 16).]

constant or to a fortuitous cancellation of volumedilation effects and concentration dependence of the proton-palladium interaction. In order to determine the strain dependence of the protonpalladium potential, we have investigated the temperature dependence of the elastic moduli C_{ij} of both α - and α' -phase PdH_x and PdD_x alloys. Measurements of the bulk modulus *B* are particularly interesting since the temperature derivative dB/dT is proportional to $(\gamma_l - \gamma_t)^2$, where $\gamma_{l(t)}$ is the Grüneisen parameter of the longitudinal-(transverse-) optical phonons.

In addition to sound velocity we also measured ultrasonic attenuation in order to study the dynamic behavior of H or D in the metal lattice. A maximum in ultrasonic absorption is expected to occur when the mean-residence time τ of a proton (or a deuteron) is equal to the inverse sound frequency ω^{-1} . In our experiment the condition $\omega \tau \simeq 1$ is satisfied at approximately 220 K in α' -phase PdH_x or PdD_x.

This paper is organized as follows. A brief description of the experimental procedure is given in Sec. II. The experimental results presented in Sec. III are discussed in Sec. IV. The quasiharmonic model developed to analyze the data is described in Sec. VA. The various fitting procedures used to determine the Einstein temperatures and the Grüneisen parameters of longitudinal and optical phonons which enter this theoretical model are given in Sec. VB. Conclusions are given in Sec. VI.

II. EXPERIMENTAL PROCEDURE

Two ultrasonic methods are used in this work. The absolute value of the elastic moduli are determined at room- and/or liquid-nitrogen temperature by means of a continuous-wave technique.¹⁸ The frequency of the ultrasonic wave is varied around 30 MHz and the elastic moduli are determined with a precision of typically 1% from the frequency intervals between consecutive resonances of standing waves. The relative changes of the elastic moduli with temperature are measured by comparing the phase of a short pulse which has been reflected several times at the sample boundaries with that of the excitation signal. The accuracy is typically 0.02%. The different waves are generated by 10-MHz X- and Y-cut quartz transducers with glycerol used as a bonding agent. For comparison we also used more-permanent glues such as Loctite or UHU glue. The temperature is varied between 10 and 300 K with the use of an Oxford Instruments continuous-flow cryostat.

The cylindrical single crystals of 99.999%-pure palladium have been grown by means of a floatingzone method. They are oriented by means of Laue backscattering to within 1° in the [110] crystallographic direction and cut to a length of 20 mm by means of a low-damage spark-erosion technique. The samples are 10 mm in diameter. Their end faces are carefully polished and parallel within 10^{-4} of the sample length.

The alloying of palladium with hydrogen (deuterium) into the α' phase is carried out by absorption from the gas phase in a high-pressure cell at temperatures ~ 25 °C above the critical temperature T_c in order to avoid segregation in α and α' phases. The hydrogen (deuterium) gas pressure is gradually increased to 30 (40) atm. The sample is kept for several hours at $T_c + 25$ °C and 30 (40) atm for proper homogenization. After this, the temperature is reduced to room temperature at a rate of 15°C per hour. Finally, the pressure is released and the sample is electrolytically coated with a thin gold layer to prevent hydrogen (deuterium) from leaking out of the metal. Between runs the samples are stored in liquid nitrogen. The hydrogen-to-metal concentration ratio x = [H]/[Pd]is determined gravimetrically with an accuracy better than 0.05 at. % by means of a microgram balance and is rechecked between runs. After each (de)hydrogenation cycle the end faces are repolished and the length of the sample is measured with a precision of $\Delta l/l \sim 10^{-4}$. The density ρ of the α' -PdH(D) samples is calculated using

 $d \ln V/dx = 19 \times 10^{-4}$ for the lattice expansion associated with the solution of H(D) in Pd. The thermal expansion of the alloys investigated in this work is evaluated from the results of Abbenseth and Wipf¹⁹ on PdH_x and PdD_x with $0.6 \le x \le 0.8$.

The elastic moduli C_{ij} are obtained from sound-velocity measurements by means of the following standard relations:

$$\rho v_l^2 = \frac{1}{2} (C_{11} + C_{12} + 2C_{44}) \equiv C_L$$

$$\rho v_{t_1}^2 = C_{44} ,$$

$$\rho v_{t_2}^2 = \frac{1}{2} (C_{11} - C_{12}) \equiv C' ,$$

where v_l , v_{t_1} , and v_{t_2} are the velocities of the longitudinal and the two nondegenerate transverse modes of a sound wave propagating in the [110] direction.

III. EXPERIMENTAL RESULTS

Figures 2, 3, and 4 show the temperature dependence of C_L , the tetragonal shear modulus C', and the angular shear modulus C_{44} for pure palladium and various PdH_x and PdD_x alloys. The temperature dependence of the bulk modulus

$$B = C_I - C_{44} - \frac{1}{3}C'$$

is shown in Fig. 5. All elastic moduli of Pd and the C_L and B of PdH_{0.66} agree within about 1% with those of Hsu and Leisure.²⁰ The deviations of the C_{44} and C' of PdH_{0.66} are slightly larger.

One general feature of the curves shown in Figs. 2-5 is that the temperature variation of the elastic moduli is markedly larger for the concentrated hydrides and deuterides than for pure palladium. At 250 K, for example, the absolute value of the temperature coefficient $d \ln B / dT$ of the bulk modulus of pure palladium is approximately 2 times smaller than that of PdH_{0.66} and almost 3 times smaller than that of $PdD_{0.652}$. For the other elastic moduli the differences between pure palladium and the interstitial alloys are even more noticeable. Above ~100 K the temperature coefficient $d \ln C_{44}/dT$ of Pd is opposite to that of α' -PdH(D). The minimum around 100 K in the $C_{44}(T)$ curve of palladium has disappeared and the angular shear modulus of α' -PdH(D) alloys exhibits a "normal" decrease with temperature. A similar behavior is found for the tetragonal shear constant C'. The point of inflexion in the C'(T) curve of palladium does not show up in the hydrides and deuterides.

FIG. 2. Temperature dependence of C_L in Pd, PdH_{0.73}, and PdD_{0.652} (solid lines). The results are compared with previously obtained data (Ref. 50) (----) and those of Hsu and Leisure (Ref. 20) (----). The estimated absolute error is indicated in the upper right corner while the relative error for the temperature dependence itself is at least 1 order smaller.

In spite of the small range of concentrations corresponding to homogeneous phases in PdH_x or PdD_x , it is nevertheless possible to see that the temperature coefficients of the volume-conserving

FIG. 3. As in Fig. 2, but for C'.

FIG. 4. As in Fig. 2, but for C_{44} .

shear deformations hardly depend on the hydrogen concentration, in contrast to that of C_L and B above approximately 100 K (compare PdH_{0.66} and PdH_{0.73} in Figs. 2 and 5). Another clear difference between the shear modes and the longitudinal mode is illustrated in Fig. 6 where some typical curves of the temperature dependence of the *amplitude* of the first ultrasonic echo are shown. The longitudinal-mode amplitude has a weak minimum

FIG. 5. As in Fig. 2, but for B.

FIG. 6. Temperature dependence of the amplitude of the ultrasonic waves corresponding to different elastic moduli of α' -PdD using boundings such as glycerol (G), Loctite (L), and one-component UHU (U).

around 220 K. In order to make sure that this temperature variation is not due to the bonding material (glycerol) used to couple the transducer to the crystal, the same experiments were repeated with bonding materials that do not soften around room temperature, such as Loctite and onecomponent UHU glue. Figure 6 shows that the bonding material has almost no effect on the dip around 220 K. Above 250 K, however, the softening of the glycerol bond causes rapid decrease of the amplitude with temperature. This amplitude reduction is not observed when UHU is used as bonding agent. For clarity, only the amplitude of the first echo has been shown in Fig. 6. The minimum at 220 K is, however, a general feature which is even stronger in higher-order echoes. The α' -PdH results are the same as those of α' -PdD, within experimental accuracy.

In contrast to the weak temperature dependence of the amplitude of the longitudinal-mode echoes, the corresponding curves for the shear modes show a pronounced reduction in the amplitude of the echo pattern around 150 K. Above 200 K the amplitude remains very low (but large enough for sound-velocity measurements). Even with Loctite or UHU bonds the amplitude does not increase when approaching room temperture. A similar behavior is reported by Fisher *et al.*²¹ for Nb-Ta-H and Nb-V-H alloys. For alloys with [H]/[M] > 0.03 the echoes even fall under the detection limit of their ultrasonic apparatus.

IV. DISCUSSION OF EXPERIMENTAL RESULTS

A. Concentration dependence of the elastic moduli at T=0 K

By extrapolating the measured $C_{ij}(T)$ curves to 0 K, one obtains the concentration dependence of the elastic moduli presented in Fig. 7. The moduli B, C_L , and C_{44} are lower in PdH_x and PdD_x than in pure palladium while C' increases with H(D) content. This behavior is just opposite to that observed for the elastic moduli of the group-V transition-metal hydrides where C' decreases upon hydrogenation and B, C_L , and C_{44} are reported to be concentration independent by some authors,²² or to increase with increasing hydrogen content by others.²³⁻²⁶

The difference between PdH_x and the group-V metal hydrides is due to a different *d*-band filling in these alloys. As shown by Ducastelle,²⁷ the bulk modulus *B* of transition metals of the same row of the Periodic Table exhibits a parabolic dependence on the number of *d* electrons. *B* is maximum for five electrons in the *d* band. As addition of H(D) increases the electron-to-atom ratio, one concludes, within the framework of this model, that *B*, *C*_L, and *C*₄₄ behave "normally" since *V*, Nb, and Ta

FIG. 7. Concentration dependence of the elastic moduli of $PdH_x(D_x)$ (× this work and \bigtriangledown Ref. 20) compared to that of the substitutional alloys $Pd_{1-y}Ag_y$ (•, Refs. 51 and 52) in units of 10^{10} Pa. The dashed lines serve as a guide to the eye.

have a less than half-filled d band and Pd has almost ten d electrons.

If band filling were the only relevant parameter, one would expect the same concentration dependence of C_{ii} in PdH_x and in the isoelectronic $Pd_{1-x}Ag_x$ substitutional alloys. In Fig. 7 one observes, however, that $B(\alpha'-PdH(D))$ is significantly larger than $B(Pd_{0.3}Ag_{0.7})$. This difference in bulk modulus cannot result from a volume effect since the Pd-Pd interatomic distance in PdH_x is larger than in $Pd_{1-x}Ag_x$. The isotropic compression needed to reduce the equilibrium volume of PdH_x to that of $Pd_{1-x}Ag_x$ would even increase this difference as $d \ln B / d \ln V < 0$. This quantitative disagreement is likely to be of electronic origin. The band structures of $Pd_{1-x}Ag_x$ and PdH_x are known to be quite different. In addition to an upwards shift of the Fermi energy relative to the top of the *d* band upon adding hydrogen to palladium, the palladium states with s symmetry at the octahedral site are lowered in energy, forming a lowlying Pd-H bonding band.²⁸ As a result, the hybridization contribution to the cohesive energy²⁹ is larger in PdH_x than in $Pd_{1-x}Ag_x$. One would expect then a smaller atomic volume for the hydride but instead, one finds that the lattice constant of PdH_x is larger than that of $Pd_{1-x}Ag_x$. This indicates that the repulsive contribution is stronger in the hydride as well. This increased repulsion results then in the observed larger bulk modulus in the hydride, as it is well known^{27,29,30} that B is dominated by the repulsive term in the cohesive energy.

In both the group-V metal hydrides and palladium hydride, the concentration dependence of C'behaves abnormally in terms of the *d*-band filling model mentioned above. While for bcc metal hydrides it is conceivable that in the temperature range where the experiments have been carried out the anomalous concentration dependence of C' is due to a relaxation effect (e.g., Snoek effect), such an explanation is not applicable to PdH_x and PdD_x for which C' is anomalous even at T=0 K.

B. Debye temperatures and acoustic-phonon spectra

From thermal-expansion data below 10 K, Smith and White³¹ found that the lattice contribution to the linear thermal-expansion coefficient $\alpha = (1/l)(dl/dT)$ was approximately the same in PdH_{0.66} and pure palladium. The same conclusion was reached by Mackliet and Schindler³² from their measurements of the specific heat at low temperatures. This is confirmed by the present measurements of C_{ij} which lead to $\Theta_D(Pd) = 276 \pm 2$ K, $\Theta_D(PdH_{0.66}) = 278 \pm 2$ K, and $\Theta_D(PdD_{0.652})$ $=280\pm 2$ K for the Debye temperatures determined by means of the Launay's³³ method. The constancy of Θ_D is the result of an almost perfect cancellation of the increase in C' and the decrease in C_L and C_{44} upon hydrogenation. The increase in C' implies that in the long-wavelength limit the lowest transverse-acoustic branch T_1 of PdD_{0.652} lies above that of Pd (see also $Rowe^{34}$). Neutron scattering data show, however, that the phonon frequencies at the boundary of the Brillouin zone are 15-20 % lower in the deuteride than in pure Pd. This leads to a strongly temperature-dependent Debye temperature.

The large difference in the hydrogen concentration dependence of the acoustic-phonon frequencies at the center and at the Brillouin-zone boundaries can be qualitatively understood by means of a simple spring model for a fcc lattice. In such a model, B, C_L, C_{44} , and the phonon frequencies at the Brillouin-zone boundary are essentially determined by the first-nearest-neighbor force constant K_1 , while C' depends sensitively on the secondnearest-neighbor force constant K₂ (for example, $B \sim K_1 - K_2, C_L \sim K_1 - (\frac{4}{5}) K_2, C_{44} \sim K_1, \text{ but}$ $C' \sim K_1 + 4 K_2$). The dilation of the lattice upon H(D) absorption results in a weakening of K_1 . The presence of an interstitial between a given Pd ion and its second-nearest neighbor, on the other hand, leads to a hardening of K_2 . For C' the increase in K_2 is strong enough to compensate the firstnearest-neighbor force-constant weakening, and consequently, C' increases with increasing concentration of interstitials (see Fig. 7).

C. Temperature dependence of elastic moduli

As mentioned in Sec. III there is a clear isotope effect in the temperature coefficients dC_{ij}/dT of PdH_x and PdD_x alloys. The isotope effect is most apparent in the temperature variation of the bulk modulus of PdH_{0.66} and PdD_{0.652} shown in Fig. 5. The slope of the B(T) curve for PdD_{0.652} is significantly steeper than that of the corresponding hydride, and in PdD_{0.652} a weak point of inflexion is observed around 180 K.

Three experimental facts must be taken into consideration to identify the origin of the strong temperature dependence of the C_{ij} and their dependence on the isotope mass of the interstitials.

1. The 50-K transition

It is well known that around 50 K a partial ordering of the interstitials in a Ni₄Mo structure takes place in PdH_x alloys.^{36,37} In an experimental study of internal friction in thin foils of PdH. with 0.62 < x < 0.89, Zimmermann³⁸ found that below ~ 50 K the temperature dependence of the Young modulus E is weak (essentially that of pure Pd), but that above a certain characteristic temperature, dE/dT increases abruptly to much more negative values. In spite of the much higher resolution of ultrasonic techniques compared to lowfrequency beam-bending techniques, no such anomaly has been observed in our measurements. This may be due to the difference in samples (polycrystalline foils and bulk single crystals) and in hydrogen loading (electrolytic charging across the mixed-phase region in the case of Zimmermann).

2. Relaxation processes

The experiments of Zimmermann showed also that there is a clear relation between a large peak at 110 K in the internal friction of PdH_x alloys and a "modulus defect" at approximately the same temperature in the Young modulus. Since we have also observed a strong absorption in the measurements of some of the elastic moduli (see Fig. 6) it is necessary to see whether the large dC_{ij}/dT may be explained by means of relaxation effects taking place when an ultrasonic wave propagates through the sample.

According to Mazzolai et al.³⁹ the large internal-friction peak observed in α' -PdH is due to stress-induced reorientation of pairs or clusters of vacancies with noncubic strain fields in the hydrogen sublattice. The reorientation of a pair requires a jump (or several jumps for clusters of vacancies) of an individual hydrogen. According to the standard theory of anelasticity⁴⁰ one expects a maximum in the absorption and a steplike elastic modulus defect when the angular frequency ω of the periodic stresses (or strains) applied to the sample is approximately equal to the jump frequency ω_p of the protons (more precisely when $\omega/10$ $<\omega_p<10\omega$). We can evaluate the temperature T_m for which the absorption has its maximum value and the interval ΔT over which an anelastic contribution occurs by assuming that $\omega_n \sim 1/\tau$ where τ is the mean residence time. τ can be evaluated from the reduced diffusion constant D_r because τ is equal to $b^2/6D_r$, where b is the jump length. With

the use of the experimental data of Mazzolai and Züchner⁴¹ for the diffusion constant of concentrated PdH_x alloys and b = 2.87 Å for the octahedraloctahedral site separation, we find $T_m = 220$ K and $\Delta T \approx 50$ K for the frequency $\omega = 30$ MHz used in our measurements (in Zimmermann's experiment $\omega = 300$ Hz and thus $T_m = 110$ K and $\Delta T \approx 20$ K, in agreement with the data shown in Fig. 3 of Ref. 38). These values agree very well with the data shown in Fig. 6 for PdD_x.

As mentioned in Sec. III, the maximum in the absorption for PdH_x occurs at approximately the same temperature as for PdD_x . This is not surprising since $\tau = \tau_0 e^{E_a/kT}$ varies over many decades between cryogenic and room temperature as a result of the relatively large activation energy $E_a = 0.22$ eV for a jump from one octahedral site to another.

It would be natural at this point to attribute the large differences between dB/dT in Pd and in PdH_{0.66} (and PdD_{0.652}) to some relaxation process in the sample. The corresponding modulus defect would then approximately be given by

$$\delta B_{\rm H(D)}(T) = B_{\rm Pd}(T) - B_{\rm PdH_x(D_x)}(T) - \left[B_{\rm Pd}(0) - B_{\rm PdH_x(D_x)}(0) \right], \quad (2)$$

and from

FIG. 8. Temperature variation of the bulk moduli differences δB for PdH_{0.66} (Ref. 20) and PdH_{0.652} according to Eq. (2).

 $T_m(\mathrm{PdH}_x) \cong T_m(\mathrm{PdD}_x)$,

it would follow that $\delta B_{\rm H}(T)$ should be proportional to $\delta B_{\rm D}(T)$. However, as shown in Fig. 8 quite a different behavior is observed, the PdD_x curve being *shifted* towards lower temperatures by a factor of ~1.45 relative to the PdH_x curve. Such a large *shift* cannot be understood within a relaxation model.

In the following we shall therefore assume that, in spite of the large ultrasonic absorption in C_{44} and C' (and to some extent in C_L), the temperature variation of the elastic moduli $C_{ij}(T)$ is not influenced by a stress-induced rearrangement of H ions. This conclusion is supported by the Young modulus measurements of Zimmermann,³⁸ where the modulus defect associated with the straininduced relaxation of H vacancies is clearly superimposed onto a strongly temperature-dependent background.

3. Optical phonons

Neutron scattering experiments show that the optical phonons in PdH_x and PdD_x are well separated in energy from the top of the acoustic-phonon branches. The dispersion of the longitudinal-optical phonons is large as a result of the strong proton-proton interaction and the non-stoichiometry of the alloys. The transverse-optical-phonon branches, on the other hand, are rather narrow.³ The phonon density of states has, therefore, a peak at 650 K in PdH_x (450 K in PdD_x) with a high-energy shoulder whose top reaches about 1100 K in PdH_x (750 K in PdD_x). The position of the density-of-states peak is approximately independent of the concentration of interstitials (see Fig. 1).

Above ~100 K (70 K) a significant number of optical phonons are excited in PdH_x (PdD_x) and their effect on the electrical conductivity^{42,43} and thermal expansion¹⁹ has been clearly put in evidence. Figure 8 suggests that also for the elastic moduli a large contribution to dC_{ij}/dT arises from the gradual excitation of optical phonons with increasing temperature. The fact that $\delta B(PdH_{0.66})$ deviates from zero at a 1.45 times higher temperature than $\delta B(PdD_{0.652})$ indicates that $M_H\omega_H^2 \approx 1.05M_D\omega_D^2$, i.e., $\omega_H/\omega_D \approx 1.03\sqrt{2}$. In the following section we derive expressions for the contribution of optical phonons to elastic moduli.

V. QUASIHARMONIC MODEL OF THE CONTRIBUTION OF OPTICAL PHONONS TO THE ELASTIC MODULI

A. Theory

The difference in the temperature dependence of the elastic moduli of PdH_x and PdD_x is assumed to arise from the difference in the energy of the optical phonons in these alloys. In ultrasonic experiments, such as those carried out here, one measures the adiabatic elastic moduli C_{ii} , defined by⁴⁴:

$$C_{ij} = \frac{1}{V} \left[\frac{\partial^2 U}{\partial \epsilon_i \partial \epsilon_j} \right]_S, \qquad (3)$$

where $\{\epsilon_i\}$ is the six-component strain vector, U the internal energy given by

$$U = U_0(\epsilon_i) + \sum_q (n_q + \frac{1}{2}) \hbar \omega_q , \qquad (4)$$

and S the entropy, defined by

$$S = k_B \sum_{q} \left[(n_q + 1) \ln(n_q + 1) - n_q \ln n_q \right], \quad (5)$$

with

$$n_q = (e^{\beta \hbar \omega_q} - 1)^{-1}$$
,

and

$$\beta = (k_B T)^{-1}$$

The summations are over all the phonon states and $\hbar\omega_q$ is the energy of a phonon with wave vector q. The frozen lattice energy U_0 depends only on the strain vector $\{\epsilon_i\}$. The bulk modulus B is defined analogously to C_{ij} with

$$(1/V)\left(\frac{\partial^2}{(\partial\epsilon_i\,\partial\epsilon_j)}\right)$$

replaced by

$$V\left[\frac{\partial^2}{\partial V^2}\right].$$

In order to calculate the temperature dependence of the elastic moduli, we assume, in the spirit of the quasiharmonic approximation, that the ω_q are functions of the strain vector $\{\epsilon_i\}$, with

$$\frac{\partial \ln \hbar \omega_q}{\partial \epsilon_i} = -\gamma_q^i \tag{6}$$

or

$$\frac{\partial \ln \hbar \omega_q}{\partial \ln V} = -\gamma_q \; ,$$

where γ_{i}^{q} and γ_{q} are the Grüneisen parameters associated with the C_{ij} and B, respectively. U and Sdepend on temperature explicitly through β and implicitly through the volume dependence (thermal expansion) of U_0 . They also depend on temperature through the volume dependence of the ω_{q} , but that dependence is of second order in the thermal expansion⁴⁴ and can be neglected.

Under adiabatic conditions $\delta S = 0$ and

$$\sum_{q} \beta \hbar \omega_{q} \left[\frac{\partial n_{q}}{\partial \epsilon_{i}} \right]_{S} = 0.$$
⁽⁷⁾

This equation relates the strain dependence of the temperature to the strain dependence of the phonon frequencies by

$$\left[\frac{\partial \ln T}{\partial \epsilon_i}\right] = \frac{\sum_{q} (\beta \hbar \omega_q)^2 n_q (n_q + 1) \gamma_q^i}{\sum_{q} (\beta \hbar \omega_q)^2 n_q (n_q + 1)}$$
$$\equiv \gamma^i . \tag{8}$$

Because T is a scalar, the average Grüneisen constant γ^i vanishes for a pure shear in a cubic crystal.⁴⁵ The average Grüneisen constant γ , corresponding to the bulk modulus, is defined analogously, with $\partial/\partial \epsilon_i$ replaced by $\partial/\partial \ln V$. It varies with temperature, except when all the phonon frequencies are equal (pure Einstein model) or when all the γ_a are equal.

With the use of the adiabatic condition (Eq. 7), the elastic moduli C_{ij} can be written as

$$C_{ij} = \frac{1}{V} \frac{\partial^2 U_0}{\partial \epsilon_i \partial \epsilon_j} + \frac{1}{V} \sum_q \left[n_q + \frac{1}{2} \right] \frac{\partial^2 \hbar \omega_q}{\partial \epsilon_i \partial \epsilon_j} - \frac{1}{V\beta} \sum_q (\beta \hbar \omega_q)^2 n_q (n_q + 1) \times (\gamma_q^i - \gamma^i) (\gamma_q^j - \gamma^j) .$$
(9)

The first term on the right-hand side of this equation depends implicitly on the phonons through the zero-point motion and thermal expansion because it has to be evaluated at the actual volume V(T)given by

$$V(T) = V_0 \left[1 + \frac{1}{B_0} \sum_q \left(n_q + \frac{1}{2} \right) \frac{\hbar \omega_q}{V_0} \gamma_q \right], \quad (10)$$

where V_0 and B_0 are the volume and the bulk modulus of the crystal at T=0 K and in the absence of zero-point motion. We find

$$\frac{1}{V} \frac{\partial^2 U_0}{\partial \epsilon_i \partial \epsilon_j} = C_{ij}^0 + [V(T) - V_0] \frac{\partial}{\partial V} C_{ij}^0$$
$$= C_{ij}^0 + \frac{C_{ij}^0}{B_0 V_0} \frac{\partial \ln C_{ij}^0}{\partial \ln V} \sum_q \left[n_q + \frac{1}{2} \right] \hbar \omega_q \gamma_q .$$
(11)

The expressions for the bulk modulus are analogous to those for C_{ij} , with γ_q^i and γ^i replaced by γ_q and γ , respectively, $(1/V)[\partial^2/(\partial\epsilon_i\partial\epsilon_j)]$ replaced by $V(\partial^2/\partial V^2)$, and C_{ij}^0 by B_0 .

One often makes the additional assumption^{46,47} that the occupation numbers n_q themselves do not depend on the strain state of the crystal. This is equivalent to assuming that all the Grüneisen constants γ_{q}^{i} or γ_{q} are equal to their average (γ^{i} or γ , respectively), and consequently, vanish for pure shears. Also, the terms proportional to $n_q(n_q+1)$ vanish identically when the γ_q are equal. These terms describe the redistribution in the occupancy of the phonon states⁴⁸ due to the relative shifts of the phonon energies, as is shown by the fact that these terms depend only on the deviation of the Grüneisen constants from their average value. As will become clear in Sec. V B, they are, however, essential for the explanation of the experimental data.

The elastic moduli C_{ij} can be written as

$$C_{ij} = C_{ij}^0 + C_{ij}^{ac} + C_{ij}^{opt} , \qquad (12)$$

where C_{ij}^{0} is the contribution of the frozen lattice, and C_{ij}^{ac} and C_{ij}^{opt} that of the acoustic and optical phonons, respectively. The bulk modulus has a fourth contribution, B^{mix} , which describes the redistribution between the acoustic- and opticalphonon modes, due to the compression of the lattice. This term, however, is small and will be neglected.

In order to obtain tractable expressions, we assume here that the optical-phonon dispersion curves can be described by two Einstein oscillators with frequencies ω_t (transverse phonons) and ω_l (longitudinal phonons). We cannot assume that there are only two optical *shear* Grüneisen constants, one for the longitudinal modes and one for the transverse modes, because the sum of γ_q^i over the star of q has to vanish for a pure shear.⁴⁵ We will assume, however, that there are only two volume Grüneisen constants, denoted by γ_l and γ_l .

The optical contribution to the C_{ij} can now be written as

$$C_{ij}^{\text{opt}} = \frac{Nx}{\beta} \left[F_1^l \left[\gamma_l \frac{C_{ij}^0}{B_0 V_0} \frac{\partial \ln C_{ij}^0}{\partial \ln V} + \left\langle \frac{1}{\hbar \omega} \frac{\partial^2 \hbar \omega}{\partial \epsilon_i \partial \epsilon_j} \right\rangle_l \right] \\ + 2F_1^t \left[\gamma_t \frac{C_{ij}^0}{B_0 V_0} \frac{\partial \ln C_{ij}^0}{\partial \ln V} + \left\langle \frac{1}{\hbar \omega} \frac{\partial^2 \hbar \omega}{\partial \epsilon_i \partial \epsilon_j} \right\rangle_l \right] \\ - F_2^l \langle (\gamma^i)^2 \rangle_l - 2F_2^t \langle (\gamma^i)^2 \rangle_l \right]$$
(13)

with

$$F_1^{l(t)} = (n_{l(t)} + \frac{1}{2})\beta \hbar \omega_{l(t)} , \qquad (14)$$

$$F_{2}^{l(t)} = n_{l(t)}(n_{l(t)} + 1)(\beta \hbar \omega_{l(t)})^{2} , \qquad (15)$$

$$n_{l(t)} = (e^{\beta \hbar \omega_{l(t)}} - 1)^{-1},$$
 (16)

and

$$\langle f \rangle_l = \frac{1}{Nx} \sum_q f_q ,$$

$$\langle f \rangle_t = \frac{1}{2Nx} \sum_q f_q ,$$
(17)

where the sum is over the longitudinal (transverse) modes only. x is the concentration of H or D, and Nx is the number of protons or deuterons in the crystal. It is equal to the number of longitudinal-optical modes and equal to half the number of transverse-optical modes.

The bulk modulus is conveniently written as

$$B^{\text{opt}} = \frac{Nx}{\beta V} \left[(F_1^l + 2F_1^t) A + \left[\frac{2F_1^l F_1^t}{F_1^l + 2F_1^t} - \frac{2F_2^l F_2^t}{F_2^l + 2F_2^t} \right] (\gamma_l - \gamma_t)^2 \right],$$
(18)

with

$$A = \overline{\gamma} \frac{\partial \ln B_0}{\partial \ln V} + \overline{\gamma}(\overline{\gamma} + 1) - \frac{F_1^l \left\langle \frac{\partial \gamma}{\partial \ln V} \right\rangle_l + 2F_1^t \left\langle \frac{\partial \gamma}{\partial \ln V} \right\rangle_t}{F_1^l + 2F_1^t} , \qquad (19)$$

and

$$\bar{\gamma} = \frac{F_1^l \gamma_l + 2F_1^t \gamma_l}{F_1^l + 2F_1^l} \ . \tag{20}$$

The advantage of writing B^{opt} this way is that the coefficient A depends only weakly on temperature if γ_l and γ_t are temperature independent. $\overline{\gamma}$ varies then between

1645

$$(\gamma_l + 2\omega_t \gamma_t / \omega_l) / (1 + 2\omega_t / \omega_l)$$

at T = 0 K and $(\gamma_l + 2\gamma_t)/3$ at $T = \infty$. The temperature dependence of B arises therefore, almost entirely from the factors in front of A and $(\gamma_l - \gamma_t)^2$.

B. Fit to the experimental data

As mentioned in Sec. IV B the Debye temperature determined from low-temperature data is significantly higher than that derived from the total acoustic-phonon spectrum. This implies that the contribution of optical phonons cannot be obtained by substracting from the C_{ij} the acoustic contribution of a Debye model fitted to the low-temperature (T < 80 K) part of the $C_{ij}(T)$ curves. Under these circumstances it is better to consider the differences

$$\Delta C_{ij}(T) = C_{ij}(T, \text{PdH}_x) - C_{ij}(T, \text{PdD}_x)$$
$$- [C_{ij}(0, \text{PdH}_x) - C_{ij}(0, \text{PdD}_x)], \qquad (21)$$

which are independent of the acoustic modes. The ΔC_{ij} obtained from the experimental data in Figs. 3, 4, and 5 are shown in Fig. 9. For all three moduli, ΔC_{ij} is very small at low temperatures, as expected from the variation of the functions F_1 and F_2 which are essentially zero for $T \leq \Theta_E/6$ (the Einstein temperature Θ_E is approximately 450 K for the optical-transverse phonons in PdD_x).

FIG. 9. Elastic moduli differences $\Delta C_{ij}(T)$ according to Eq. (21). The experimental data are represented by full lines and the fits are given by dotted lines.

The most striking feature of the curves in Fig. 9 is, however, the large difference in the temperature variation of ΔC_{ij} for the shears. $\Delta C'(T)$ increases much more rapidly than ΔC_{44} and reaches a maximum around 200 K. ΔC_{44} , on the other hand, is a smoothly increasing function without maximum or point of inflexion. The curve for $\Delta B(T)$ shows an intermediate variation.

We shall show now that the differences in $\Delta C_{ij}(T)$ can be fitted by means of the expressions derived in the preceeding section. The purpose of such a fit is (i) to obtain information on the strain dependence of the optical phonons, and (ii) to show that optical phonons are indeed responsible for the large temperature dependence of C_{ij} . The fit procedure is as follows:

(i) Bulk modulus. Equation (18) shows that $\Delta B(T)$ can be cast in the form

$$\Delta B(\mathbf{T}) = f(T, \Theta_l^{\mathrm{H}}, \Theta_t^{\mathrm{H}}, \Theta_l^{\mathrm{D}}, \Theta_t^{\mathrm{D}})A$$

+
$$g(T, \Theta_l^{\mathrm{H}}, \Theta_t^{\mathrm{H}}, \Theta_l^{\mathrm{D}}, \Theta_t^{\mathrm{D}})(\gamma_l - \gamma_t)^2$$
, (22)

if the contribution of B^{mix} is negligible and if $\gamma^i(\text{PdH}_x) = \gamma^i(\text{PdD}_x)$. $\Theta_l^{\text{H}(D)}$ is the Einstein temperature of the longitudinal-optical phonons, in $\text{PdH}_x(\text{PdD}_x)$ and $\Theta_t^{\text{H}(D)}$ the Einstein temperature of the transverse-optical phonons. To reduce the number of fitting parameters we assume that $\Theta^{\text{H}} = \sqrt{2}\Theta^{\text{D}}$ both for the longitudinal and transverse phonons. The remaining parameters Θ_t^{H} , Θ_l^{H} , A, and $(\gamma_l - \gamma_t)^2$ are not independent since they determine the value of $B(\text{PdH}_x) - B(\text{PdD}_x)$ at zero temperature. Within experimental errors no isotope effect has been found at T = 0 K and thus, from Eq. 18 it follows that

$$A = -\frac{2\Theta_l^{\rm H}\Theta_t^{\rm H}}{(\Theta_l^{\rm H} + 2\Theta_l^{\rm H})^2} (\gamma_l - \gamma_t)^2 .$$
⁽²³⁾

Replacing A in Eq. (22) by its value in Eq. (23) we obtain finally an expression of the following form for ΔB :

$$\Delta B = h(T, \Theta_l^{\mathrm{H}}, \Theta_t^{\mathrm{H}})(\gamma_l - \gamma_t)^2 , \qquad (24)$$

i.e., the function $\Delta B/h$ should be independent of temperature for the proper choice of Θ_l^H and Θ_t^H . It turns out, in fact, that the quality of the fit depends strongly on Θ_l^H , but only weakly on Θ_t^H . From neutron scattering data one knows, however, that $\Theta_t^H = 650$ K. The function $\Delta B/h$ versus temperature obtained with this value for Θ_t^H is indicated in Fig. 10 for several values of Θ_l^H . As a consequence of the sensitivity of the curves to Θ_l^H it is possible to derive an accurate value for the Einstein temperature of the longitudinal phonons. One finds $\Theta_l^H = 910 \pm 10$ K corresponding to $\hbar\omega = 78.5$ meV, in good agreement with the incoherent neutron scattering spectra of Ross *et al.*³ for PdH_{0.70}. From this fit we also obtain that

 $|\gamma_l - \gamma_t| = 12.3 \pm 0.3$ (25)

and

$$\overline{\gamma} \left[\frac{\partial \ln B_0}{\partial \ln V} \right] + \overline{\gamma} (\overline{\gamma} + 1) - \left\langle \frac{\partial \gamma}{\partial \ln V} \right\rangle = -37 .$$
(26)

With $\overline{\gamma} = 3.6$, and taking

$$\frac{\partial \ln B_0}{\partial \ln V} = -5 \pm 2$$

as for most transition metals, we find

$$\left.\frac{\partial\gamma}{\partial\ln V}\right|=34\pm6.$$

(ii) Shear elastic moduli. The difference $\Delta C_{\xi}(T)$ can be written in the form

$$\Delta C_{\xi}(T) = f(T, \Theta_{l}^{\mathrm{H}}, \Theta_{l}^{\mathrm{D}})A_{l} + f(T, \Theta_{t}^{\mathrm{H}}, \Theta_{t}^{\mathrm{D}})A_{t}$$

$$+ g(T, \Theta_{l}^{\mathrm{H}}, \Theta_{l}^{\mathrm{D}})\langle (\gamma^{\xi})^{2} \rangle_{l}$$

$$+ 2g(T, \Theta_{t}^{\mathrm{H}}, \Theta_{t}^{\mathrm{D}})\langle (\gamma^{\xi})^{2} \rangle_{t}, \qquad (27)$$

with

$$A_{i} = \gamma_{i} \frac{C_{\xi}^{0}}{B_{0}} \frac{\partial \ln C_{\xi}^{0}}{\partial \ln V} + \left(\frac{1}{\hbar\omega} \frac{\partial^{2} \hbar\omega}{\partial \xi^{2}}\right)_{i}, \qquad (28)$$

if it is assumed that A_i , γ_i , and γ_i^{ξ} do not depend on the mass of the interstitial. For a tetragonal shear, the shear parameter ξ is related to the components of the strain vector through $\epsilon_1 = \epsilon_2 = -\xi/2$, $\epsilon_3 = \xi$, $\epsilon_4 = \epsilon_5 = \epsilon_6 = 0$, and for an angular shear through $\epsilon_1 = \epsilon_2 = \epsilon_3 = 0$ and $\epsilon_4 = \epsilon_5 = \epsilon_6 = \xi$. From a fit of Eq. (27) to the difference curves in Fig. 9, using the Einstein temperatures from the bulk-modulus fit, one obtains the following values:

$$\langle (\gamma')^2 \rangle_l = 5 \pm 5 , \quad A'_l \cong 0 ,$$

$$\langle (\gamma')^2 \rangle_t = 15 \pm 2 , \quad A'_t \cong 0$$

$$(29)$$

for the tetragonal shear (corresponding to C') and

FIG. 10. Temperature variation of $(\gamma_l - \gamma_t)^2$ for different Einstein temperatures Θ_l^H of the longitudinaloptical-phonon branch according to Eq. (24).

$$\langle (\gamma^{44})^2 \rangle_l \cong 0 , \quad A_l^{44} = 25 \pm 10 ,$$

$$\langle (\gamma^{44})^2 \rangle_l \cong 0 , \quad A_t^{44} = 13 \pm 2$$

$$(30)$$

for the angular shear (corresponding to C_{44}). With these values for the fitting parameters, the calculated ΔC_{ij} agree within 10% with the experimental results (see Fig. 9).

One of the most surprising results of the fits described above is the very large value found for $|\gamma_l - \gamma_t|$. In order to show that this is not an artifact of the fitting procedure let us assume, as in Fig. 8, that $B^{\text{opt}}(T)$ is approximately given by $\delta B(T)$ in Eq. (2), i.e., by subtracting the temperature-dependent part of the bulk modulus of PdH_x (or PdD_x) from that of pure Pd. For each alloy, separately, one can then determine $|\gamma_l - \gamma_t|$ by fitting Eq. (24) to $\delta B(T)$. For PdH_{0.66} we obtain

$$|\gamma_l - \gamma_t|_{\rm H} = 7.6 \pm 0.5$$
, (31)

and for PdD_{0.652}

$$|\gamma_l - \gamma_t|_{\rm D} = 10.0 \pm 0.5$$
 (32)

No allowance for a difference in $|\gamma_l - \gamma_t|$ between PdH_x and PdD_x was made in the fit of the difference ΔB . This is the reason why the values in Eqs. (31) and (32) do not agree within experimental errors with the value of 12.3 [Eq. (25)] obtained from a fit where *a priori* γ_l and γ_t are assumed to

be independent of the isotopic mass. The important point is, however, that for both fit procedures $|\gamma_l - \gamma_t|$ is significantly larger than the average value

$$\frac{1}{3}(\gamma_l + 2\gamma_t)_{\text{H,D}} \cong 3.3 \pm 0.4$$
 (33)

obtained from thermal-expansion measurements^{19,31} on PdH_x and PdD_x .

Taking $|\gamma_l - \gamma_t| = 10 \pm 2.5$ as an average of the values in Eqs. 25, 31, and 32, and the average γ value of Eq. 33, we obtained two sets of possible values for γ_l and γ_t depending on the sign of $\gamma_l - \gamma_t$. For $\gamma_l - \gamma_t = -10$ the corresponding volume Grüneisen parameters are (i) $\gamma_l = -3.3$ ± 2.1 and $\gamma_t = 6.7 \pm 1.2$, and for $\gamma_l - \gamma_t = +10$ they are (ii) $\gamma_l = 10 \pm 2.1$ and $\gamma_t = 0.0 \pm 1.2$. Although the small value of γ_t in the second set (ii) would provide us with a simple explanation of the insensitivity of the frequency of the transverse-optical phonons to changes in hydrogen or deuterium concentration, the values of set (i) have to be prefered because the value $\gamma_t = 6.7$ of the first set (i) agrees reasonably well with the Grüneisen parameters determined by Blaschko et al.⁴⁹ for a few transverse-optical-phonon modes in PdD_{0.71} (in Fig. 1 of Ref. 49, $4 < \gamma_t < 6$). The constancy of ω_t in α' -PdH_x and PdD_x is thus probably due to a cancellation of volume-dilation effects and the concentration dependence (at constant volume) of the proton-palladium interaction potential.

So far we have only considered fits to the bulk modulus. For an angular shear it follows from simple symmetry considerations that for the phonon frequencies at point Γ of the Brillouin zone $\partial \omega / \partial \xi_{44} \equiv 0$. The same holds for all phonon branches along the $\langle 100 \rangle$ directions. The average $|\gamma_l^{44}|$ and $|\gamma_t^{44}|$ will thus be small for such deformations, in agreement with the experimental results in Eq. (30). This is also supported by the observation that for an angular shear the H-Pd separation remains unchanged for eight nearest neighbors, while in a tetragonal shear all distances between nearest neighbors are modified. Furthermore, for a tetragonal shear along [001] the degeneracy $\omega_l = \omega_t$ in the vicinity of point Γ is lifted in such a way that

$$\gamma_l(q) = -2\gamma_t(q) \text{ for } \vec{q} || [001]$$

and

$$\gamma_l(q) = \gamma_{t_1}(q)$$

= $-\frac{1}{2}\gamma_{t_2}(q)$ for $\vec{q} || [100]$.

For the average over the Brillouin zone one expects that

 $\langle \gamma^2 \rangle_l \simeq \langle \gamma^2 \rangle_t \neq 0$,

in qualitative agreement with the results in Eq. (29). The values obtained for the parameter A_i cannot be discussed in terms of simple models as they depend on second derivatives of the phonon frequencies.

VI. CONCLUSIONS

The sound-velocity measurements described in the previous sections have shown that the bulk modulus and the angular shear modulus C_{44} decrease with increasing hydrogen or deuterium content as expected on the basis of a simple d-bandfilling model. The tetragonal shear modulus C', on the other hand, increases with increasing interstitial concentration. For all moduli the temperature coefficients dC_{ii}/dT are significantly more negative for PdH_x (or PdD_x) than for pure palladium. This stronger temperature variation of C_{ii} is not due to a relaxation process, as one might conclude from the large ultrasonic absorption occuring around 220 K, but is due to the gradual excitation of the optical phonons. This interpretation is confirmed by the fact that the decrease in the $C_{ii}(T)$ of PdH_x starts at a temperature which is approximately 1.45 times higher than in PdD_x . This implies that $M_{\rm H}\omega_{\rm H}^2 \simeq 1.05 M_{\rm D}\omega_{\rm D}^2$.

A quasiharmonic model in which the transverseand longitudinal-optical phonons are treated as Einstein oscillators with different Grüneisen parameters γ_l and γ_l is found to give a good description of the differences

$$\Delta C_{ij}(T) = C_{ij}(T, \text{PdH}_x) - C_{ij}(T, \text{PdD}_x) - [C_{ij}(0, \text{PdH}_x) - C_{ij}(0, \text{PdD}_x)],$$

which are independent of the acoustic-phonon modes. In this model the redistribution in the occupancy of the phonon states due to the relative shifts of the longitudinal- and transverse-phonon energies corresponding to the strain state under investigation is explicitly taken into account. This contribution, which is proportional to $(\gamma_l - \gamma_t)^2$ for the bulk modulus, is essential for the explanation of the measured values. Quantitative agreement with the data for all C_{ij} is obtained by taking $\Theta_l^{\rm H} = 650 \text{ K}, \Theta_l^{\rm H} = 910 \text{ K}, \Theta_l^{\rm D} = 450 \text{ K}, and <math>\Theta_l^{\rm D} = 640 \text{ K}$ for the Einstein temperatures of the optical phonons in PdH_{0.66} and PdD_{0.652}. The large value $|\gamma_l - \gamma_t| = 10 \pm 2.5$ determined from the various fits to the B(T) curves of PdH_{0.66} and PdD_{0.652} indicates that the volume dependence of the longitudinal-optical phonons is *very different* from that of the transverse phonons. By combining the present results with those of neutron scattering and thermal-expansion measurements we obtain $\gamma_l = -3.3 \pm 2.1$ and $\gamma_t = 6.7 \pm 1.2$. The constancy of the frequency ω_t in neutron scattering experiments thus results from the cancellation of two effects: a lowering of ω_t due to the dilation of the lattice upon hydrogen or deuteron absorption and a hardening of the proton-palladium potential.

ACKNOWLEDGMENT

We are grateful to the Stichting voor Fundamenteel Onderzoek der Materie for financial support of this work.

- ¹J. M. Rowe, J. J. Rush, H. G. Smith, M. Mostoller, and H. E. Flotow, Phys. Rev. Lett. <u>33</u>, 1297 (1974).
- ²W. Drexel, A. Murani, D. Tocchetti, W. Kley, I. Sosnowska, and D. K. Ross, J. Phys. Chem. Solids <u>37</u>, 1135 (1976).
- ³D. K. Ross, P. F. Martin, N. A. Oates, and R. Khoda Bakhsh, Z. Phys. Chem. Neue Folge 114, 221 (1979).
- ⁴K. Sköld and G. Nelin, J. Phys. Chem. Solids <u>28</u>, 2369 (1967).
- ⁵D. G. Hunt and D. K. Ross, J. Less-Common Met. <u>49</u>, 169 (1976).
- ⁶A. Rahman, K. Sköld, C. Pelizzari, S. K. Sinha, and H. E. Flotow, Phys. Rev. B <u>14</u>, 3630 (1976).
- ⁷J. D. Jorgensen, K. Sköld, A. Rahman, C. A. Pelizzari, H. E. Flotow, R. J. Miller, R. Standley, and T. O. Brun, *Proceedings of the Conference on Neutron Scattering, Gatlinburg*, 1976 (unpublished).
- ⁸J. Bergsma and J. A. Goedkoop, Physica (Utrecht) <u>26</u>, 744 (1960).
- ⁹M. R. Chowdhury and D. K. Ross, Solid State Commun. <u>13</u>, 229 (1973).
- ¹⁰O. Blaschko, R. Klemencic, P. Weinzierl, and L. Pintschovius, Phys. Rev. B 24, 1552 (1981).
- ¹¹A. Eichler, H. Wühl, and B. Stritzker, Solid State Commun. <u>17</u>, 213 (1975).
- ¹²H. Wühl, see T. Springer, Z. Phys. Chem. Neue Folge <u>115</u>, 141 (1979).
- ¹³P. J. Silverman and C. V. Briscoe, Phys. Lett. <u>53A</u>, 221 (1975).
- ¹⁴R. C. Dynes and J. P. Garno, Bull. Am. Phys. Soc. <u>20</u>, 422 (1975).
- ¹⁵P. Nédellec, L. Dumoulin, C. Arzoumanian, and J. P. Burger, J. Phys. (Paris) <u>39</u>, C6-432 (1978).
- ¹⁶R. Sherman, H. K. Birnbaum, J. A. Holy, and M. V. Klein, Phys. Lett. <u>62A</u>, 353 (1977).
- ¹⁷J. J. Rush, private communication.
- ¹⁸R. Truell, Ch. Elbaum, and B. B. Chick, *Ultrasonic Methods in Solid State Physics* (Academic, New York, 1969).
- ¹⁹R. Abbenseth and H. Wipf, J. Phys. F <u>10</u>, 353 (1980).
- ²⁰D. K. Hsu and R. G. Leisure, Phys. Rev. B <u>20</u>, 1339 (1979).

- ²¹E. S. Fisher, J. F. Miller, H. L. Alberts, and D. G. Westlake, J. Phys. F <u>11</u>, 1557 (1981).
- ²²C. R. Ko, K. Salama, and J. M. Roberts, J. Appl. Phys. <u>51</u>, 1014 (1980).
- ²³A. Magerl, B. Berre, and G. Alefeld, Phys. Status Solidi A <u>36</u>, 161 (1976).
- ²⁴O. Buck, L. A. Ahlberg, L. J. Graham, G. A. Alers, C. A. Wert and M. Amano, in *Conference on Internal Friction and Ultrasonic Attenuation in Solids, Tokyo,* 1977 (unpublished).
- ²⁵E. S. Fisher and J. F. Remark, J. Appl. Phys. <u>51</u>, 927 (1979).
- ²⁶W. L. Stuart, J. M. Roberts, N. G. Alexandropolous, and K. Salama, J. Appl. Phys. <u>48</u>, 75 (1977).
- ²⁷F. Ducastelle, J. Phys. (Paris) <u>31</u>, 1055 (1970).
- ²⁸A. C. Switendick, Ber. Bunsenges. Phys. Chem. <u>76</u>, 535 (1972).
- ²⁹C. D. Gelatt, H. Ehrenreich, and R. E. Watson, Phys. Rev. B <u>15</u>, 1613 (1977).
- ³⁰V. L. Moruzzi, J. F. Janak, and A. R. Williams, *Calculated Electronic Properties of Metals* (Pergamon, New York, 1978).
- ³¹T. F. Smith and G. K. White, J. Phys. F <u>7</u>, 1029 (1977).
- ³²C. A. Mackliet and A. Schindler, Phys. Rev. <u>146</u>, 463 (1966).
- ³³J. de Launay, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1956), Vol. 2, p. 219.
- ³⁴J. M. Rowe, J. Phys. F <u>8</u>, L7 (1978). Significant deviations from linearity in the long-wavelength limit of the dispersion such as those reported by Magerl, *et al.*³⁵ in NbH_x do not seem to happen in PdH_x or PdD_x since the elastic moduli from neutron scattering experiments agree within 10% with the values found in this work.
- ³⁵A. Magerl, W. D. Teuchert, and R. Scherm, J. Phys. C <u>11</u>, 2175 (1978).
- ³⁶I. S. Anderson, C. J. Carlile, and D. K. Ross, J. Phys. C <u>11</u>, L381 (1978).
- ³⁷O. Blaschko, R. Klemencic, P. Weinzierl, O. J. Eder, and W. Just, J. Phys. F <u>11</u>, 2015 (1981).

- ³⁸G. J. Zimmermann, J. Less-Common Met. <u>49</u>, 49 (1976).
- ³⁹F. M. Mazzolai, P. G. Bordoni, and F. A. Lewis, J. Phys. F <u>11</u>, 337 (1981).
- ⁴⁰A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids, Academic, New York 1972), p. 53.
- ⁴¹F. M. Mazzolai and H. Züchner, Z. Phys. Chem. Neue Folge <u>124</u>, 59 (1981).
- ⁴²D. S. MacLachlan, R. Mailfert, J. P. Burger, and B. Souffaché, Solid State Commun. <u>17</u>, 281 (1975).
- ⁴³A. Gorska, A. M. Gorski, J. Igalson, A. J. Pindor, and L. Sniadower, in *Proceedings of Hydrogen in Metals Conference* (Pergamon, Paris, 1977), Sec. 2 A 10.
- ⁴⁴J. A. Garber and A. V. Granato, Phys. Rev. B <u>11</u>, 3990 (1975).
- ⁴⁵A. M. Gray, D. M. Gray, and E. Brown, Phys. Rev. B

<u>11</u>, 1475 (1975).

- ⁴⁶E. A. Stern, Phys. Rev. <u>111</u>, 786 (1958).
 ⁴⁷G. Leibried and W. Ludwig, in *Solid State Physics*,
- edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1961), Vol. 12, p. 275.
- ⁴⁸T. H. K. Barron, Phys. Rev. <u>137A</u>, 487 (1956).
- ⁴⁹O. Blaschko, J. P. Burger, R. Klemencic, and G. Pépy,
 J. Phys. F <u>11</u>, 2015 (1981).
- ⁵⁰B. M. Geerken, A. M. Hoefsloot, R. Griessen, and E. Walker, in *Physics of Transition Metals*, edited by P. Rhodes (IOP, London, 1981), Vol. 55, p. 595.
- ⁵¹O. Belmahi, M. Merck, E. Perréard, M. Peter, E. Walker, and J. R. Schrieffer, Helv. Phys. Acta. <u>39</u>, 338 (1966).
- ⁵²E. Walker, J. Ortelli, and M. Peter, Phys. Lett. A <u>31</u>, 240 (1970).