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Deviation from Matthiessen's rule at high temperatures: Theoretical interpretation
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Theoretical interpretation is given for the deviation from Matthiessen's rule (DMR) at

high temperatures on dilute alloy systems Au in Cu, Cu in Au, and Ni in Cu, and Cu,

Ag, and Ge in Al, measured with the use of the new experimental techniques developed

by Fujita and others. The measured deviation from this rule, h(c, T), can be fitted to
curves of Y+AT ( Y=0), where T is the absolute temperature, and the numerical con-

stant A ( Y) can be calculated using a standard lowest-order (higher-order) variational

scheme. Y is always positive and gives a measure of the anisotropy of the scattering at

high temperatures. For most of the Al-based and noble-metal-based dilute alloys, Y is

small and the anisotropy scattering is unimportant. The proportionality factor A has

been evaluated, within the standard variational formalism, using an atomistic model cal-

culation for the electron-phonon spectral function. It is shown that the leading contribu-

tion to the high-temperature DMR is due to the change in the phonon spectral function
I" (co) for Cu in Al, Ge in Al, Cu in Au, and Au in Cu alloys, while it comes from the

change in the electron-phonon coupling function a„(co) (electron-mass-enhancement

parameter A,„) for the Ag in Al alloy.

I. INTRODUCTION

The general feature of the deviation from
Matthiessen's rule (DMR) at high temperatures
close to the melting point was obtained for dilute
Al-based alloys, Cu, Ag, and Ge in Al, with the
use of an impurity-diffusion technique by Fujita et
aL,' and quite recently DMR results for noble-
metal-based alloys, Au in Cu, Cu in Au, and Ni in
Cu, have been obtained as we11.

This paper provides theoretical interpretation for
these DMR results. There have been a number of
theoretical approaches on DMR in dilute alloys as
well as metals containing lattice imperfections. '

Sondheimer and %ilson introduced a two-band
model of electronic conduction and demonstrated
that DMR appears owing to anisotropy of relaxa-

tion time in each band (belly and neck region of
Fermi surface). Kohler, on the other hand, intro-
duced the variational procedure for solving the
Boltzmann transport equation, which has been

used to determine DMR b, (c,T) (for definition see

Sec. II) arising from the inelastic electron scatter-

ing by phonons. Kagan and Zhernov, Taylor,
Kus et al., and others have discussed the Debye-
Waller factor in the electron-phonon scattering.
Goodarz and Barnard' considered the influence of
a rapidly varying electron density of states as a
function of energy at the Fermi level.

Theories proposed so far, however, seem to be
unsatisfactory at high temperatures near the melt-

ing point, since assumptions introduced may be
only valid at low and intermediate temperatures. '

In the present paper we propose, on the basis of
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experimental findings on high-temperature DMR
obtained by Fujita et al. ' using a specifically
designed impurity-diffusion technique, a straight-
forward and transparent mechanism for DMR of
dilute binary alloys at high temperatures. The idea
is similar to that proposed by Berry" and that pro-
posed recently by Engquist and GrimvaH. We
propose that at high temperatures the change in
the electron-phonon spectral function a„(co)F(co)
due to solute atoms (or defects) plays a dominant
role in determining DMR, and other effects such
as anisotropic electron scattering, energy depen-
dence of relaxation time, etc., are of secondary im-
portance. In fact, as shown by Engquist and
Grimvall, ' h(c, T) arising from the anisotropic
scattering becomes very small at high temperatures
above 300 K.

We investigate the change in the F(co) and a„(co)
functions as follows: To estimate the change in
phonon spectral function F(co) upon alloying, we
use the Debye model and moment (Thirring) ex-

pansion technique. ' Furthermore, for the estima-
tion of the change in the electron-phonon coupling
function a«(co), we assume (see Ref. 14)

a,„(co)F(co)o: A«(co/con )

and use a simple interpolation scheme for the cou-
pling constant A,«(electron-mass-enhancement
parameter) of dilute alloys, ' i.e.,

distr Atr d p
dc (dp/d T) d Tdc

or16, 17

A,«"'"=Cq A,"«+(1—Cq )A,„,
together with the well-known relation'

A«=2 I a„(co)F(co),
N

where p denotes the resistivity of the alloy. This
assumption has widely been used in the literature
(DMR theory at low and intermediate tempera-
tures' and calculation of infrared absorption in
metals' ) with considerable success. Thus it can
also be used for the semiquantitative understanding
of high-temperature DMR. To characterize the
change in the phonon spectral function F(co), we

determine the change in the characteristic (Debye)
temperature 58& upon alloying. We derive an
analytical expression for 68& and give numerical

estimates of 68~ for specific aHoy systems. To
our knowledge, this is the first time that DMR
b,(c,T) has been calculated using an atomistic

model of lattice vibration for binary alloys at high
temperatures, and compared directly with the
specific experimental systems. So far, theories for
DMR have been concerned in the main with low

and intermediate temperatures, where the charac-
teristic hump (or peak) appears and DMR becomes
a maximum. ' As will be shown later, the present
theoretical calculations of DMR at high tempera-
tures are in good agreement with experimental re-

sults.
The present paper is organized as follows:

Sec. II we present the method of calculation. Sec-
tion III contains the numerical results and discus-
sions for high-temperature DMR of dilute binary
(Al-based as well as noble-metal-based) alloys. The
conclusions are given in Sec. IV.

II. METHOD OF CALCULATION

The DMR arises from the simultaneous presence
of electron-impurity (lattice-defect) scattering and
of electron-phonon scattering. We denote by pp(c)
the residual resistivity arising from electron-
impuIity scattering in the absence of electron-
phonon scattering, and by pz(T) the ideal resistivi-

ty arising from electron-phonon scattering in the
absence of electron-impurity scattering. The DMR
b (c,T) is then defined as

A(c, T) =p(c, T) p~(T) po(c),— —

where p(c, T) denotes the resistivity of the alloy
with solute concentration c. The major part of the
DMR problem is thus how to calculate the resis-

tivity p(c, T) at finite temperatures.
Semiquantitative understanding of DMR at low

and intermediate temperatures have been given in
the literature' ' but at high temperatures theoreti-
cal interpretation has not been given yet. One of
the reasons is the fact that there has been no reli-

able experimental data of DMR at high tempera-
tures. Another reason is the difficulty of exactly
solving the problem, for instance, the difficulty of
taking into account the multiphonon and other
processes. However, in view of the experimental
results of DMR at high temperatures, where linear
temperature dependence is obtained for a wide

variety of binary alloy systems (except for the
NiCu alloy, for instance)' we may expect that
DMR at high temperatures can be treated within

the standard variational formalism. ' ' ' ' lt is ex-
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actly what we attempt to do in this paper.
%e introduce the so-called "electron-phonon

spectral function" in the theory of DMR. It is
very convenient to introduce the electron-phonon
spectral function (so-called Eliashberg function)

a„(co)E(co) in the transport theory because, in the
absence of detailed knowledge, we can still make
good guesses about a„(co)E(co). Using the stand-
ard variational formalism, ' ' ' ' the DMR of di-
lute binary alloys can be written formally as

b,(c,T)= [p(c, T) p&(c—,T) pp(c—)]+[pz(c, T) pz( T—)]

m I [a„(co)F(co)]'—[a„(co)F(co)] I=[p(c,T) pz(c—, T) pp(c—)]+ z J @, ~ Pcodco
ne' (e~—1)(1—e ~) (3)

where P= 1/k&T, and m~, e, and n denote electron
mass, electronic charge, and electron density,
respectively.

To investigate the first term of the above equa-
tion (3) (which becomes important at low and in-
termediate temperatures), Engquist and Grimvall'
have solved the Fredholm-type integral equation
and obtained the energy-dependent relaxation time.
They showed that the model calculations are not
sensitive to details in the a«(co)F(co) function and
the quantity in the first bracket can be approxi-
mated by that for c =0. At high temperatures and
at low concentrations c, Eq. (3) can be simplified
to

tion F(co) and the relation between the coupling
constant A,,„and a„(co)F(co) function, given in Eq.
(1). The value of A,«'"" is estimated using the sim-
ple interpolation scheme':

'tr d p
dc (dp//dT) dT dc

d16, 17

The change in the phonon spectral function F(co)
due to solute atoms is investigated using the mo-
ment (Thirring) expansion technique. '

A(c, T)=Y+AT . (4)

From Eq. (4), one. can summarize the theoretical
predictions as follows: A plot of measured
b (c,T)lpp(c) for dilute alloys, as a function of
temperature, has one of the two typical forms
sketched in Fig. 1. The factor Y is always positive
and gives a measure of the anisotropy of the
scattering at high temperatures. ' A can be calcu-
lated only if we know the details of how
a«(co)F(co) is changed on alloying. In general, it is
difficult to obtain this kind of information. In the
present study, we use a rather simple scheme to ob-
tain the change in the a„(co)E(co) function. We
use the Debye model for the phonon spectral func-

A. Change in the characteristic temperature

In this section we derive the formula to evaluate
the change in the characteristic temperature due to
solute atoms and apply it to DMR calculations. In
order to calculate the characteristic (Debye) tem-
perature of dilute alloys or metals with lattice im-
perfections, SD ——Sp+b, e~, we use the well-
known relation' between the second frequency
moment p2 of a frequency (Debye) spectrum and
the characteristic (Debye) temperature,

kg
p2 8 ~

5 A'

Temperature

From Eq. (5), it is straightforward to derive
' 1/2

5P2

(
(0))1/2

P2
(6)

FIG. 1. Typical experimental DMR curves in the en-
tire temperature region.

Rigorously speaking, 58& should be calculated in-
cluding the temperature dependence of the charac-
teristic temperature 8~, and be expressed in terms
of the change in the frequency moments 5p2,
5p4, . . . , 5p„, . . . , and temperature T (see Ap-
pendix A).
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In order to obtain the change in the nth moment

5p„, due to the introduction of solute atoms, it is
convenient to introduce the dynamical matrix D p
and use the following formula'3:

p2„= ~ "F(co)dec= TrD"p .
o 3N

After a bit of algebra, one obtains, for instance,

hp2 for the fcc lattice with the nearest-neighbor
interaction as follows:

Ap2 ——p2 —p2
(o)

~'

using a simple pair potential method recently in-
troduced and applied to a wide variety of metals
and alloys with considerable success. ' This
method is based on a rather simple but transparent
rule called a combination rule, and gives in a
straightforward fashion the pair interaction be-
tween host and impurity atoms.

The Morse potentials

Pz(Rz)=Dr[ exp[ 2ar—(RiJRo'r)]
—2 exp[ —az(R,&

—R&)]],
y=A or 8, (9)

4
N

1 1
A, R' 2A, R

fitted to the bulk modulus, lattice constant, and the
cohesive energy (or a formation energy of a vacan-
cy) are used to describe interactions between atoms
in pure A or 8 metals and

where M and M' denote the host and impurity
masses, respectively. A,~~(Ro) represents the force
constant between host atoms separated by an
equilibrium interatomic distance Ro, and A,~;(Ro )

between host and impurity atoms separated by a
distance R o (due to lattice distortion around the
impurity atom). A,s~(RO) can, in principle, be
determined from the bulk maximum frequency
co,„. In contrast, the determination of host-
impurity force constants A~;(Ro ) is difficult and
will be made using a phenomenological pair poten-
tial method.

B. Host-impurity interaction energy

In general, it is difficult to obtain the force con-
stants between host and impurity atoms since they
depend both on the changes in the electronic struc-
ture and short-range ion-core interactions due to
introduction of solute atoms. Mossbauer spectros-
copy or neutron diffraction experiments can give,
to some extent, information on this quantity.
However, these kinds of experiments have been
very limited (for instance, limited to Mossbauer
impurities such as Sn and Fe, and neutron experi-
ments have been done for rather concentrated al-

loys with a few at. % of solutes or more) and no
reliable experimental data are available for the Al-
based and noble-metal-based alloys considered here
(very dilute). The pseudopotential or density-
functional approach ' may be applicable to this
kind of problem but at present very rehable results
could not be expected from these calculations.

We evaluate the host-impurity force constants
(interactions) from the theoretical calculations

g(R J. ) =D[ exp[ —2cz(RJ. —Ro)]

—2 exp[ —a(Rtj. —Ro)]),

5p2 ———4 1 1 „2
Ro

P"(Ro)
M

The detailed derivation of the above equation will
be presented in the Appendix. It is then straight-
forward to evaluate the change in the characteristic
temperature 68 due to introduction of solute
atoms from Eq. (6).

III. NUMERICAL RESULTS
AND DISCUSSIONS

In this section we present the results of numeri-
cal calculations of high-temperature DMR h(c, T)

are used for the interaction between host and im-

purity atoms. The potential parameters D, a, and
R o are determined from parameters Dz, aq, R0~,
Dz, az, and Ro~ for constituent A and 8 pure met-
als using a combination rule.

Once potential functions for A-8 atom interac-
tions are known, it is straightforward to determine
the change in the first few moments 6p„due to in-
troduction of solute atoms. For instance, in terms
of the first and second derivatives of the potential
functions P and P and host and impurity masses M
and M', 5p2 can be expressed as
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for both Al-based and noble-metal-based binary al-

loys and compare them with experimental data ob-
tained using the new experimental (impurity dif-
fusion) techniques developed by Fujita et al. ' For
convenience, we calculate b (c,T)/pz(T) as a func-
tion of atomic concentration of solute atoms c.
We assume that the change in the characteristic
temperature 8 due to introduction of solute atoms
is identical to the change in the Debye tempera-
ture, obtained for instance from Eq. (6).

The parameter values of Morse potential D, a,
and Ro are now well known for a wide variety of
metals. ' With the use of these values it is pos-
sible to calculate the cohesive energy E„bulk max-
imum frequency co,„, and Debye temperature Sii
(both for the host metals as well as for metals
composed only of solute elements). In order to in-

vestigate the h(c, T) arising from the change in the
electron-phonon spectral function a«(ro)I'(co) upon
alloying (at high temperatures), we first calculate
h(c, T) taking into account the change in the pho-
non spectral function F(co), i.e., change in SD due
to the introduction of solute atoms, and leaving the
other factors unchanged. Second, we calculate
h(c, T) taking into account the change in the
electron-phonon coupling function a„(co): In the
present work using the Debye model and assum-
ing'4 that

a,',(oi)F(co) ~ A (~«/oiD)

the change in mD or 8D affects both P(co) and

a„(co) functions simultaneously. However, in or-
der to avoid confusion, the change in the a„(co)
function is hereafter referred to as the change in
the coupling constant A,„. From these calculations
we understand the leading contribution to the
DMR function b, (c,T).

Introduction of solute atoms or lattice defects
can change the Debye temperature of the crystal.
This behavior has been investigated both experi-

mentally and theoretically. For example, measure-
ments of the lattice specific heat and the elastic
constants both show that the Debye temperature
8D (at 0 K) may change linearly with dilute solute
concentration. It has also been demonstrated
that the increase in specific heat in the temperature

1

range between» 8~ and e~, caused by plastic de-

formation, can be approximately represented with-
in the Debye theory. It is, therefore, reasonable
to assume that the phonon resistivity is altered to
some extent by solute atoms or defects and that
this change could be represented by a change in the
characteristic temperatures.

We have calculated the change in the charac-
teristic temperature 68& due to introduction of
0.1 at. % solute atoms and presented the results in

Table I. One can see that LSD becomes positive
or negative depending on the mass ratio M'/M and
the host-impurity force constants. Once the
change in the characteristic temperature EOD is
calculated, it is straightforward to obtain b, (c,T).
In this case (58& model), the DMR b(c, T) can be
expressed in terms of 68& as follows".

QQ~

b(c, T)= Y—2 pq(T) .
D

(12)

In Figs. 2 and 3 we present h(c, T)/pz(T) for alloy
systems Cu in Al and Ge in Al, respectively, as-
suming the change in the phonon spectral function
E(co) only. Experimental results are represented by
symbols O. The corresponding results for Au in
Cu and Cu in Au are given in Figs. 4 and 5,
respectively. In general, the agreement between
theory and experiment is good: Even for the re-
sults of Cu in Au shown in Fig. 5, the agreement
in sign and in order of magnitude is of signifi-
cance, in view of the rough estimation for the
a„(co)F(co) function. Here, it is noted that experi-
mental h(c, T) data can be fitted well to curves
with Y=O. This indicates that the DMR b, (c,T)

TABLE I. Calculated A,p/Ap and 58. 68 is evaluated for 0.1 at% alloys. 58* is ob-

tained assuming A,p/A, p ——1 {M'/M is taken into account).

Host Impurity M'/M A,p/A, p

68*X10-'
(K.)

58X 10
(K)

Al
Al
A1

Cu
Cu
Au

Cu
Ag
Ge
Ni
Au
Cu

2.355
3.998
2.691
0.9237
3.1004
0.3225

1.302
1.283

1.137
1.202
0.841

—1.235
—1.610
—1.349

0.435
—1.279

2.059

—0.318
—0.852

0.693
—0.775

1.855
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FIG. 4. Comparison of experimental data with
theory for Au in Cu alloy system.

0.05 0.1 035
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FIG. 2. Comparison of experimental data with
theory for Cu in Al alloy system.
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FIG. 3. Comparison of experimental data with
theory for Ge in Al alloy system.

for binary alloys at high temperatures may be
largely accounted for by a change in the charac-
teristic temperature alone. Furthermore, it is im-

portant that these conclusions are not altered quali-
tatively even when we take into account the change
in the electron-phonon coupling function at„(co)
simultaneously, as will be shown later. The excep-
tion is for Cu in Al alloys. This might indicate

that the estimation of the AA, „value using the sim-

ple interpretation schemes is inappropriate for the
alloys. In this respect it is desirable to establish an
ab initio theoretical method to calculate the b A,„
values.

Furthermore, theoretical prediction that the sign
of DMR h(c, T) is opposite to that of 58D [Eq.
(18)] is in agreement with our experimental find-
ings. ' It is noted that the experimental values of
b (c,T)Ipz(T) for Au in Cu have a positive sign,
while those for Cu in Au a negative sign. This
also indicates the positive identification of the
b,8& model for the DMR at high temperatures.
[Historically, there have been several at-
tempts" ' to interpret the experimental data in
terms of the change in the characteristic tempera-
ture (b,8& model). However, these attempts do
not seem to have succeeded since they have too
many unknown factors" and many experimental
results reported for very dilute alloys are unphysi-
cal at high temperatures (they do not approach an
asymptotic curve when impurity concentration c
tends to zero' ).] In contrast to the alloy systems
Cu in Al, Ge in Al, Au in Cu, and Cu in Au, the
agreement between the 68D model calculation and
experiments is poor for Ag in Al and Ni in Cu.
The 68D model predicts the opposite sign, com-
pared to experimental results, for A(c, T) Ip~( T) of
these alloys. This probably comes from the fact
that the a„(co) function is altered upon alloying as
well. It is well known that not only F(co) but also
a,„(co) functions change upon alloying, especially in
the experience of superconducting materials. ' We
now estimate the contribution of h(c, T) coming
from the change in the electron-phonon coupling
function a„(co), i.e., the change in the coupling
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FIG. 5. Comparison of experimental data with theory for Cu in Au alloy system.

4nm' 2~~«.
6(c,T)=Y+ 2 5 4 F(ficon/AT),

ne P coD

(13)

where

F(x)= I dZ,
(e —1)(1—e )

malloy gpure
tr tr tr

(14)

We now evaluate 5(c,T)/p&(T) using Eqs. (13) and

(14), and assuming

d A«/dc =[A«/(dp/dT)](1 2pldT dc)

or

A,«"'"=(1—C Q,"«+CA,„
for comparison. The second approximation is ex-
act in the weak scattering limit. ' The first type of
approximation for (dA, /dc) has been used by Rapp

constant A,«. For this purpose, we assume" that

a„(co)F(a))=2k«(co/a)D)

both for pure metals and dilute binary alloys. This
form of the electron-phonon spectral function
a„(co)F(co) directly reproduces the Bloch-
Griineisen resistivity formula for the pure metals.
Now it is possible to obtain the DMR arising from
the change in the coupling constant A,„:

et al. '5 and Grimvall 2 for a large number of alloys
with considerable success. [Both approximations
give almost the same results (tendency) for the al-

loy systems considered here. ]
The calculated EA,„values are presented in Table

II for Al-based and noble-metal-based binary al-
loys, together with A,«values (in parenthesis) for
the pure constituent metals. From Table II one
can see that hk„contribution to the DMR is most
important for Ag in Al while it is less important
for Cu in Al, Cu in Au, and Au in Cu alloy sys-
tems. In Fig. 5, we present b,(c,T)/pz(T) for Ag
in Al: Symbols 0 represent the experimental data.
One can see that the agreement between the theory
and experiment is good. For Ag in Al, better
agreement is obtained when including both changes
in 8D and A,«. In view of the simple assumption
for values of A,«"", the present success of the DMR
b, (c,T) calculation is encouraging: In an explora-
tory model calculation, the simplicity of the as-
sumption or transparency of a theory is quite
desirable for the semiquantitative understanding of
the problem (complicated DMR mechanism at
high temperatures). From these calculations, we
come to the conclusion that the DMR of binary al-
loys considered here can roughly be accounted for
within the standard variational formalism. For
Cu in Al, Ge in Al, Cu in Au, and Au in Cu alloy
systems, the leading contribution to the DMR can
be explained by the 68~ model while the 4A,„
m, echanism can be applied to Ag in the Al system
(better agreement is obtained by including both
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TABLE II. Calculated hA, „/A.„using the interpolation schemes for 0.1 at% alloys.

Host Impurity
EA,„/A,„'

(interpolation)

Al (0.49)
Al {0.49)
Cu (0.14)
Au (0.14)
Al (0.49)

Ag {0.10)
CU (0.14)
Au (0.14)
Cu (0,14)
Ge

—0.8X10-'
—0.7X10-'

0
0

—3.1~10-'
1.4y10-'

0
—0.4g10-'
+3.0~ 10-'

'These values are obtained from the relation A,t,
'""=C„A,„+C&A,„.

'These values are obtained from the interpolation schemes given by Rapp and Fogelholm
(Ref. 15) and the experimental data by Fujita et al. {Ref. 1). We have used these values in

the present DMR calculations since they are obtained by taking into account the characteris-
tic features of the resistivity of very dilute alloys.

5&«and b,8& contributions as shown in Fig. 6).
However, the agreement between the present

DMR calculation and experimental results is poor
for the NiCu alloy system, where nonlinear tem-

X]

perature dependence of h(c, T) has been observed
at temperatures 29S—1163 K. This might come
from the fact that in dilute NiCu alloys other
mechanisms like sp electron scatterings from d res-
onance states play a significant role even at high
temperatures.

IV. CONCLUSIONS

4.00 0.05 0.1 0.15

Solute Concentr qtion(at. %)

FIG. 6. Comparison of experimental data with
theory for Ag in Al alloy system. Solid (dot-dashed)
curve represents theoretical results from 48D(EA,„)
model. Bold solid curve is obtained by including both
68~ and hi, „contributions.

Theoretical interpretation for high-temperature
OMR has been given for Al-based and noble-
metal-based alloys using an atomistic lattice-
vibration calculation within the standard variation-
al formalism. For most of the binary alloys, the
experimental DMR A(c, T) data can be fitted well
to curves of Y+AT (Y=O). This indicates that
the anisotropic scattering owing to impurity atoms
is unimportant at high temperatures. %e have also
shown that the leading contribution to the DMR is
owing to the change in the phonon spectral func-
tion F(co), i.e., change in Debye temperature, for
alloy systems of Cu in Al, Ge in Al, Cu in Au,
and Au in Cu, while it comes from the change in
the electron-phonon coupling function a„(co) (the
coupling constant A,«) for Ag in the Al alloy sys-
tem. These contributions have not been included
in the previous DMR theories such as the two-
band theory, Kagan and Zhernov theory, and oth-
ers (appropriate for low and intermediate tempera-
tures).

However, the other mechanisms like s-d or p-d
scatterings have to be added for NiCu aHoy, which
show the nonlinear temperature dependence of
h(c, T) at high temperatures. Though the present
calculation does not give detailed quantitative
understanding for the high-temperature DMR of
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binary alloy systems, it does provide a general
physical interpretation for the high-temperature
DMR: The 688 and AA, „mechanisms have not
been included in the previous low-temperature
DMR calculations. For more quantitative under-
standing it is required at least to introduce the
more realistic phonon spectra or electron-phonon
spectral functions. Such attempts have already
been made for the resistivity calculation of pure
metals. %e hope that the present theoretical in-

terpretations and discussions will stimulate more
theoretical and experimental works on the DMR at
high temperatures.
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APPENDIX A

The explicit expression for the characteristic temperature 8D can be given as follows: We start with the
relation between the specific heat of the crystal (constant volume) and the vibrational spectrum FD(co),

C„(T)= — =3Nks I FD(co)dc'
sinh x

~D 0 " fm %co

BT Ba o 2
Fg)(co)de . (Al)

The second term of Eq. (Al) arises from the temperature dependence of co&. This term can be shown to be
negligible since it has T, T, . . . contributions (without T contribution). Then it is easy to derive

8g) ——

' 1/2

1 1 fi

T2 g

3/P
1 5

'

(0)
p2 +6p2

7 3

1/2
1 3
3 5

(0)+g +o(T-'),
(

(0)+5 )1/2
(A2)

where we have used the Thirring expansion tech-
nique and assumed that

C2 C4 C6
8D ——8g)+, + 4+, + . .

T2 T4 T6
(A3)

+ X lX(
I
ri rol ) 0{ I

rt r
I+0

Here C2„denotes numerical constants. From Eq.
(A2) one can see that 58n can be well approximat-
ed by the expression (6) at high temperatures.

APPENDIX B

In this appendix we derive Eq. (11) in the text
within the central-force harmonic approximation.
%hen the host-atom site, origin of a host lattice, is
replaced by an impurity atom, the total potential
energy V of the crystal can be written as

where 0'(
I
r I rr

I
»nd &—(

I
ri —r p I

) are the p»r
interaction energies between pairs of host atoms
and between host and impurity atoms separated by
a distance

~
r~ —rr ~, respectively. We denote the

lattice vector ri in terms of the equilibrium posi-
tion x~, and displacement vector g~ as

r (=X(l)+g(1) .

%e now expand the potential energy in powers of
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@=@p+—,g g @'p(11')g (1)gp(l')+
la l'P

h4=b, 4p+ g p (l)[g (1)—g (0)]
1+O,a

+ —,
' g gp p(1}[g (1)—g' (0}]
l~ aP

(83)

p (1)= p(r)
'BXa

g( l)

=X (1)Dp(1),

a'
p p(1)= p(r)

BXaBXP ~(l)

(89)

x [Ql)—gp(o)]+ (84) =X (1)Xp(1)D'p(1) +& Qp(1), (810)

where g (1) is the a Cartesian component of g(l)
and p(r) =X(r) P(r). F—urthermore, in the above
equations (83) and (84), we have used the notation

where D represents the differential operator.
One can rewrite Eq. (84) as

4v ——, g P(
~

x(l) —x(l')
~
),

l+l'

C."p'(1,0)=e."p'(0, 1)= —y.pl)

[X (1)Xp—(1)&'P(1)

(BS)
b,4=A4v+ g f~(l)g~(l)

+ —, g g f p(1,1')g (1)gp(1')+
la l'P

f (l)=p (1), 1+0

(811)

(812)

and

+5 pDP(l)], 1+0

e."p'(o, o)= g y.p(l),
l~

b,@o gp(
~

X(1)
~
),——

l

(86)

(87)

(BS)

=—gp (1).
l~

(813)

We now write the displacement vector g(l) as the
summation of a static displacement v(l) and of a
dynamic displacement u(l). The potential energy
can be expanded as

V=@o+b@v+gf (l)v (1)+—, ++ [AD'p(l, l')+f p(l, l')]v (l)vp(l')+
la la l'P

f (1)+g [4' p(ll')+ f p(l, l')]vp(l')+ u (1)
la l'P

+ —, ++[AD'p(ll')+f p(ll')]u (l)up(1')+ ~

la l'P
(814)

The static displacement (lattice distortion) around
the impurity atom can be determined from the
condition that the linear term in the dynamic dis-
placement u~(l) should vanish:

Then, the second moment p2 for the perturbed
lattice can be obtained as follows:

4~~(/, 1') f~~(l, 1')

g [@~p(l,l')+ f~p(l, l')]vp(l') = —f~(l) .
l'P

(81S)

In the harmonic approximation, the perturbed
atomic force constants are given by

, g [4"'(0,0)+f (0,0)]
a

+ XVI~~a l+0

@~p(l,l')=4' p(l, l'}+f p(l, l') . (816) (817)
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After a bit of algebra, one can obtain the following
relations for the fcc lattice with nearest-neighbor

interaction,

Thus, we have finally

1 1 „2+, X"(rp)+—X'(rp)
ro

g4' a(0,0)= 12$"(rp),

gf' (0,0)= 12 X"(rp) + X'(rp—) —{'"(rp)
A P'0

(B18)

{{"(rp) (B20)

(B19) where ro represents the equilibrium interatomic
distance.
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