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A theory of the interfacial dipole energy and the threshold for photoemission from
metals covered with a thin layer of ionic insulator was developed. The calculated thresh-
olds are found to be in good agreement with recent measured values for metal-BaFq and
metal-LiF systems. Moreover, the calculations agree with the observed interface parame-
ter S, the systematic dependence of the thresholds on the insulator, and the observation
that the thresholds tend to be smaller than the metal work function. The model includes
a multiband free-electron description of the metal and a two-band model of the ionic in-
sulator. The multiband feature was required for the agreement between theory and exper-
iment, which suggests the sensitivity of the observed thresholds to band-structure effects
in the metal. We also found the results to be sensitive to the choice of electron effective
mass in the insulator.

I. INTRODUCTION

Because of the important applications of
Schottky barriers in solid-state devices, extensive
studies of Schottky-barrier formation have been
made in recent years. Gf particular interest in
these studies is the interfacial barrier height Pz of
a metal-semiconductor contact. This barrier height
is the difference in energy between the metal Fermi
level and the bottom of the conduction band of the
semiconductor, Numerous experiments have
shown a linear dependence of Ps on the metal elec-
tronegativity X .' The slope (dP~/dX ) of this
linear relationship is called the interface parameter
S. An important property of S is that it indicates
the extent to which the Fermi level can be stabi-
lized for a given semiconductor. It has been estab-
lished that S is small (S=O) for Schottky barriers
involving covalent semiconductors of small band

gaps. ' For these semiconductors, the Fermi level is
pinned somewhere in the band gap. It has also
been found that S increases with the ionicity of the
semiconductor. ' Some recent data on S values for
metal —ionic-insulator interfaces seem to indicate
that the upper limit of S is about IL.6. Consider-
able attention has been given to the theories con-
cerning the limits of S, but some fundamental
questions still remain unresolved.

Various theories have been proposed to account
for pinning of the Fermi level, i.e., S=O. ' The
first qualitative explanation for S=O is the Bar-
deen model which assumes a high density of in-

trinsic surface states in the gap of the semiconduct-
or. The electrons occupying these states can pin
the Fermi level and screen the semiconductor from
the effect of the metal work function. On the oth-
er hand, Heine pointed out that true surface states
cannot exist at the interface between a metal and a
semiconductor. He suggested that metal-induced
states in the gap of the semiconductor which decay
exponentially into the semiconductor could stabi-
lize the Fermi level. More recently, Louie et al. '

proposed a new type of metal-induced gap states
which can be interpreted as surface states matched
to the continuum states of the metal. Using a
model involving these states, they were able to ex-
plain quantitatively the variation of Pz for the dif-
ferent metal-semiconductor interfaces. However,
some questions about the application of. the model
of metal-induced states have been raised. For ex-
tended bulk metal states to occur the metal film
has to be sufficiently thick, but it has been ob-
served recently that the Fermi-level pinning can
take place long before a sufficiently thick metal
film has been deposited on the semiconductor sur-
face. ' In an effort to account for this observation,
Spicer et al. ' suggested the possibility of
Schottky-barrier formation due to defects produced
near the interface by metal deposition or by oxida-
tion. Thus there is disagreement on the theoretical
approach to explain the Fermi-level pinning in
Schottky barriers.

In this paper we focus our attention on the inter-
facial barrier between a metal and a thin film of
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ionic insulator and its relation to the upper limit of
S. In a recent photoemission study, metal films
with thin overlayers of BaFq or LiF were found to
have photoemission thresholds lower than the cor-
responding metal-vacuum work function. The ob-
served difference is probably caused by the change
in dipole energy of the interface. However, it is
not clear from the current theories how the de-

crease in threshold can be predicted. The first ob-

jective of the present work has been to develop a
relatively simple model involving metal-induced in-

terfacial states to calculate the change in threshold
of photoemission from a metal with a thin over-

layer of ionic insulator. A second objective was to
obtain a further quantitative corroboration for the
validity of models involving metal-induced interfa-
cial states.

In our model of the metal-insulator interface, we

used a multiband free-electron model for the met-
al' and a two-band model of the ionic insula-

tor. ' ' We devised a self-consistent iterative pro-
cess to calculate the interfacial dipole energy and
the photoemission threshold. The theory was ap-
plied to eight metal-BaF2 and eight metal-LiF in-

terfaces. The agreement with the recent experi-
mental results is remarkable, and tends to confirm
the concept of metal-induced interfacial states pro-
posed by Heine and Louie et al. '

In Sec. II we describe a simple model for the
change in the surface dipole energy of a metal due
to the overlayer of an ionic insulator. The method
of calculating the photoemission threshold of the
metal with a thin ionic insulator is discussed in

Sec. III. A comparison of the results of calcula-
tions with the experimental data is given in Sec.
IV. A discussion of the relation of the present
work to the published work using the static dipole
model is given in Sec. V. The concluding remarks
are found in Sec. VI. The working expressions ac-
tually used to evaluate the interfacial dipole ener-

gies are discussed in Appendixes A and B.

Exchange and correlation effects are accounted
for in the definition of the effective one-electron
surface barrier height at the metal-vacuum inter-
face, in terms of the observed work function of the
metal surface and Fermi energy. Furthermore, the
surface- or interface-induced inhomogeneity of the
charge density is screened by the (self-consistent-
field) dielectric response function of the electron
gas. ' Band-structure effects are included in the
multiband free-electron model by representing both
the dispersion relation and the density of states as
superpositions of several, possibly orbitally degen-
erate, free-electron bands starting at prominent
band edge determined either from experimental
data, or from calculated band structures. '"

The multiband free-electron model is combined
with a two-band model of the insulator to obtain a
model of the metal-insulator interface. ' ' Our
model characterizes the interface by the parameters
ho and 6& representing, respectively, the contribu-
tion of the interfacial electric dipole moments to
the threshold energy for photoemission from the
metal into vacuum without and with an insulating
film. More precisely, the shift in the photoemis-
sion threshold due to the insulating film is
(b, , —bo). For the metal-insulator interface our
model indicates that this energy is linearly related
to the shift in the location of the surface Fermi
level relative to the bottom of the conduction band
of the insulator, i.e., to the conventional metal-
insulator barrier Ps. The dipole energies b,o and

h~ are defined by a set of equations, which have to
be solved numerically by an iterative procedure dis-

cussed in Sec. III. It should be noted that the ef-
fects of localized states due to bulk doping or lat-
tice defects in the insulator are not considered.
This approach can be justified by the small

penetration depth (of the order of 1 A) and high
density of the metal-induced (interfacial) states
considered in our work. A similar procedure was

applied by Garcia-Moliner et al. ' in their discus-
sion of semiconductor surfaces.

II. THE MODEL

A. Preliminary remarks

In this section we introduce a modified multi-
band free-electron model for the semi-infinite met-
al. The model includes, in a phenomenological
fashion, both an exchange and correlation correc-
tion as well as the gross effects of the periodic po-
tential, i.e., of the band structure, on the density of
states.

B. The model of the metal-vacuum interface

Ecm =EF+0mv ~ (2.1a)

where EF is the Fermi energy and P „ is the mea-

We shall consider first the single-band model,
applicable to alkali metals. In this model we

represent the metal by a semi-infinite free-electron
model with a finite surface barrier, located at z =0,
of height E, given by
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sured metal-vacuum work function for a polyscrys-
talline film. The energy ho represents the interfa-
cial dipole energy associated with the metal-
vacuum interface. Accordingly we write

fi d
2~ dz

(E+E, ) —kp $-„~=0,

z) 0 (2 4a)

0 .=0 b+~0 (2.1b)

1. Dipole energy 60

where P b is the bulk contribution to the work
function, or the "interna" work function. We can
calculate Ao from empirical parameters, using the
model presented in Fig. 1. The energy E is assumed to be in the range

—E, &E~O.

The solutions of (2.4a) and (2.4b) are

(2.4b)

$2 d 2 $2
E —k Qq E

——0, z(0.2' dz 2m P'

The dipole energy 50 is the sum of two terms.
The first is due to the dipole moment of the charge
transferred across the fiducial surface plane at
z =0. The second term is due to the charge defi-
ciency per unit area, ego, centered at the screened
penetration depth 5 . Using the occupied single-
electron wave functions %„(r) to describe the num-

ber density, we can write

where

E(z)=(e ' +Re' ), z&0
pt

E(z) =Te ', z &0
pP

k=[2m/fi )(E+E, ) k]'~—
E=[—(2mE/A' )+kz]'~,

(2.5a)

(2.5b)

(2.6a)

(2.6b)

47re f —y'
~
e„~ zdz

n

+4..~. f (2.2)

where the summation over n includes only occu-
pied states. The wave function %„(r) is given by

(2.3)

Vacuum Level—————0 —————————

"WEÃ/iFÃÃP/i
'"' '"'

EF

, YgÃZAPPYXÃr'.

(z)
Kp, E

Vacuum Metal

0 z&Q

where the z-dependent factor of the wave function
(z) satisfies the one-dimensional Schrodingerk~E

equation,

and

T=2k/(k+iIC) . (2.7)

It should be noted that the interface is assumed to
be the xy plane, and periodic boundary conditions
are imposed on the x and y dependence of 4 over
an area A. The two-dimensional wave vector k& is
given by k&

——1„k + 1&k~. The two-dimensional
vector p is 1 x+1~y.

The screened-charge penetration depth 5 in Eq.
(2.2) is given by

5~ =z~ /&~(%), (2.8)

where z~ is the unscreened distance from the
planar interface to the center of the charge defi-
ciency; e (q, ) is the static longitudinal dielectric
function of the metal and q, is the wave vector of
the dominant fluctuation of the screening charge.
We shall use the self-consistent-field (SCF) approx-
imation' ' of Lindhard to describe e~. In the
SCF approximation, the electron gas exhibits an
osciHatory response whose amplitude decreases
with an inverse power of the distance. Thus q, in

Eq. (2.8) is the wave vector of these Friedel oscilla-
tions, which is twice the Fermi wave vector kF.
It can be shown that in this approximation z~ may
be taken to be a quarter of the wavelength of the
Friedel oscillations. ' Thus we have

z~ =m/4kF, (2.9)

FIG. 1. Model of the metal-vacuum interface. and hence we write
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5 =m.[4kFescp(2k@)] (2.10)

5~ =~(4kF+1.2) (2.11)

0
If kF is expressed in units of A ', then Eq. (2.10)
reduces to ' ' '

might occur when, as in Cr, the d bands exhibit a
pronounced grouping into two subgroups of degen-
eracy 2 and 3 which can be interpreted as a mani-
festation of the lifting of the fivefold orbital degen-
eracy in a cubic crystal field. The unit step func-
tion 8 is defined by

0
in units of A. In applying Eq. (2.11), we took k~
to be the conventional Fermi wave vector 1, xp0

8(x)= '() () (2.16)

kp ——(3n N)' (2.12)

where N is the number of valence electrons per
unit volume. This choice implies that the screen-

ing of the charge deficiency is primarily due to the
response of the essentially free s-p (valence) elec-
trons. The screening due to the d electrons is
neglected. We assume that there is considerable lo-
calization of the d electrons at the ionic cores
which prevents them from contributing significant-

ly to the screening of "external" charges. '

A method of calculating the dipole energy 6p
using Eq. (2.2) for a simple s-type conduction band
is given in Appendix A. The generalization of this
method to account for d electrons is also discussed
in Appendix A.

2. Additional free-electron bands

D(E)= QD.(E), (2.13)

where

Da(E) =
2m

3/2
Pl~

(E+E )1/2

xe(E+E, )[1—e(E+E.)] . (2.14)

Here cx refers to the s, p, or d band. g is the orbi-

tal degeneracy of the band, i.e., in general

g =(2l+1), (2.15)

where I =0, 1,2, . . . . An exception to this rule

The single-band model described above has to be
generalized for all but the alkali metals. This gen-
eralization is to account for gross band-structure
effects on the density of occupied states represent-

ing the p-type electrons in divalent and trivalent
metals, and of the d electrons in transition metals.
We shall describe these electrons by additional
free-electron bands to be determined from the fol-
lowing general parameterization of the density of
states:

—E
x I (E+E. , )'"dE.

a, 1

(2.17)

Equation (2.17) can be applied to calculate the
effective-mass ratio m /m for a bands that have
the highest occupied states at E . However, for
electrons in the filled d bands, the effective mass is
estimated using the tight-binding approximation.

C. Model of the metal-insulator interface

We represent the semi-infinite insulator by a
modified effective-mass two-band model, using the
Franz interpolation to represent the complex
dispersion relation. This representation is adequate
over the energy interval —E„&E & —E„corre-
sponding to the energy gap of width Eg. ' ' The
model and the empirical parameters are shown in
Fig. 2.

Proceeding as in the case of the metal, we have

4'(r)=A '~ e e P-„~(z) .
pP

(2.18)

Clearly, a wave function representing an electron
incident at the interface from the right (z ~0) with
an energy falling into the forbidden gap acquires
an exponentially attenuated "tail" which "fringes"

The parameters for the explicit representations of
the densities of states, which were deduced for the
metals considered in our calculations, are presented
and discussed in Sec. III C. The wave functions
for the p and/or d electrons are given by Eqs.
(2.5)—(2.7) with the replacement of m by ma, and
E, by Ea i, the bottom of the lowest a band. Ea
is either the top of the a band or the Fermi level,
depending on which is lower. We note that the lo-
calization of the d electrons can be characterized
by the increase in their effective mass, which sug-
gests a reduced probability of tunneling across the
surface barrier.

Using Eq. (2.14), we find that the number of a
electrons per unit volume E can be expressed as

N = (2m/A' ) (m /m)'
2
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FIG. 2. Model of the metal-insulator interface.

into the barrier. Thus we write

i(kr—+iirI )z

pl
(2.19)

where z &0 and the smallest gap is located at
k, =kr. The imaginary part of the z component of
the wave vector EI is a function of the energy,
which in principle can be determined.

ite energy gap is quite similar to its fringing into
the surface barrier across the metal-vacuum inter-
face. However, less fringing is expected in the in-
sulator if the electron affinity of the insulator is
negative. Furthermore, we note that the maximum
value of Kz occurs at midgap and is

(Kt),„=[(2mtlk )Es/4+(kp kp ) ]'—
1. The complex band structure

of the instdator

For our purposes, the Franz interpolation formu-
la' provides an adequate representation of
Kt(E~ kp) It is given by

Kt ——[ (2mt lfi )(E—+E„)(E+E,)Es
'

P Pp
(2.20)

(2.21)

The similarity of Eqs. (2.21) and (2.6b) is obvious,
particularly when kP

——0. This suggests the fring-

ing of a metal state into an insulator with an infin-

This formula assumes a direct gap of width Eg at
k =kI and extending from E=—E„ to E= —E,.
An indirect gap may in general involve an energy-
dependent complex wave vector. That is, both the
real and the imaginary parts of the z component of
the wave vector may vary with energy over the
gap. However, we shall assume that kr ——0
kP ——0, and inr & m. mI is the effective mass of

Pp

the electron in the valence band. The method of
estimating mr is discussed in Appendix B.

It is interesting to note that in the limit of very
large gaps, Eq. (2.20) reduces to

1/2

K, = —,(E+E,)+(k,—k, )'

(2.22)

Thus, the attenuation of the metal states in the in-

sulator at midgap increases with the band gap Eg.
%e shall apply this conclusion below.

The metal-insulator interface is represented by a
model derived from the models for the metal and
insulator discussed above. The interface is as-
sumed to be a plane across which both the periodic
potential and dielectric constant change abruptly.
The energy difference between the metal Fermi lev-

el and the vacuum level of the insulator is Ps+X.
This energy is related to the work function iI) „by
the following equation

4a+&=0 .+~i —~o. (2.23)

Here P is the electron affinity of the insulator and

Ps is the effective barrier height from the metal
Fermi level to the conduction band of the insulator
as indicated in Fig. 2. The dipole energy 60 is
determined by Eq. (A19). Hereafter we shall dis-
tinguish corresponding quantities for the metal-
vacuum and metal-insulator interfaces by subscript
0 and 1, respectively.

2. Dipole energy h~

A simple generalization of Eq. (2.2) enables us to
write an implicit equation for the dipole energy 4~.
Summing the dipole energies of the free-electron
bands, we write
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0 0
b, , = —4~e'g g' I ~q„.(r) ~'zdz 5—g' I ~q„.(r) ~'dz (2.24)

The wave function %„~ is given by

(2.25)

where

z (z)=(e ' +Re' ), z&0,
P'

(2.26)

(2.27)

In Eq. (2.24), the sum over the occupied "modi-
fied" metal states g' is restricted to states whose

energy falls into the forbidden gap of the insulator.
In Eq. (2.27), the z component of the complex
wave vector (kI+i7Cz) in the insulator was defined
by Eqs. (2.19) and (2.20). Using the continuity
conditions imposed on the effective-mass wave
functions, 25' we find

T=(mllm )2k[(mllm )k+kI+iKI]
(2.28)

The dielectric function el is the static nonlocal

response of the insulator evaluated at an average

screening wave vector q~ to be discussed in Sec.
IIIB.

Evidently, depending on the choice of the energy

reference (at the metal or the insulator vacuum lev-

el), either k or KI depends explicitly on the dipole
energy b, &. It is for this reason that Eq. (2.24) is
only an implicit equation for 4&, which has to be
solved by iteration. The details of this solution are
discussed in Sec. III.

At this point, it might be helpful to review the
physical interpretation of Eqs. (2.24) —(2.28). As
indicated by Eq. (2.25), the junction has eigenstates
whose energies fall into two distinct categories, de-

pending on whether their energies fall into allowed
bands or forbidden gaps of the metal. The form-
er interfacial states are represented by Eqs.
(2.25) —(2.28) and are best viewed as modified met-
al states, which fringe into the insulator. The
latter are relatively uncommon and correspond to
proper interfacial states, which are spatially local-
ized at the interface. That is, they decay exponen-
tially with distance from the interface, both in the
metal and in the insulator. In our model the ex-
ponentially attenuated tails of the modified metal
states, which fringe into the insulator, are respon-
sible for the charge transfer from the metal to the
barrier. This charge transfer gives rise to the inter-
facial dipole moment and the associated dipole en-

1

ergy b,~P' for a given a band. Equation (2.24) indi-
cates two distinct contributions to the interfacial
dipole moment per unit area. The first is the di-

pole moment per unit area epI ' of the charge
transferred out of the metal relative to the nominal
interface at z =0. The second is the moment
—ez rl& of the electronic charge deficiency per
unit area on the metal side of the interface. This
charge deficiency is assumed to be screened by the
dielectric response function e (q, ), while the
charge transferred into the insulator is screened by
eq(q ). The corresponding contributions to the di-
pole energy are

b, I
' —— 4me [—1/el(q )]p~P'+4me 5

(2.29)

where 5~ is defined by Eq. (2.8).
In principle one also should consider fringing of

states in the valence band of the insulator into the
metal gap extending from the lowest conduction
band to the core levels. However, the large width
of this gap implies that the imaginary part of the z
component of the wave vector in the metal will as-
sume a large mean value. This and the relatively
high localization of the valence states in the insula-
tor should lead to a rather negligible mean penetra-
tion depth and charge transfer from the insulator
into the metal. We shall therefore neglect this con-
tribution to the interfacial dipole energy b, ~.

Finally we note that our model does not involve
any assumption concerning the doping of the insu-
lator or the displacement, if any, of its Fermi level
from its intrinsic position at midgap. In fact, the
position of the Fermi level in the bulk insulator
prior to the formation of the junction does not af-
fect our calculation. This is due to the fact that
our model deals only with phenomena restricted to
the relatively thin interfacial region characterized
by the surface Fermi level. If we assume the insu-

lator to be intrinsic, then the shift of the surface
Fermi level is Ps —,E&g—

III. DETERMINATION OF MODEL
PARAMETERS

A. Preliminary remarks

In this section we sha11 discuss the actual evalua-
tion of the interfacial parameters Ao and 5&. For
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the single-band model of the metal, Eq. (2.2)
presents the contribution of the dipole energy h0 to
the metal-vacuum work function. The explicit
evaluations of Eq. (2.2) and of its generalization
for the multiband free-electron model, specified by
Eqs. (2.13)—(2.17), are given in Appendix A.

The numerical evaluation of bo for any model of
a metal does not present any particular difficulty.
In contrast to 40, the dipole contribution to the
photoemission threshold of metal-insulator inter-
faces, b, i, is only implicitly defined by Eq. (2.24).
Thus the calculation of b, i requires the self-

consistent, iterative solution to be discussed in this
section. The reason for this can be traced to the
sum over occupied (modified) metal states in Eq.
(2.24). This sum involves an integration over the
metal states overlapping the forbidden gap of the
insulator. However, one or both of the limits of
this integral depends explicitly on the unknown en-

ergy A~. Thus one has to solve for 6& by succes-
sive approximations. Starting with an assumed
value of hi, one calculates from Eq. (2.24) a new

6i, which is used to determine a third value of b, i

and so forth. In order to speed up the iterative
solution of Eq. (2.24), we introduce an unessential
approximation of the sum over states, which
reduces it to a closed expression and eliminates the
need for a numerical integration. This approxima-
tion is discussed in Appendix B.

eI(0 0)—1
eI(q 0)= 1+

1+(q/q, )
(3.3)

which assumes the correct value for q =0, and
which in the limit of large q tends to the Thomas-
Fermi —type expression

sulator evidently specify the scale of the spatial
variation of the charge density in the insulator.
The screening of the charge fluctuations over such
relatively small distances is described by the wave-
vector-dependent, static longitudinal dielectric
response function e(q, co=0), evaluated at an ap-
propriate screening wave vector q. We shall show
how the effective dielectric screening can be
represented for a given zi ~.

Walter and Cohen calculated E(q,co=0) for
several semiconductors. They found the static
dielectric response to: (i) depend weakly on the
orientation of q; (ii) decrease monotonically with

~ q ~

from its maximum at q =0; (iii) tend already
for moderate values of

~ q ~

to the asymptotic
Thomas-Fermi-type (TF) expression

e(q, O)=1+(q, /q)

No comparable calculations of e(q, O) are available
for ionic insulators, such as LiF and BaF2, con-
sidered in this paper. We therefore followed a sug-
gestion of Penn to approximate e(q, O) by an in-
terpolation formula

B. Charge penetration and screening
in the insulator

EI(q 0)=1+ [61(0,0)—1]

Again, following Penn we choose

(3.4)

In our discussion of dipole energy 6& in Sec.
IIC2 we mentionai that the dielectric function eI
of the insulator can be evaluated at an average
screening wave vector q. We now give a more de-
tailed discussion of eI(q). As indicated in Eq.
(2.24), we expressed the charge per unit area
transferred into the insulator by

(3.1)

If we multiply eg& by a mean charge penetration
length z&, we may write

(3.2)

where z~ is a mean charge penetration distance
associated with the electrons of band n of the met-
al. The charge penetration distances z~ in the in-

(3.5)

where

qrF =4(2iriIE„) /~aHfi . (3.6)

p;(q)
p, (z) = I e'~'dq/2n, .

"~IqO (3.7)

Here, mI is the effective mass of the electron in
the valence band; F. , the valence-band width of
the ionic insulator; aH, the bohr radius. ' ' '

We now can calculate the dipole moment of the
screened charge p, (z) transferred into the insulator
and express it in terms of the moment of the un-
screened charge p;(z) divided by eI(q, O). This pro-
vides us with an implicit definition of the mean
screening wave vector, or alternatively of the effec-
tive dielectric screening eI(q, O) to be used in Eq.
(2.24). We can express
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where

p;(q)= —
~

T~'e I e 'e 'r'dz

—I (2' ) '5(z) dz (3.8)

and

f=er(0, 0)—1 .

(3.10)

(3.11)

The first term of the approximation given by Eq.
(3.8) follows from Eq. (2.27), and the second term
represents the charge deficiency in the metal, as-

suming it is essentially localized at the interface.
Substituting Eqs. (3.3) and (3.8) into Eq. (3.7), we
find

0 T 2I zp, (z) dz =— (1+f/0)
(2E )

/

T['e
zp;(z) dz =—

(2E )
(3.12)

Hence we may define the mean screening wave
vector by the following implicit equation

1/ (,0)= ((I+f/&) (3.13)

Next, we consider the dipole moment of the un-

screened charge transferred into the insulator.
This quantity is given by

where

(3.9) Here the angle brackets denote an average over the
occupied states in a given band u weighted by
(

~

T
~

/2'�) . ~e approximate this average by

1/,(,0)=(1+fIl+(f+1)[1+(f+1)',(I/It ) ]
—'I —')- . (3.14)

From the definition of zi ~ given by Eq. (3.2), we can write

(1/2K ) =z,

Hence, combining Eqs. (3.5), (3.14) and (3.15), we obtain

(3.15)

er(q, O)=1+f(1+er(0,0)I1+[4er(0 0)/'3f]' 2zi qTFI ') (3.16)

It should be noted that er(q, O} is an average
screening factor.

fr=0 .+~i —~0 ~ (3.17)

Thus Pr can be determined from the calculated
values of the dipole energies 50 and 5i for a given
metal surface of work function Pm„. The computa-
tion involves the energy parameters of the metal
and insulator. In our calculations, these quantities
are specified relative to the vacuum level of the in-

sulator. Denoting the energy bottom of the metal
conduction band relative to the insulator vacuum
level by E,m;, we write

E, ; =E, +51—hP . (3.18)

C. Calculations of interfacial
dipole energies

According to the model shown in Fig. 2, the
threshold Pr for photoemission into the vacuum
from a metal covered with a thin layer of ionic in-

sulator is given by

I

This implies that the location of the Fermi level of
the metal-insulator interface depends on (b,o —b, , }.
Hence the limits of integration over the occupied
states in Eq. (2.24) involve (60—hi).

However, the implicit equation for b, i can be
solved by an iterative process. The starting value
of b, i for the interation was chosen to be b,o, which
was calculated from Eq. (A19). The use of Eq.
(2.24) to find b, i also requires an initial choice of
er(q~). Applying Eqs. (B7) and (B10), we calculat-
ed the penetration depths from

(a) g
~1,a P1—~ 91,a

The value of zi ~ was then used to find er(q )

from Eq. (3.16). The rate of convergence and the
final value of b, i were insensitive to the precise
choice of the starting values. The process con-
verged rapidly, and was terminated when the
change in 41 fell below S%%uo.

Since the multiband free-electron model of the
metal was applied to calculate the dipole energies,
it was necessary to locate the band edges below the
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TABI.E I. Energy-band parameters of simple metals. Energies (in eV) are relative to the
Fermi level. Indicated electronic configuration of the metal atom in the solid reAects the
partial occupancy of the corresponding bands due to band overlap. When two a-type bands
are introduced, the higher band is denoted by a prime, u'. The subscripts 1 and 2 denote,
respectively, the lowest and highest occupied state of the o. band.

Metal P', EF E——, — E, — E,— E—, E~ — E~ —(m~ /m ) Configuration

Na 23
Mg' 3.6
Alb 42

3.3
7.1

11.3
2.7
2.3

2.8 0.0 1.6
2.9

0.0
0.0

1.0
1.0

3s
3s 1.53~0.5

3$ 3p

'Band-structure calculation by L. M. Falicov, Philos. Trans. R. Soc. London 255, 55 (1962);
J. C. Kimbal, R. W. Stark, and F. M. Mueller, Phys. Rev. 162, 600 (1967).
B. Segall, Phys. Rev. 124, 1797 (1961).

'Unless stated otherwise, all work-function data taken from D. E. Eastman, Phys. Rev. B 2,
1 (1970), and A. H. Sommer, I'hotoemissiue Materials (Wiley, New York, 1968).

Fermi level in the conduction bands relative to the
Fermi level. In locating the bottom of the lowest
s-type conduction band E,&, we either used band-
structure calculations to determine E& or the con-

1

ventional free-electron model applied to the sp elec-
trons. In Tables I—III, we list the energy-band
parameters for the free-electron models of the met-
als in the metal-insulator interfaces that we have
studied. These parameters were deduced from re-
cent experimental data, whenever available, or else
from band-structure calculations. The model
parameters for the ionic insulators are shown in
Table IV.

IV. CALCULATED RESULTS

A. Comparison of calculated
and measured thresholds

%'e have calculated the dipole energies Ap and
b

&
as well as the photoemission threshold Pz given

by (Pm„+b, ~
—b,o) for various metal surfaces

covered with a thin film of BaF2 or LiF. We
found the calculated values to be sensitive to the
values of the multiband energy parameters and the

measured metal-vacuum work functions assumed
in the calculation. The calculated results are com-
pared in Table V with the corresponding measured
values of PT. In most cases, the calculated values
are in good agreement with the measured ones.
The largest difference, which is about 21%, is
found only for the Mg-insulator interfaces.

Both the calculated and Ineasured thresholds
satisfy the inequality PT &P „, which within our
model is equivalent to A~ (Ap. An obvious factor
that would make Ai less than hp is the dielectric
screening of the charge transferred into the insula-
tor. That is, h~ decreases with increasing el(q ).
Another contributing factor is the decrease in the
number of electrons transferred per unit area (r) ~)
from the metal into the insulator. The calculations
indicate that g& is less than gp.

B. Comparison of calculated and measured
interface parameters

In the Introduction we mentioned that the ob-
served Schottky-barrier height P~ can be expressed
as a linear function of the metal electronegativity
X,„. This relationship is given by

TABLE II. Energy-band parameters of Cr. Energies (in eV) are stated relative to the Fermi level. d bands are split
into a lower twofold degenerate band of eg symmetry and a higher threefold degenerate band denoted d', of t symme-
try. Subscripts 1 and 2 denote, respectively, the lowest and highest occupied states of the a band.

Metal PI„E~ Eg E, ———Eg E—d (md—/m )" —E, E, (m—g /m ) Configura—tion
1 '2 1 2 d d2

3.9 7.0 0.0 4.3 0.7 1.6 0.0 3d'4s

'Band-structure calculation by S. Asano and J. Yamashita, J. Phys. Soc. Jpn. 23, 714 (1967).
"Effective mass of both d subbands was calculated using Eq. (2.17) and assuming a fivefold degenerate band.
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TABLE III. Energy band parameters of noble metals. Energies (in eV) are stated relative
to the Fermi level. Electronic configuration of the metal atom in the solid is listed. Sub-
scripts 1 and 2 denote, respectively, the lowest and highest occupied state of the a band.

Metal P', EF E——,— E~— E, , —E~— Eq— Ed— (md/m ) Configuration

Cu' 4.4
Ag' 4.0
Pt' 5.3
Au" 5.1

7.0
5.5
6.0
5.5

3.0 0.0
0.0
0.0
0.0

5.1

7.1

6.5
7.7

2.1

3.6
0.0
2.0

1.6
1.1
1.3
1.0

3d 9 24$ 0'94p 0'9

4d' Ss
5d'6s
5d' 6s

'X-ray photoemission data by Y. Baer, P. F. Heden, I. Hedman, M. Klasson, C. Nordling,
and K. Siegbahn, Phys. Scrip. 1, 55 (1970).
D. E. Eastman, in Electron Spectroscopy, edited by D. A. Shirley (North-Holland, Amster-

dam, 1972), p. 487.
'Unless stated otherwise, all work functions taken from D. E. Eastman, Phys. Rev. B 2, 1

(1970};and A. H. Sommer, Photoemissive Materials (Wiley, New York, 1968).

Ps ——SX +Pp, (4.1)

where S is called the interface parameter. Both S
and Po are constants depending only on the insula-

tor. Since PT ——Ps+X, we note that

Thus our value of S is not affected by the uncer-
tainty in the precise value of A which in previous
analyses has been assumed to range from 2 to 3.

According to the static dipole model developed

by Louie et al. ,
' the parameter S can be calculated

from

(4 &)
S=

(1+4ne D, o,rr)
(4.4)

In Fig. 3, we present plots of the calculated PT
vs I for metal-BaFz and metal-LiF interfaces.
The dependence of PT on X is reasonably linear
and the slopes of the linear fits to the calculated

PT values are in good agreement with the observed
S values. This agreement is all the more remark-
able since it was achieved without invoking the
linear dependence ' of the work function on the
metal electronegativity as indicated by

(4.3)

where e is the electron charge, D„ the density of
interface states, 5,ff, the effective distance between
the negative charge transferred to the insulator due
to the change in Pz and the consequent charge de-

ficiency in the metal, and A is defined by Eq. (4.3).
Equation (4.4) has recently been used to estimate
the S value for large band-gap solids. A value of
1.5, obtained using 3 =2.3, is in close agreement
with our calculated S values for both metal-BaFz
and metal-LiF interfaces.

TABLE IV. Energy-band parameters and dielectric constants of the ionic insulator BaF2
and LiF.

Insulator Scop (eV)' X (eV) E„(eV) Eg (eV}

10.5
13.6

el(0, 0)m, im

0.2
—1.8

BaF2
LiF"

20 2.9+0.2 24 7.2
25 4.6+0.3 14 9.3

'Band-structure parameters taken from R. T. Poole, Chem. Phys. Lett. 36, 401 (1975); W.
Pong, C. S. Inouye, and S. K. Okada Phys. Rev. B 18, 4422 (1978}. Dielectric constant from
K. V. Rao and K. Samkula, J. Appl. Phys. 37, 319 {1966).
Band-structure parameters taken from W. Pong and C. S. Inouye, J. Electron Spectrosc. Re-

lat. Phenom. 11, 165 (1977). Dielectric constant from A. J. Dekker, Solid State Physics
{Prentice-Hall, Englewood Cliffs, N.J., 1963), p. 145.
V. A. Ganin, M. G. Karin, V. K. Sidorin, K. K. Sidorin, N. V. Starostin, G. P. Startsev,

and M. P. Shepilov, Fiz. Tekh. Poluprovdn. 16, 3S54 (1974) [Sov. Phys. —Solid State 16,
2313 (1975)];D. M. Roessler and W. C. Walker, J. Phys. Chem. Solids 28, 1507 (1967).



1618 T. E. FEUCHTWANG, D. PAUDYAL, AND W. PONG

TABLE V. Calculated values of dipole energies Ao and h~ and photoemission threshold

tl)r for metals with thin BaF2 or LiF overlayers. All energy quantities are in eV. The t)l~r'" "
values are from Ref. 2.

Metal &m

BaF2
~(expt)
PT

(+0.2 eV)

LiF
ytettpt)

(+0.2 ev)

Na
Mg
Al
Cr
Cu

Ag
Pt
Au

2.3
3.6
4.2
3.9
4.4
4.0
5.3
5.1

0.9
1.2
1.5
1.6
1.9
1.9
2.2
2.4

0.7
1.7
2.5
2.4
3.1

2.0
5.3
3.6

0.2
0.5
0.9
1.3
1.9
1.4
3.7
2.6

1.8
2.4
2.6
2.8
3.2
3.4
3.7
4.1

2.2
2.6
2.8

3.2
3.6
3.9

0.2
0.4
0.9
1.2
1.8
1.3
3.6
2.7

1.8
2.3
2.6
2.7
3.1
3.3
3.6
4.2

1.9
2.5
2.7

3.1

3.5
3.8

'With the exception of Mg, Al, and Au, the calculated values of 60 are comparable to the
values reported by J. R. Smith (Ref. 41).

V. DISCUSSION OF RESULTS

We shall consider the relation of our model to
the static dipole model and in particular the impli-
cation of our results concerning the limiting value
of the interface parameter for large band-gap ma-
terials.

First we wish to emphasize that our calculation
of Pr does not involve any assumption concerning
the linear dependence of the interfacial barrier
height, metal work function, and dipole energies on

t)PB B)I) „Bh)
Ox

=
ex ax+ (5.1)

Xm. Thus, we determined S as the mean slope of
PT vs X . The original derivation of the static di-

pole model assumed that P „ is linear in X and
that D, is essentially independent of energy in the
band gap. However, we can derive the static di-

pole model' from the assumption that pB, p „,
50 and b, ) are linear functions of Xttt. We can il-
lustrate this by calculating the change in dipole en-

ergy with respect to a change in pB. From Eq.
(2.23), we may write

5.0- Metal-BaF; (a) where all partial derivatives are assumed to be in-
dependent of X~. Using Eqs. (4.2), (4.3), (5.1), and
the relationship

0

B(h) —b0) BPB

ax
=

ax

we obtain

B(b )
—b,0)

~PB
(S.2)

4.0-

I .O.

00-

Metal-LiF (b)
—1

B(a)—ho)S=A 1—
B

Comparing Eq. (S.3) with Eq. (4.4), we find

a(a) —a0)
Ds ~cff

B

(5.3)

(5.4)

FIG. 3. Calculated photoemission threshold tttr of a
metal with a thin overlayer of ionic insulator vs metal
electronegativity X . The values of X for the metals
are listed in Table V. (a) Metals with thin BaF2 over-
layer. Calculated slope is 1.4. The measured slope is
1.4+0.2. (b) Metals with thin LiF overlayer. Calculat-
ed slope is 1.5. The measured slope is 1.6+0.2.

This quantity can also be calculated from our
model. Using Eqs. (Bl 1) and (A19), we write

a(a, —a, ) 14' (91~ ff, ) 905 ff, 0)]
B B

where

(5.5)
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TABLE VI. Calculated values of the effective charge separation and the number of elec-
trons transferred per unit area for metals with thin BaF2 or LiF overlayers.

Metal

Na
Mg
Al
Cr
CQ

Ag
Pt
Au

0.63
0.46
0.38
0.46
0.46
0.52
0.50
0.52

Qp

(10' cm )

0.3
1.2
2.1

1.7
2.4
1.4
3.6
2.5

1.13
0.86
0.76
0.83
0.83
0.85
0.83
0.84

serif, 1

(A)

0.77
0.60
0.56
0.60
0.60
0.66
0.64
0.69

BaF2

(10' cm )

0.15
0.47
0.9
1.0
1.6
1.1
3.0
2.1

0.76
0.59
0.56
0.59
0.59
0.65
0.63
0.65

LiF

(10'4 cm )

0.14
0.45
1.0
1.0
1.4
1.1
3.0
2.2

91 ggl, a ~

—1
jeff, p ~m + ~~p, a Qp, a Qp

a

(5.6}

(5.7)

(5.8)

be about 2)&10' and 1 X 10]3 (cm eV) ', respec-
tively. These values are somewhat smaller than
Cohen's estimate of D, for a hypothetical wide
band gap material, but they are of the same order
of magnitude. The linear fits to 50(X ) and
b, ](X~) are shown in Fig. 4.

A comparison of Eq. (5.10) with Eq. (5.4) also
suggests

90 g boa (5 9)
Metal- Vacuum

As indicated in Table VI, the variations of 5,ff ]
from metal to metal are relatively small. Hence
for a given insulator we may approximate the right
side of Eq. (5.5) by replacing S,rf ] by its mean
value 5,ff &. Accordingly, we obtain

5.0-

4.0.

3.0-

2.0-

I.O-

a &.rf, p= —4n.e gp
——

'

& rf, i
])1 Scff, ]

Metal-BaFz

(5.10)

A comparison of Eq. (5.10) with Eq. (5.4) suggests
the identification of 5,rr with our parameter 5,fr ].
With this result, we can use Eqs. (4.2), (5.2), (5.4),
and (5.10) to get

3.0-

—2.0-
CI

t.o-

40-
Metal LiF

Dz ——S ' — (47re 5,rr ])

(5.11)

5.0-
O—2.0-

I.O-

Note that the determination of D, from Eq. (5.11}
is independent of an assumed value of A. Thus we
can calculate the effective density of interfacial
states from the calculated values of S, 5,ff ~,

Bhp/BX, and Bh&/BX . For metal-BaF2 and
metal-LiF interfaces, the values of D, are found to

FIG. 4. Linear fits to hp (X ) and h~ (X ). A slope
of 2.3 is obtained from the calculated values of kp vs
X of the metals. Slopes Bh~/BX for metal-BaF2 and
metal-LiF are found to be 2.0 and 2.1, respectively.
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jeff, o
go

jeff, 1

(5.12)

This means that D dPs can be related to the
change in number of electrons transferred per unit
area across the interface. According to our calcu-
lations, the change in (60—5, ) is due largely to
the difference (go —gi) and the dielectric screening
in the insulator. For metal-BaF2 and metal-LiF
interfaces with metal states fringing into the insu-

lator, the calculations indicate that go~ q&. The
values of go and g& are shown in Table VI. The
reduction of g~ leads to a smaller 5& and hence a
smaller PT. Evidently, the change in PT is sensi-

tive to the band structures of the metal and the
ionic insulator.

Recently the limiting value of S for large band-

gap materials has been a subject of considerable in-

terest. Cohen suggested that a reasonable max-
imum value of the band gap might be 20 eV, and
using the static dipole model, he estimated the
maximum value of S to be about 1.5. To check
this estimate we calculated PT for metals with a
thin overlayer of a hypothetical material having a
band gap of 20 eV, electron affinity of 0.2 eV, and
a dielectric constant of BaF2. To double the band

gap of BaF2, we reduced the interionic separation
of BaF2 by a factor of 2. Assuming the valence-
band width of the insulator is proportional to d
where d is the nearest-neighbor distance, we es-

timated this bandwidth to be 4 times as large as
that of BaF2. For the assumed band-parameter
values, the slope BPT /BX~ was found to be about
1.5, in good agreement with Cohen's result. For
metal-ionic insulator interfaces, we find very little
change in the calculated S values for different
band gaps in the range from 10 to 20 eV. We
therefore expect S=1.5 to be, within +15%, a
reasonable upper bound for this quantity.

VI. CONCLUSIONS

We have developed a relatively simple model of
a metal-insulator interface. The model includes a
multiband free-electron description of the metal,
which accounts sufficiently for the band-structure
and correlation effects to permit a remarkably
good agreement between the calculated and mea-
sured photoemission thresholds of metals with thin
overlayers of ionic insulator. We have discussed
the relation of our model to the static dipole model
and found the two models to give reasonably close
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APPENDIX A: CALCULATION OF 60

In this appendix we outline the calculation of
the dipole energy 60 and the generalization to ac-
count for p- or d-band electrons having effective-
mass ratio P '+1.

The continuity conditions imposed on effective-
mass functions lead to the following generalization
of Eqs. (2.6) and (2.7):

2pk,

Pk, +iE ' (Al)

estimates of the limiting value of the interface
parameter S, the effective charge separation, and
densities of interfacial states. However, in contrast
to the static dipole model, our model does not de-
pend on the uncertain value A, which occurs in the
linear relation P,=AX~+8.

The model confirms the observation that the
photoemission threshold of metals covered with a
thin overlayer of ionic insulator is reduced below
the metal work function. Physically this is a
consequence of the dielectric screening of the di-

pole moment associated with the charge transferred
into the insulator and a reduced number of elec-
trons transferred per unit area across the metal-
insulator interface.

The calculations lend strong support to the sug-
gestion that the interfacial dipole energies reflect
charge transfers from the metal into the insulator
due to the fringing of metal states into the insula-
tor. However, we cannot totally rule out other
mechanisms which may also contribute to the in-
terfacial dipole moments.

Finally, our model has the advantage of being
sufficiently simple to provide a practical algorithm
for the calculation of the photoemission thresholds
for metals with a thin overlayer of ionic insulator.
This suggests the interest in an investigation of the
applicability of this simple model to metals with a
thin overlayer of a covalent insulator and possibly
a semiconductor.
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k, =[(2m/iri p)(E+E 1)—kp]'/2,

Z = [(2m/X2)( —E)+k,']'",
where

p '=m /m.

(A2)

(A3)

Carrying out the integration with respect to z and
converting the sum over occupied states n into an
integration with respect to the wave vector k, we
obtain the contribution of the g~-fold degenerate u
band to the first integral of Eq. (2.2). Denoting
this contribution by po ', we write

0
p(')

' ——g' J ~ql„(r) ~2zdz= ——,I dE J '

2 2, d(k~),—00 (2ir) ~~.i 0 (Pk, ) +E (2E)

where

kp ~ (2m——/fPP)(E~1+E),

(AS)

(A6)

and the other quantities were defined by Eqs. (2.14)—(2.16). Performing the integration for p+1, we obtain

pii
' ——— (1—p) '[(2m/fi p)(E i

—E )]'
(2m )

1+r
~&

1+srln —s 1n
1 —r 1 —s

1+9
1

1+0
1 —u 1 —U

(A7)

where

&=I[E,i —(1—P)E ](Es,i —E~) 'J'"
s =[(E., 1-E.)E;,l]'/2,

r —1( 1 p2)1/2

u=s '(1 —p)

For s electrons and p= 1, we write

=- 2 x
p' '= — (2mE /fP)' x' ln —2v' dv,

(2')

where

x=E, /Ep.

Thus for the s electrons with P= 1, we have

1+x'~'

(Ag)

(A9)

(Al 1)

(A12)

(A13)

(A14)

A similar calculation has to be performed for the second integral of Eq. (2.2). Denoting this integral by

r)o ~ for a given a band and p+1, we find that the integration leads to

ga 2p k2 Ea i

(2~)2 (1 p2) E
tan-' —p-'tan-'(p'/2w)W

pl /2

—(1—p) ' tan '(p'/ w)+tan (pl /2+ p
—1/2) tan

—1

(A1S)
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where

ip —[(E i E )E ]i i~

For s electrons and P=1, we have

(A16)

2

i}p —— i —,kg[( —,—x)sin '(x ' )+(x—1)'i (1——,x ')] . (A17)

Using Eqs. (2.2), (A5), (A15), or (A17), we ob-
tain

ma 3HN~
(E i E)—'. (A20)

2m
6' '= —4 (jM'

' —5 ri ). (A18}

For metals with multiconduction bands, the dipole

energy h0 is given by

b,p ———4me g(Pp ' —5 i}p ) . (A19)

The value of P can be calculated from Eq. (2.17)
for the s and p bands that are filled up to energy

E~. We can also use Eq. (2.17) for d bands that
are not completely filled. From Eq. (2.17), we find

8A'
m+ —

2Ba,
(A21}

where 8 is the width of the filled d band and a, is
the edge of the cubic unit cell.

For the filled d bands located below the Fermi lev-

el, the effective mass of the electron is estimated
using the tight-binding approximation. The
highest and lowest occupied states of the filled
band are assumed to be located at X and I, respec-
tively. For the electrons in the filled d bands of
fcc metals, the effective mass m is approximately

APPENDIX 8: CALCULATION OF ki

In this appendix we present the integrals representing the sums over occupied metal states in Eq. (2.24).
We then discuss and derive the mean-value approximation of these integrals.

In order to find p'i ', we evaluate the first integral of Eq. (2.24). Substituting Eqs. (Al) —(A4), (2.19},
(2.20), and (2.28) into Eq. (2.24) with kr ——0, k~, =0, and mrlm =y, we obtain

0
pI

' ——g' J i%„~(r) i
zdz=— g~ x kp, M (2yk ) 1 dkz

(2n. ) p [(yk, } +El] (2EI)
(B1)

The right-hand side of Eq. (Bl) represents the contribution of the g~-fold degenerate a band to @~i '. Ep is
the smaller of the two energies E„or E~ i. Kl is given by Eq. (2.20). The integral with respect to k& can be
written as

where

mP (a —x)
PEP(1 —y ) o (b+x}(c+x)

(B2)

a =k~ M
——(2m /13' )(E+E,),

b =(y'a +c)(1—y')

c= (2milA )Es '(E+—E„)(E+E,) .

(B3)

(B4)

(B5)

Unfortunately, I(E) cannot be integrated analytically with respect to E in a closed form. However, if the
integral in Eq. (B2) is approximated by means of the mean-value theorem of integral calculus, then the in-

tegration indicated in Eq. (Bl) can be performed analytically. Using the mean value theorem, we write

af (a —x)'i (b+x} '(c+x) 'dx=(a x)'i (b+x) '(c+x—) 'a, 0&x &a .
0

(B6)
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The mean value of the integrand was approximated by choosing x =a/2. The value was chosen because the
integrand is a monotonically decreasing function of x. With this approximation we can express pI

' as

2
—3/2 U„ 4

(a) g~
(2 E /y )1/2E3/2

(277) ~o (U —U )(U —U )(U —U )(U —U )
(87)

where

2Ut& ——2E
&

—E„+E, —~ Es + E„+E, —~E
2

—4 E„E,— EgE~ )
1+y'

2y

1/2

(88)

2U3 4 —2E~ &
[E„+—E, (2Z) —'Es ]+I [E„+E, (27') —'Es ] 4[E„E—, —(2Z) 'EsE~

& ] I
'/ (89)

Uo is (E~ & E„)or—0, whichever is larger, and U„ is (E ~ E~). T—he mean-value approximation signifi-
cantly speeds up the iterative process of solving for 6&.

We now evaluate the second integral of Eq. (2.24). Representing the integral by g& and using the mean
value approximation, we write

2g~ 2PlEg

(2n. ) fi

U4 U U2 U2 U
—1/2

mP ~0 (Ui —U )(U —Uz)
dU. (810)

(e)

b, ) ———4me g 5„,rj(—p)

ei(q )
(811)

Here it should be recalled that ail the energies
(E „E,P „) characterizing the metal have to be
referred to the vacuum level of the insulator rather
than that of the metal. That is, they have to in-

clude an additive term (h~ —hp). Thus both the

A partial fraction expansion reduces the integral to
a linear combination of elliptic integrals s' 9 of the
first and third kind. These integrals are tabulated
functions.

The dipole energy 6& can be determined from

co& (4ne N„/——ml )'/, (812)

where N, is the effective number of valence-band
electrons per unit volume in the insulator, we find

mi (Picots) (mA) /128——E~e (813)

I

integrands and the limits of integration in Eqs.
(87) and (810) contain an explicit dependence on
the unknown dipole energy h~.

The effective mass mi of the electron in the in-

sulator is calculated using the reported values of
the valence-band width E and the plasmon energy
%co~. Applying Eq. (A20) to the F 2p band of the
insulator and using the expression
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