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The multiple-scattering equations are used to derive a set of band-theory equations that
are called the pivoted-multiple-scattering (PMS) equations. The PMS equations are as
legitimate a basis for band-theory calculation as the Korringa-Kohn-Rostoker (KKR)
equations that are also derived from the multiple-scattering theory. The primary useful-
ness of the PMS equations is that an approximate expression can be derived from them
that gives all the eigenvalues for one k with a single-matrix diagonalization. This expres-
sion has the form of a quadratic eigenvalue equation. The usefulness and accuracy of
this quadratic KKR formalism is demonstrated by a number of numerical studies.

I. INTRODUCTION

In this paper a new band-theory equation for
calculating electronic-energy eigenvalues and wave
functions for periodic solids is derived from
multiple-scattering theory. ' Over the range of en-

ergies that is of interest, the eigenvalues that are
calculated from this equation are essentially equal
to the ones obtained from fully converged
Korringa-Kohn-Rostocker (KKR) calculations. '

However, all of the eigenvalues for a given k vec-
tor are obtained by diagonalizing one matrix, while
the determinants of many matrices would have to
be evaluated in order to find the same eigenvalues
with the KKR equations. Since it takes about the
same amount of time to find the determinant as to
diagonalize a matrix, band-theory calculations may
be carried out with this new equation in a small
fraction of the time that would be reguired if the
KKR equation was used. Certain types of theoret-
ical calculations, particularly those that require the
evaluation of the total energy of the solid, become
more feasible with this new equation.

A number of band-theory methods have been

proposed in recent years that attempt to combine
the accuracy and generality of the first-principles
band-theory methods [KKR, augmented plane
wave (APW)] with the computational ease of sim-

ple tight-binding models. These methods are called
linearized band theories because they reformulate
the problem in such a way that the elements of the
secular matrix, which have a complicated energy
dependence in the first-principles methods, are re-
placed by elements that depend linearly on E. The
energy eigenvalues for which the determinant of
the secular matrix is zero may obviously be found
by diagonalization. These linearized theories are

Rayleigh-Ritz variational calculations in which the
first-principles methods are used as a guide to the
choice of efficient trial functions. In a previous
paper, which will be called I, it was shown that a
band-theory equation can be derived from
multiple-scattering theory that has the property of
the elements of the secular matrix are a rapidly
convergent power series in energy. A linearized
version of this equation was compared in detail
with some of the better-known linearized band
theories. In the present paper it is shown that
the inclusion of the quadratic terms in the ele-

ments of the secular matrix leads to a considerable
improvement in the accuracy of the calculations.
The eigenvalues calculated from a secular matrix
that is quadratic in energy can also be found by di-
agonalization. This is the feature that speeds up
the calculations, and it is not unique to linearized
theories. For this reason, this class of band-theory
equations are referred to as fast band theories.

In the next section a pivoted-multiple-scattering
(PMS) band-theory equation. is derived. It is illus-
trated with the aid of calculations on real solids.
The PMS idea was proposed in I, but a number of
approximations were made at an early stage of the
theory. The power of the PMS equation is illus-
trated much better by the present calculations in
which the number of additional approximations is
held to a minimum. The greatest gain in accuracy
is achieved by using the actual shape of the unit
cell, rather than a spherical model, in calculating
the scattering matrices.

Band-theory calculations done with the PMS
equation are as time consuming as calculations
done with the KKR equation, even though the en-

ergy dependence of the structure constants has
been eliminated. The primary advantage of the
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PMS equation is that it provides a convenient basis
for deriving fast-band-theory equations. This
derivation is carried out in Sec. III. It is shown in
that section that the secular matrix that appears in

the formulation can be approximated very accu-
rately as quadratic functions of energy over the
range of energies that are of interest in band-theory
calculations. It is this fact that leads to the con-
clusion that a quadratic band-theory equation
should be useful. This quadratic band-theory

equation, called the QKKR equation, is investigat-

ed both algebraically and numerically. The advan-

tage that it has over a linear equation is shown by
calculation. An optimized scheme is developed for
the implementation of this equation in self-consis-

tent total-energy calculations for solids. The re-

sults are summarized and commented upon in Sec.
IV.

It should be pointed out that the motivation for
this development is the desire to calculate the total

energies of transition metals more rapidly and ac-

curately than can be done with any formalism that
was previously available. The form that the equa-

tions take is affected to some extent by this goal.
The development is quite general though, and

modifications of these equations can be worked out
for other applications.

II. PIVOTED-MULTIPLE-SCATTERING
THEORY

According to the density-functional theory, the
electronic states in a solid can be accurately
described in terms of one-electron Bloch functions

g k(r) that are the bounded solutions of

[—V'+ V(r)]g-„(r)=E (k)g-„(r) .

The eigenvalues and eigenfunctions are, as usual,
denoted by Bloch vectors k and band indices e.
The one-electron potential V(r ) is a single-valued
function of r that has the periodicity of the crys-
tal. Thus,

V(r+R„)= V(r), (2)

for any lattice vector R„. From this it follows that
V(r) can always be written as a sum of identical
potentials centered at the various lattice points

V(r)= gu(r —R„) . (3)
n

If the solid is assumed to have one atom per unit
cell (the generalization to other cases is straightfor-
ward), the potential u( r —R„) describes the scatter-
ing of the electron from the atom on the nth site.
The derivation of the standard multiple-scattering

equations from the I.ippmann-Schwinger equation
can be carried out only if these atomic potentials
do not overlap. That is, the potentials u(r —R„)
are defined as function of r within regions Q„cen-
tered on the sites R„. The boundaries of the re-

gions Q„corresponding to neighboring sites must
not touch. V(r) is a constant in the intersitial re-

gion between the Q„.
By definition, the region 0„ fits within the nth

unit cell. There are many ways to construct a unit

cell, but we use the Wigner-Seitz cell, which is the
most symmetrical. The radius of the smallest
sphere within which the region Q„can be fitted
will be called S. If the muffin-tin approximation
is used, S is equal to the muffin-tin radius r „
which is the radius of the largest sphere that can
be inscribed in the Wigner-Seitz cell. For the most
general non-muffin-tin potential, the boundary of
the region Q„will differ only infinitesimally from
the boundary of the Wigner-Seitz cell. For this
case S is the radius of the smallest sphere that can
be circumscribed about the Wigner-Seitz cell.

In I, it was shown using multiple-scattering
theory that for a general potential V(r) the eigen-
functions l( k (r) can be written

l(tk(r)= QZI (E ( k), r) Ci( k) . (4)
L

In this expression, ZI (E, r ) is a solution of the dif-
ferential equation

[ V+u(r)]f—(E, r)=Ef(E, r) .

It is the solution that for r y S satisfies the boun-

dary condition

ZL (E,r) =xYL (r)nI(iver) —g Yi. (rj)~ (ar)XL, r.(E),
I I

in which a is the square root of E,jI(ar) and

ni(ar) are Bessel functions, Yi.(r) are real spheri-
cal harmonics, and I. stands for the two integers l
and m. The matrix X(E) is minus the inverse of
the Wigner scattering matrix, R, that describes the
scattering of an electron of energy E from the po-
tential u(r). Hence, it is both real and symmetri-
cal. The coefficients CI (k) are shown in I to be
solutions of a homogeneous set of equations

g MLI (Ek)CI ,( k ) 0. = (7
L $

Obviously, these equations have nontrivial solu-
tions only for energies E (k) for which

detM(E, k) =0 .
The matrix M(E, k) can be written in the form

M(E, k) =X(E)+8(E,k),
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(10}

are called the near-field corrections to the structure
constants. From the defining equation in I it is
clear that the NLL(E, k) do depend on v(r). A
further specialization of the band-theory equations
arises when the potentials v(r) are spherically sym-
metric. This simplification has the effect of mak-

ing the scattering matrix X(E) diagonal. In fact,
the matrix elements for this case are simply

XLL'(E} +cot 11(E}8LL' ~

where the r11(E) are the phase shifts that describes
the scattering of an electron from the spherical po-
tential. The well-known muffin-tin form for the
potential that is assumed in most papers on the
KKR method corresponds to the case that the
v( r —R„) are spherically symmetric and their
bounding spheres do not overlap.

It was pointed out in I that the most convenient
form for X(E) for a general v(r) is

X=PCS (12)

where C(E) is a generalized cosine matrix and
S(E}is a generalized sine matrix. Several expres-
sions for evaluating the elements of these matrices
are given in I, and it is shown that for spherical
potentials they go over to

CLL (E)=A1cosriL(E)5LL,

S«(E)=~,sing, (E)8LL .

It follows from (6} that for any energy for which
the determinant of the sine matrix is zero (or a
phase shift is zero in the spherical case) the nor-
malization of ZL (E, r }becomes infinite. This is

an inconvenience which can be eliminated by ex-

pressing gk(r) in terms of the functions

1
QL(E, r }= gZL (E,r)SL L(—E) .

These functions are also real solutions of (5), and
can be shown to have the normalization

lim PL(E, r)=YL(rj)1(ar),
r—+0

(1S)

where X(E) is the scattering matrix described
above and B(E,k) is a symmetrical matrix of ele-

ments called structure constants.
For the special case that the bounding spheres of

the regions Q„do not overlap, the elements of
B(E,k) go over to the KKR structure constants
defined originally by Korringa. The KKR struc-
ture constants BLL (E,k) do not depend at all on
the potentials, but only on the crystal structure.
The differences

NLL (E,k }=BLL (E,k) BLL (—E, k ),

which is finite for any finite E. The coefficients
dL(k) in

y-„(r)= gP, (E (k), r)d;(k)
L

satisfy the set of equations

gPLL (E,k)dL (k) =0,
in which the matrix P(E, k) is

(16)

P(E, k)=M(E, k)S(E) . (18)

This unsymmetrical matrix is the most useful one
to consider in the multiple-scattering approach to
band theory because it remains finite for all ener-
gies, and, unlike the symmetrical matrix S M S,
the only energies for which its determinant is zero
are the E (k).

The band-theory equations (16)—(18) are
straightforward generalizations of the ones derived
with multiple-scattering theory by Korringa.
They were recast, without approximation, into an
equivalent form in I. The new form seems a bit
curious at first sight, but it proves to be useful for
later derivations. In the process of defining the
potential V(r) it was pointed out that the regions
Q„without which the v ( r —R„) are defined do not
touch, and that the potential V(r) is a constant in
the interstitial region between the 0„. All of the
energies in (16)—(18) are defined relative to this
constant, so it has tacitly been assumed to be zero.
For the most general non-muffin-tin potential the
boundaries of the regions Q„approach the boun-

daries of the %igner-Seitz cells, and the volume of
the interstitial region goes to zero. For this case
the value of the constant interstitial potential be-

comes an irrelevant parameter. By choosing a
value other than zero for this parameter, it is pos-
sible to recast (16)—(18) into the new form.

The scattering matrix X(E) describes the scatter-
ing of an electron with an energy E from the po-
tential v(r) that is assumed to be zero outside the
region 00. If the potential outside 00 is assigned
the new value E—E0, then the incoming electron
will appear to have the energy E0 and the scatter-
ing is described by the matrix Xa(ED). This ma-
trix can be calculated equally well by considering
an electron traveling in a region of zero potential
with energy E0 and then scattering from the poten-
tial

v (r}=v(r)—bo(r),
where b =E Eo. The function o.(r ) i—s a step
function that is equal to one when r is inside 00
and zero when it is'outside. For the reasons out-
lined above, the scattering matrix Xa(EO) can be
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used in new band-theory equations if the region Qo
is the Wigner-Seitz cell. I.et PL (Ep, r) be the solu-

tion of an equation like (5) but with U(r) replaced

by U (r). It satisfies the condition

lim $1.(Eo r)= YL (rj)i(&or}
r~O

(20)

with ap equal to the square root of Ep. It can be
seen that the Bloch vector in (16) can be written

6 (k)
Qq(r)= +PI (Eo, r)dL(k), (2

L

where the coefficients dL ( k ) are solutions of the
set of equations

Q Pll (Ep, k )dL (k) =0, (22)

in which

Pa(Eo, k ) =aoCa(Eo )

+ [B(Ep,k)+Ha(Eo, k)]Sa(Eo ) .

(23)

The sine and cosine matrices are defined so that

whose elements are the usual KKR structure con-
stants calculated for the pivotal energy and vari-
ous k.

The equations from I that we have found to be
the most useful for calculating the nondiagonal
sine and cosine matrices are

CII,,(Ep)=ap I ni(i~or)YL(r)u (r)

X$L (Eo, r ) du 51I—

SIL (Eo)=xp Ij~(d'or)YL(r)v (r)

X/1, (Eo, r) du .

(27)

+, G +or r'U I"'
/

r'/(/ r/

X/L, (Ep, l )dU,

These equations are essentially the same as some
described by Calogero, except for a minus sign.
The function Pl (Ep, r ) is most conveniently found

by solving the integral equation

pic, (Eo, r) = r~ (r)gi, (~or)

Xa(Eo) =iroC'(Eo)S'(Eo) ', (24)
in which

(28)

E~(k) =b~(k)+Ep . (25)

This set of band-theory equations is entirely

equivalent to the ones in (16)—(18), the only differ-
ence being that the variable is the depth of the po-
tential rather than the energy of the electron.

We call the band-theory equations (21)—(23) the
pivoted-multiple-scattering (PMS) equations be-

cause of the appearance of the pivotal energy Eo.
In their exact form they are more cumbersome to
deal with computationally than the KKR equa-
tions [(16}—(18)]. They become very much easier
to deal with if we can ignore the near-field correc-
tions to the structure constants, and in all of the
following work we make the approximation

Xa(Eo, k) =0 . (26)

After this approximation, the only energy depen-
dence in the secular matrix P (Epk) defined in
(23) comes from the scattering matrices Ca(Eo)
and Sa(Ep). Recall that B(Eo,k) is a matrix

and there are near-field corrections to the structure
constants Xa(Eo, k ) whether U(r ) is of the
muffin-tin form or not because of the second term
in u (r). Nontrivial solutions of (22) exist only for
those values of b, for which the determinant of
Pa(Eo, k) is zero. We called them b,~(k) in (21),
and the ordinary energy eigenvalues can be found
from

G(Ep, r, r ') = —ii'pg YL (i )[Jt(Kpr)ni(Kpr')
L

—n/(Kpr j)/(Kpr )]YI ( r )

(29)

%e have set up computer programs for calculating
Ca(Ep) and S (Eo) for fcc and bcc crystals. We
have checked the accuracy of the PMS equations
by doing PMS calculations with muffin-tin poten-
tials U(r ) for which ordinary KKR calculations
can be carried out to great precision. Of course,
the sine and cosine matrices must be calculated
with (27)—(29) even for a muffin-tin potential be-
cause U (r ) is not spherically symmetric.

The results of one of our calculations comparing
eigenvalues from a PMS calculation with the ones
given by a KKR calculation are shown in Fig. 1.
A bcc lattice of niobium muffin-tin potentials was
used, and angular momenta through l,„=4were
included. All of the bands shown in this paper
were calculated with this test potential. The ener-
gies are all expressed in the dimensionless units
(du} that are frequently used in KKR calculations,
Ed„(a/2') ER„, in which ——a is the lattice con-
stant and Ez~ the energy in rydbergs. The energies
in this paper can be converted to rydbergs by mul-

tiplying with 1.017343. The value of Eo was
chosen to be 0.669 55 du. It can be seen that the
PMS and KKR eigenvalues are essentially identical
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discussed by Anderson for the case in which Eo is
zero. It can be seen that for the bcc lattice used in
these calculations the spherical model gives the
wrong splitting for the d states at k =0.0. Eigen-
values from calculations that are the same as the
ones in Fig. 2 except that Eo is 0.725 du rather
than 0.010 du are shown in Fig. 3. The PMS
eigenvalues are essentially identical with the KKR
eigenvalues, and the eigenvalues calculated with the
spherical model give a much better representation
of the d bands. In Fig. 4 are shown eigenvalues
calculated as in Fig. 2 except that angular momen-

ta are included only for l (3 rather than l (4.
The improvement that is obtained by including the
shape of the unit cell properly in the scattering
matrix calculation is clearly less for this case.

The lessons learned from the calculation we have
done using the PMS equations (21)—(23) can be
summarized as follows. At least for the metallic
systems that we have considered, the neglect of the
near-field corrections to the structure constants as
indicated by (26) introduces very little error in the

eigenvalues. The eigenvalues calculated with PMS
equations in which the correct nondiagonal sine

and cosine matrices defined in (27) —(29) are used

are much better than the ones calculated using the

spherical approximations to cr(r ) indicated in (30)
when enough terms are included in the angular
momentum expansions, l,„&4. The spherical ap-

proximation introduces smaller errors if Eo is

U)

O
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C)

o

0.00 0.25 0.50
k

0.75 1.00

FIG. 4. Niobium eigenvalues calculated with PMS
equations (circles) and the spherical approximation to
the PMS (triangles) for E0——0.010 du. Calculations
differ from the ones in Fig. 2 in that I values are includ-

ed only through 1,„=3. Squares and solid lines indi-

cate KKR eigenvalues calculated for /, „=4.

chosen to be in the middle of the d bands. Al-
though we have not shown any examples, the cal-
culation of C (Eo) and S (Eo) is no harder for a
non-muffin-tin U(r) than it is for a muffin-tin po-
tential because the nondiagonal terms are already
being included. Finally, we illustrated all of these
points for a bcc lattice because the errors caused by
a particular approximation are always considerably
larger for that lattice than they are for examples in
which the fcc lattice is used.

CD
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III. FAST BAND THEORIES

By iterating the integral equation (28) and insert-

ing the result in (26) it can be proved that every
element of the matrices Ca(Eo) and Sa(EO) is an
entire function of h. This simply means that these
matrix elements can be expanded as Taylor series
in 5, so that

0.00 0.25 0.50
k

I

0.75 1.00 Ca(E )= C' '(E )+C"'(E )6

+C("(E )n'+. . .
(31)

FIG. 3. Niobium eigenvalues calculated with KKR,
PMS, and spherical PMS equations as in Fig. 2, except
that E0——0.725 du.

s'(E, ) = s~'~(E, )+s~'~(E, g,

+S~'~(E )~'+ ~ ~ ~
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H(k) =aoC~o~(Eo)+B(Eo~k)S~+(Eo}

O(k}=—~oC~~~(Eo) —B(Eo~k)S~ ~(Eo) ~

A(k) =a'oC~~i(Eo)+B(Eo, k)S' '(Eo) .

(33)

If all terms beyond the first two in (32) can be
ignored, we have what could be called a linearized
KKR (LKKR) band theory. The eigenvalues

b,~(k) for which the determinant of P~(Eo, k) is

zero are approximated in this theory by the ele-

ments obtained by diagonalizing the matrix

e(k)=O(k) 'H(k) . (34)

The true eigenvalues E~(k ) that have values very

close to Eo will, of course, be given exactly by the
LKKR theory because (26) is satisfied and the
higher-order terms in (32) can be ignored as b ap-
proaches zero. %e will show by numerical exam-

ples how the approximate eigenvalues from the
LKKR are poorer approximations to the exact
E (k) when ~E (k) —Eo

~

becomes large. The
LKKR band theory was compared in I with the
linearized band theories that are derived from a
combination of multiple-scattering theory and the
Rayleigh-Ritz method. There are many differ-
ences, but one of the more important features that
distinguishes the equations derived from the pure
multiple-scattering approach from the other
theories is that the matrices in the LKKR are un-

symmetrical. The matrices H(k) and O(k) would
be Hamiltonian and overlap matrices in a varia-
tional approach, and they would always be symme-
trical. The mathematical consequence of this lack
of symmetry is that some of the elements obtained

by diagonalizing e(k) are complex. These elements

always appear as complex conjugate pairs, and they
do not lead to any difficulties in the practical ap-
plication of the LKKR. The major benefit that ar-
ises from the use of these unsymmetrical matrices
is that Eo can be chosen to have any value, and
thus one can match to the exact KKR results at
the most convenient energy for any application.
Also, there is an overall improvement in the quali-
ty of the approximation.

An even more striking difference between (32}
and equations derived with the variational method
is that there is no necessity to stop with a linear-

Inserting these expansions in (23) with the approxi-
mation (26) leads to

P~(Eo, k) =H(k }—O(k }5+2 (k)b, +
(32)

with

ized theory. The multiple-scattering formalism
leads in a natural way to the inclusion of terms
that are quadratic, cubic, quartic, etc., in h. In
Fig. 5 we compare eigenvalues calculated using a
linear and a quadratic approximation to (32) with

exact KKR eigenvalues. The calculations were
done with the bcc niobium potential used in the
preceding examples. Angular momenta were in-

cluded up to l,„=4. As expected, both approxi-
mations give very good results near Eo, which for
this case has the value 0.66955 du. Eigenvalues
that differ from Eo by more than a few tenths of a
du are given rather badly by the LKKR, but the
version of (32) that includes terms quadratic in b,

reproduces the eigenvalues almost exactly over the
whole range of energies shown. The additional im-

provement obtained by including cubic and qua-
dratic terms in (31) would not be worth the effort
in most cases.

The quadratic Korringa-Kohn-Rostoker
(QKKR) equations are Eqs. (21), (22), and the qua-
dratic form of (32}. QKKR calculations, like
LKKR calculations, require the diagonalization of
just one matrix for each k. The reduction of a set
of equations quadratic in 6 to a set linear in 6
uses a trick that is well known to applied mathe-
maticians. In the present context the transforma-
tion is carried out as follows. Equations (22) and

(32) are written in the matrix form

O
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0gg
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FIG. 5. Niobium eigenvalues calculated with the qua-
dratic (circles) and linear (triangles) approximations with
E0——0.66955 du. Squares and solid lines are exact
KKR bands. Values of I through l,„=4are used in all
calculations.
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[b, —D(h —e)]d =0,
in which e(k) is given by (34) and D(k) is

D(k)=A(k) 'O(k) . (36)

C3

The elements of the column matrix d(k) are the
coefficients di (k). A column matrix c with ele-

ments that will be called cL (k) is defined by

(6—e)d=c . (37)

Coupling this equation with one that can be ob-
tained by inserting this definition into (34) leads to
a matrix equation that can be written as

C3

Q

E
C)0—

C

d =O ~ (38)

This expression has the form of a standard eigen-
value problem. If contributions to the expansion
of the wave function in (21) corresponding to an-

gular momenta greater than some I „are ignored,
the matrices H(k), O(k), and A(k) will have di-

mension X, where

N =(21,„+1)'. (39)

The matrix that must be diagonalized to find the
eigenvalues from (38) has dimension 2N

The reason that the QKKR gives eigenvalues
that agree with the exact results much better than
the LKKR is illustrated in Figs. 6 and 7. The
averages of the diagonal elements of the cosine ma-
trix corresponding to I =1 and 2 are calculated
from (27) for a number of values of b. They are
plotted in Figs. 6 and 7 as functions of E rather
than 6 to facilitate comparison with the eigenvalue
calculations. The pivotal energy Eo is 0.66955 du,
and the same niobium potential is used as in the
other examples. The quadratic and linear approxi-
mations to these parts of the cosine and sine ma-
trix are plotted in the same figures. The elements
of these matrices vary smoothly with b, , although
they are certainly not linear functions of b, . From
these figures it can be seen that the importance of
the quadratic approximation lies in the fact that it
gives a very good representation of the sine and
cosine matrices over a range of energies (of the or-
der 1.0 du) that includes all of the eigenvalues that
are of interest in most band-theory calculations.

Another point that is illustrated by comparing
Fig. 7 with Fig. 6 is that it is more difficult to fit
the components of the cosine and sine matrices for
I =2 than for I =1. This is caused by the fact that
there is a scattering resonance in the I =2 channel
for a transition metal such as niobium. Of all the

a
CV

l I I ~ I

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Ener gy

M

C

E
C)
0

0 00 0 25 0 50 0 75 100 125 150

Energy
FIG. 7. Average of the 1 =2 matrix elements of the

sine and cosine matrices are shown by solid lines. Qua-
dratic approximation (dashed lines) and linear approxi-
mation (dotted lines) are also shown.

FIG. 6. Average of the 1=1 matrix elements of the
sine and cosine matrices as a function of energy (solid
lines). Quadratic approximation is shown by the dashed
lines and the linear approximation by the dotted lines.
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then (31) takes the form

Ca(Eo)=C„''(E )+C"'(E,)b,,
+C,"(Eo)g+

Sa(E, ) = S,'"(E,)+S',"(E,)h„

+S'„"(E,g„'+

(41)

matrix elements Cil (Eo), these are the ones that
will vary most rapidly with h. We have found by
experience that the best results in either a PMS or
QKKR calculation of the eigenvalues for a transi-
tion metal are obtained by choosing Ep to be at or
at least near the resonance energy for scattering.
The niobium potential we have been using has an
I =2 scattering resonance at 0.66955 du, and that
is the reason we have used this value for Eo in

many of our calculations.
Eigenvalues calculated for niobium with the

QKKR and the LKKR are compared with exact
KRR eigenvalues in Fig. 8 for Ep ——0.300 du. As
would be expected, the lowest band is reproduced
better for this Ep than it is for Ep =0.669 55 du.
The d bands are given rather badly, however, par-
ticularly by the LKKR. The main reason for this
is that the parts of the cosine and sine matrices
corresponding to I =2 are not well reproduced over
a wide range of energies by (31) when Eo ——0.300
du.

Of course, the sine and cosine matrices can be
expanded about values other than 5=0. If they
are expanded about 6, which is defined by

6 =E~—Ep, (40)

in which

A„=h —5 =E —E

The expansion of the matrix Pa(Eo, k ) may be
written in terms of these matrices:

Pa(Eo, k)= H„(k)—O„(k)b,,
+A, (k)b, '„+

with

(42)

(43)

LI~(k)=&oC~v '(Eo)+8(Eo, k)Sv '(Eo) ~

O„(k)=—~,C."'(E,)—a(E„k)S'„"(E,),
A„(k)=aoC'„'(Eo)+8(Eo, k)S'„'(Eo) .

(44)

Eigenvalues for niobium calculated with QKKR
and LKKR equations based on (41)—(44) rather
than (31)—(33) are compared with KKR eigen-

values in Fig. 9. The value of Ep is the same as

for Fig. 8, Ep ——0.300 du, but E is chosen to be
the energy at which the matrix Ca(0.300) indicates

a scattering resonance in the I =2 channel,
E =0.648 84 du. The eigenvalues, particularly the
ones calculated with the QKKR, are almost as

good as the ones calculated with the optimum
choice Ep ——E.=0.669 55 du.

It can be seen from Figs. 8 and 9 that by carry-
ing out calculations for several values of E„and
choosing only the eigenvalues whose magnitudes
are close to each E, a set of eigenvalues can be
obtained from the LKKR that approach the accu-
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Lal

U)

{I) 0
C

LIJ

C)

I

0.00 0.25 0.50
k

0.75 1.00

FIG. g. Quadratic (circles) and linear (triangles) ap-

proximation to KKR niobium eigenvalues (squares) cal-
culated with E0——0.300 du.

1.00
I I

0.00 0.25 0.50 0.75
k

FIG. 9. Quadratic (circles) aud linear (triangles) ap-

proximation to the KKR niobium eigenvalues (squares).

Modified equations are used with E0——0.300 du and

E„=0.648 84 du.
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g) 0
C

LIJ

0

0.00 0.25 0.50
k

0.75 1.00

PIG. 10. Quadratic (circles) and linear (triangles) ap-
proximations with l,„=2 and E0——0.66955 du. Exact
KKR eigenvalues calculated with l,„=4by squares
and lines.

racy that is achieved in the QKKR. The time re-

quired to find the QKKR eigenvalues for a given
k is theoretically about 6 times' the amount of
time required for calculating the LKKR eigen-

values because the matrix to be diagonalized is
twice as big. This would appear to indicate that
an LKKR calculation with six values of E, would

take no more time than a QKKR calculations.
This argument is not valid because the setting up
of the various matrices to be diagonalized and the
selecting and storing of the subsets of eigenvalues

calculated in such a LKKR takes time. Using
modern methods, ' the diagonalization of matrices
of the size considered here is a rather trivial com-

putation.
There are, no doubt, many ways to speed up

these calculations. One way that recommends it-
self when iterating a band-theory calculation to
self-consistency is to ignore the contributions from
terms that correspond to angular momenta greater
than I =2 in the early stages of the calculation.
Eigenvalues for niobium calculated from QKKR
and LKKR equations that were truncated in this

way are compared with the exact eigenvalues in

Fig. 10. It can be seen that the eigenvalues from
the QKKR are quite good for this choice of Eo
and they are obtained by diagonalizing 18)& 18 ma-

trices rather than the 50)(50 matrices used to get
the eigenvalues in Fig. 5. After this l,„=2calcu-
lation has been iterated to self-consistency the

terms corresponding to I equal to three and four
could be added.

IV. SUMMARY

where

Frl (k)=C (k)dl (k)dl (k) .

The first sum in (45) is over all k in the unit cell,
but only those a for each k that correspond to
occupied states [E (k) &EF). The normalization
constant C (k) is given by

(46)

c ~ ~a k)~a
C (k)= gdl(k)KLL' dl (k)

LL'

where ELL is the integral over the unit cell

ELL, ——f$1 (Eo, r )pl (Eo, r ) du .

The matrix elements ELL can be expanded as
polynomials in 5, just like the elements of the
cosine and sine matrices. It is thus reasonable to
calculate them for a few values of b, and then in-

k, (k)
terpolate to get the El.l. that appear in (46). Us-
ing an expression for the Green's function that was
derived in a previous publication" and the fact
that the eigenvalues and coefficients in the QKKR
are obtained by a matrix diagonalization, an alter-
native expression for the FL,q (k) has been derived.
The advantage of this alternative expression is that
it does not require the evaluation of any integrals
at all.

It should be emphasized that the reason for us-

ing a muffin-tin potential in these calculations is
so that comparisons can be made with exact KKR
calculations. The term b,o.(r) in (19) is not spheri-
cally symmetric, and its magnitude can be much
greater than any nonspherical contribution to u (r )

(47)

(48)

The discussion in the preceding sections focused
on the calculation of eigenvalues, because the com-
parison with exact eigenvalues is the easiest test for
the accuracy of an approximation. According to
this test, the KKR equations can be replaced by
the QKKR equations with very little loss of accu-
racy. In self-consistent band-theory calculations
and in total-energy calculations, the charge density

p( r ) must also be obtained. Using (20) it can be
seen that

6 (k) ~ h, (k)p(r)=g' +PL,
' (Eo, r)Flr (k)01 (Eo r)

a, k LL'

(45)
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that would come from a nonspherical charge densi-

ty. Since the off-diagonal elements of the scatter-
ing matrices must be calculated from (27) in any
case, the use of a non-muffin-tin v (r ) causes no
difficulties. It is also interesting to note that the
smooth variation of Ca(EO) and S (Eo) with b,
follows from their definition in (27). The scatter-
ing matrix X (Eo) and the secular matrix
Pa(EO, k) would not be changed significantly if the
sine and cosine matrices were replaced with new
matrices obtained by the transformations,

(49)

where A~ is an arbitrary function of h. There
would clearly be many ways to choose A ~ that

would make the series expansion of the ca(zo) and
Sa(zo) less good. An example of such a choice
would be the requirement, for a spherical model,
that the sum of the squares of the sines and con-
sines for a given l should be equal to one.

The QKKR equations developed in this paper
are presently being used in self-consistent total-
energy calculation on transition metals.
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