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Using the multiplicative renormalization technique, we obtain the scaling behavior of a
model for tunneling states interacting with conduction electrons in which the conduction-
electron-assisted tunneling is not taken into account. There is a crossover temperature
which characterizes the transition from the high-temperature region where the many-body
effects are effective to a region where the dynamics is frozen in. This crossover tempera-
ture is given as an effective level splitting which is reduced from its bare value due to the
interaction. The renormalized coupling constants do not scale into a strong-coupling re-

gime. Implications for the electrical resistivity are discussed, and the conclusion is drawn
that if there is any logarithmic temperature-dependent term at all, the amplitude is so
small that it is very unlikely to be observable.

I. INTRODUCTION

An important development in the physics of
glasses has been the recent discovery of tunneling
states (TLS) in metallic glasses at low tempera-
tures. ' These states result from local rearrange-
ments of atoms as the glass makes quantum-
mechanical transitions among configurations near
the highly degenerate ground state. Metallic
glasses differ from insulating glasses in that TLS
are coupled not only to phonons but also to con-
duction electrons near the Fermi surface. * Strong
evidence of this electron-TLS coupling has already
been seen in various ultrasonic experiments, ' and
this raises the question of a new Kondo-type effect
with possible implications for the electrical trans-
port properties. With this question in mind, Kon-
do ' introduced two models, which Zawadowski
and Vladar have called "commutative" and "non-
commutative. " The essential difference between
these two models is that the commutative model
has only one coupling, which is the difference be-
tween the scattering amplitudes corresponding to
the two positions of the tunneling atoms. In con-
trast, the noncommutative model has an additional

coupling describing the conduction-electron-
assisted tunneling process. These two couplings
show different dependence on the momentum of
the electrons and, in fact, do not commute. In
both models, however, the underlying physics is
the divergent response of an electron gas to a local
time-dependent potential, which is a feature these
models share with the x-ray and magnetic Kon-
do' problems.

At the present time one of the most important
problems is to choose the appropriate model for a
given glass, as these two metallic glass models
behave in very different ways. In the commutative
model, as we shall see, the rate for electrons
scattering on TLS is not renormalized up to fourth
order in perturbation theory. The noncommutative
model, however, exhibits a logarithmic enhance-
ment of the electronic elastic scattering rate of the
form ln

~

D/T ~, where D is the electronic band-
width cutoff and 1is the temperature. This result,
first obtained by Kondo, has been confirmed and
extended in the renormalization-group treatment of
Zawadowskj and Vladar and of Zawadowski
Even so, the relevance of this enhancement to actu-
al electronic transport anomalies' in metallic
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glasses is doubtful because of the broad distribu-
tions of coupling constants and of TLS energy
splittings E, which cut off the singularities when

T &E. Thus, if the electron-assisted coupling can
be treated by simple perturbation theory, the am-

plitude of the aforementioned ln
~

D/T
~

contribu-
tion is negligible. ' The noncommutative model

can result in physically significant enhancement in

the electronic scattering only if the couplings
exceed some threshold value beyond which it is no
longer valid to keep only the first terms in the per-

turbation series.
Returning to the commutative model, the pur-

pose of this paper is to clarify a controversial situ-

ation regarding its electronic scattering rate. We
will present calculations which strongly suggest
that all previously published scattering rates' '
are incorrect. The actual leading logarithmic
corrections can at most' be of the form
ln

~

E/T ~, which is much weaker than
ln

~

D/T
~

. In the following, we shall present a
multiplicative-renormalization-group analysis of
the logarithmic divergences in the commutative
model at low temperatures. The main physical ef-
fect we find is a downward renormalization of the
TLS energy splitting with decreasing D. This re-

sult is in accord with the scaling theory of Black
and Gyorffy, ' who exploited a connection between

this model and an infinite sequence of x-ray prob-
lems. The same result for E had been conjectured
on the basis of low-order perturbation theory by
Kondo. For the rotationally-invariant electron-
TLS coupling, on the other hand, we find no re-

normalization at all. ' This result has been ob-

tained in both leading and next-leading order in the
coupling constants, which leads us to expect no
terms of the form ln

~

D/T
~

in the electrical resis-

tivity.

II. THE COMMUTATIVE MODEL

The general commutative or noncommutative
Hamiltonian consists of a noninteraction part Ho
plus the electron-TLS interaction H&. These are
given by

Hp= g eg&g&g+ES
k

TLS embedded in the electron gas. As usual, '

the attic displacements of the TLS are described

by spin- —, operators S; (i =x or y) and E is the re-

sult of both an asymmetry energy b, and a tunnel-

ing splitting 60 with E =5 +ho. It is often use-

ful to view Eq. (1) as the result of a rotation
around the y axis in spin space, which diagonalizes
a TLS Hamiltonian of the form 8, b,P„,—and we

shall insist on always performing such rotations to
recover the form (1) in the course of the renormali-

zation process.
The coupling constants Vkk are derivable, in

principle, on the same basis as the electron-phonon
interaction ' ' ' and their magnitude has been es-

timated from ultrasonic experiments. The crucial
distinction between the commutative and the non-

commutative model lies in the momentum depen-

dence of these quantities. ' The commutative
model satisfies

Vk, g Vgk
—Vk, k Vgk ——0,J (3)

for all k', k, k (no summation over k), and this im-

plies that V" and V' have the same momentum

dependence. Otherwise the model is noncommuta-

tive.
If there is only one coupling, which describes the

difference in the electron scattering amplitudes cor-
responding to the two positions of the tunneling
atom, " then V' and V" are produced by rotation
of this coupling around the y axis, implying that
V" and V' must have the same dependence on the
electron momenta. On the other hand, if the
electron-assisted tunneling is considered as well,
then these two couplings have different momentum
dependence, and Eq. (3) is not fulfilled. In this
way all terms violating (3) are smaller by an over-

lap factor than the commutative terms in (2). ' '
Thus for TLS, with weak coupling' the commuta-
tive model appears to be a very good approxima-
tion. ' If the couplings exceed some critical
values, ' the existence of divergences in the non-
commutative model can render normally negligible
terms quite important. Such effects have been dis-
cussed elsewhere ' ""' o and will not be dealt
with here. In what follows, we shall explore the
consequences of satisfying (3) with the additional
nonessential simplification that V and V'are ac-
tually independent of momentum.

where ek is the electronic energy, E is the TLS en-

ergy splitting, and Vi', i, (i =x or z) is a momentum-
dependent coupling constant. Since the concentra-
tion of TLS is very small, ' we consider a single

III. MULTIPLICATIVE RENORMALIZATION
GROUP

In this section we apply the multiplicative-
renormalization-group method to obtain the scaling
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behavior of the commutative model. This method
has been successfully applied to the x-ray, Kondo,
and one-dimensional electron-gas problems, all of
which (like the present problem) are characterized

by logarithmic divergences in low-order perturba-
tion theory. ' Specifically we use the Gell-Mann-
Low scheme as modified by Menyhard and
Solyom and generalize it to include the mass
term ES,. Our renormalization-group procedure
consists of two distinct steps: (i) a reduction of the
bandwidth cutoff from D to D' by an infinitesimal
small amount which generates a new effective
Hamiltonian with different coupling constants but
with the same physics, and (ii) a rotation in spin
space to put the new Hamiltonian into exactly the
form of Eqs. (1) and (2). These steps are applied
sequentially. The resulting changes in the parame-
ters V", V', and E generate scaling trajectories
which reflect the low-temperature behavior of the
model. The scaling equations we shall derive are
the following:

( Z)2E
S

dv

dl

(vz)2vz

= ——,N, (v") v',

where U"=pV", U, =pV', I =lna, p is the electron-

ic density of states (per spin) at the Fermi surface,
and N, is the spin degeneracy factor (equal to 2 for
electrons).

The first step in deriving these results is to
rewrite the TLS spin operators in Eqs. (1) and (2)
in terms of creation and annihilation pseudofer-

mion operators, which are in fact the creation
and annihilation operators of the tunneling atom if
only one atom is associated with the tunneling:

Ho= g&k&k&t + g5 b b
k a

H) gV akakb b——
kk'

where a=+1, 5 = —,uE+A, , and

2V~ =V"(1 5~ )+a—V'5~~

Following Abrikosov, we have introduced the
chemical potential k, which goes to infinity at the
end of the calculation to avoid simultaneous occu-
pation of both pseudofermion states. We have ver-

ified that this procedure leads to no spurious diver-

gences to the leading and next-leading logarithmic
approximations discussed in this paper (see the Ap-
pendix).

V"=Z& 'Z2 'Z3 V' (i =x,z), (12)

where for the sake of simplicity the energy split-

ting 5 is not indicated. Note that Z2 and Z3 de-

pend on V", V', D/D', but they are independent of
u and i.

The quantities Z~, Z2, and Z3 are calculated by

perturbation theory in V. For example, a lowest-

order logarithmic contribution to the vertex renor-

malization constant Z3 is obtained from the par-

quet diagram shown in Fig. 1(aj, which yields

I'~'~ =p g V~~, V~,~ ln
~

D/to
~

where co is the frequency on the external lines. In
Eq. (13) and in what follows we have consistently

replaced expressions like ln
(

tv —5~, ~

by ln
~

tv
~

under the assumption that the TLS splittings are

0)

(o)

61

(b)

FIG. 1. Two lowest-order logarithmic contributions

to the electron-TLS vertex function. The solid line

represents the electron propagator, and the broken line

represents the pseudofermion (TLS) propagator. These

two diagrams are leading-logarithmic or "parquet" dia-

grams.

discussed in this paper (see the Appendix).
Next we introduce the single-particle Green's

functions G and 9~=(tv —5 )
' (corresponding to

conduction electrons and pseudofermions, respec-

tively) and the vertex function I', i =x,z, corre-

sponding to the interaction H&. For convenience

we also introduce the notation I'= I'/V' (i =x,z).
In the following, the energy co will be measured

from A, , thus 5~ will not contain A,.
(i) Reduction of the bandwidth Un. der a change

in the conduction-bandwidth cutoff from D to D',
we shall verify that these quantities are multiplied

by frequency-independent factors Z&, Zq, and Z3.

G (to,D', V') =Z i G (to, D, V),

S~(to/O', V') =Z2/~(to/D, V) (a=+1),
(10)

I'(to/O', V')=Z3 'I"(co/D, V) (i =x,z),
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Z3 ——1+—,N, [(u') + (u") ]ln
~

D/D' ~, (14)

where Z3 is independent of a and includes the
spin-degeneracy (true electron spin) factor N, be-

cause of the closed electron loop.
Finally, consider the pseudofermion self-energy

diagram shown in Fig. 2(d). This yields, using the
notation S=(9" ' ' —II)

II = l'N, gV.—..V., (~ S., )ln~D—/~~ .
a&

(15)
The part of Eq. (15) proportional to to leads to
"wave-function renormalization" given by

Z2 ——1+—,N, [(u') +(u") ]ln
~

D/D' ~, (16)

negligible compared to the frequency or tempera-
ture variables. The other lowest-order contribu-
tion, shown in Fig. 1(b), is the same as Eq. (13) but
has the opposite sign. Thus I" is independent of D
and D' to this order, which means that

Z3 —1+O(V ln ~D/D'
~

)

Furthermore,

Z = 1+0 ( V ln
~

D /D'
~
),

since its leading contribution comes from Fig. 2(d),
and Z~ ——1 to all orders because there can be no
closed pseudofermion loops. ' ' Thus there are
no parquet-type leading logarithmic divergences in
the commutative model, in sharp contrast with
both the noncommutative model and the Kondo
problem. '

Nontrivial renormalization does occur, however,
in the next order of logarithmic perturbation
theory. Consider the vertex corrections shown
schematically in Figs. 2(a}—2(c). The first two of
these are parquet-type and can be shown to cancel
against each other as was the case with the contri-
butions in Fig. 1. The diagram in Fig. 2(c), how-

ever, survives and leads to

This means that step (i) of our renormalization

group leads to a new Hamiltonian with exactly the
same values of u" and v'. Nontrivial effects must
come from the mass reriormalization terms which
we now discuss. The terms in Eq. (15) which are
proportional to 5a lead to "mass renormalization"

for the pseudofermions. This possibility has not
yet been taken into account in Eq. (10), which
must be generalized to read

9( cv /D ' V', E', Ao ) =Z 2 Ã '( to /D V,E,0 )

(18)

In Eq. (18) it is now explicitly recognized that
lowering the cutoff from D to D' will generate an
off-diagonal mass term b,v [corresponding to ad-

ding boS„ to Eq. (1)], even though the starting
Hamiltonian contains only the diagonal splitting E.
In particular, Eqs. (15) and (18) yield

E'=E[1 ——,N, (v") ln ID/D' ], (19)

Ao = ——,N, Eu"v'ln
~

D/D'
~

. (20)

(ii) Rotation around y axis to eliminate Av. We
now implement step (ii} by rotating the pseudospin
axes so as to eliminate 60 and recover a Hamil-
tonian in the form of Eq. (1). This rotation'
leads to new coupling constants (doubled primed)
given by

[(Ei)2+(g~ )2]1/2

(v*)"=(E") '[E'v' —b,ou"]

-=u' —(a,'/E)u",

(u")"=(E") '[b,ou'+E'v" ]

=(60/E)u'+v",

(21)

(22)

(23)

from which Zz is now seen to be independent of a
and to be precisely equal to Z3 and hence able to
cancel it completely. Thus the net effect of Zz
and Z3 in Eq. (12) is seen to be

I
~aa' ~aa'

(a)

(c)

(b)

where the second equality (=) neglects terms of
higher than first order in the infinitesimal
ln

~

D/D'
~

. The final results presented in Eqs.
(4)—(6) are now easily obtained from Eqs.
(21)—(23) by making use of Eqs. (19) and (20) (in
the limit that E" E=dE, lnD' —lnD =—dl, etc.).

FIG. 2. Various contributions of order V'. Diagrams
{a) and {b) are leading-logarithmic (parquet) terms as in
Fig. 1. Diagrams (c) and (d) are next-leading-loga-
rithmic contributions.

IV. RESULTS AND DISCUSSION

The low-temperature behavior of the commuta-
tive model can be inferred via scaling argu-
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ments2' from the solution to Eqs. (4)—(6) as
D =e~D' decreases toward zero. The first thing to
notice is that Eqs. (5) and (6) imply that

and

8g
dl

(24)

d ln(u "/v') i 2

dl 2 sf (25)

where g =(u") +(u') is the rotationally invariant
coupling constant. Then, using the fact that
d (Eu') Idl =0, we obtain the solution

g =(u*) +(v')

are no longer any off-diagonal terms which can
flip spins.

In actuality we never reach this fixed point be-
cause a key element in our renormalization-group
analysis breaks down as D decreases. This element
is our neglect of E compared with co (or tempera-
ture) in deriving our scaling equations. What even-

tually happens, as illustrated in Fig. 3, is that the
cutoff D becomes comparative to the effective TLS
splitting E as soon as D =kqT*, where P" is given
by

(1./2)N g
Eo(Eo/Do & vo »vp

N 2' Eo[1——,(uo/u~p) [1—(Ep/Do) ' ]j, (29)
=(uo)'+(up)', (26)

(1/2)N g2
u "/u'= (u p Iu p)(D /Do)

E 1+(v "/v')
Eo 1+(uo/vo)

(27)

(28)

D=E
I

I
L

yZ

D/ P0 Q. l

FIG. 3. Plot of the renormalized energy splitting E
vs the cutoff D for three different values of the ratio
Uo/Uo. The value of this ratio is shown above each
curve. The dashed line represents E =D for the case in
which Do/Eo ——100. (In actual cases Do/Eo ——10 and
the dashed line is almost vertical. ) The intersections
(solid dots) determine the crossover temperature To.
These curves were obtained with N,g =0.2. The inset
shows the trajectories followed by U" and U~.

whose main features are illustrated in Fig. 3. The
subscripts (Do, E, etc.) refer to the initial values
of the parameters. Note that if we could follow
the trajectories to arbitrarily small D, the effective
Hamiltonian would approach a fixed-point Hamil-
tonian with U =0, U'=g, and

E/Eo [1+(up lu~~——)']
whose properties are trivial to obtain because there

X 2
Uo ((Uo,

For temperatures less than the crossover tempera-
ture P", the behavior of the metallic-glass system
changes markedly, just as in the case of magnetic
systems at low temperature where the magnetic
moments are quenched by an external magnetic
field. The physics of P" is easy to understand.
For a noninteracting system (g =0), P" is simply
the temperature at which the TLS freezes into its
ground state in the presence of the splitting Eo. It
is only when T& P" that the TLS notices a pre-
ferred direction in spin space. For g +0, the in-

terpretation is still spin freezing, but now the split-
ting is reduced due to Anderson's overlap catas-
trophe. It is clear that Eq. (29) generalizes the
conclusions of Kondo and of Black and Gyorf-
fy, ' which were derived in the special case up

——0.
Aside from this result for P", the main con-

clusion to be drawn from our analysis is that the
rotationally invariant coupling g neither increases
nor decreases as the temperature is lowered toward
P". This result [Eq. (24)] is valid up to order g~

assuming that E «D. ' The implication is that a
weak-coupling commutative model (g «1) scales
to a weak-coupling commutative model, in qualita-
tive agreement with Ref. 14. This behavior is in
clear contrast with the Kondo problem and with
the noncommutative model, "both of which scale
into a strong-coupling regime where the analytic
renormalization-group equations are no longer
valid.

Turning finally to the electronic scattering rate,
our analysis indicates that divergent terms of the
form (uo) (vo) ln

~
Do/T

~

should not be present
despite two published perturbation calculations' '
reporting such terms in the inelastic channel. '

First of all, in the case E «k~ T, we find no loga-
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rithmic terms because g is invariant and the
normalization does not provide any logarithmic
contribution (cf. the Appendix). In the other case,
E »k&T, the inelastic channel cannot contribute,
and thus the elastic rate proportional to u, dom-
inates. In this case the coupling U, can depend on
E via a logarithmic term log(D/E) due to scaling
given by Eq. (5). This term is proportional to
(u") (u') log(D/E), but taking an average over the
constant distribution of TLS energy E & kz T re-
sults in a term like Y(v") (U') log(D/T), which is
monotonically decreasing with decreasing tempera-
ture. We do not believe that the small correction
of this type is observable.

It is important to note that we considered only
electronic scattering terms involving ln

~

Do/T
~

and not, for example, much weaker terms involv-

ing ln
~
Eo/T ~. Terms of the latter form could

arise after the crossover into the region D & kz T*,
where the rotational symmetry is broken and where
the present analysis is no longer valid. It is quite
possible that corrected perturbation calculations
will reveal such enhancements of the inelastic
scattering rate. ' Because of the recent conjec-
tures that TLS-induced inelastic processes may
influence the experimental observation of electronic
localization effects in amorphous metals, this ques-
tion warrants further scrutiny.

In summary, we have derived renormalization-

group equations valid up to order V for the com-
mutative model of tunneling states in metallic
glasses. We find a crossover temperature P",
which agrees with and generalizes previous calcula-
tions on this model. We also find, however, that
published calculations for the electronic scattering
rates are undoubtedly incorrect. Unlike the Kondo
problem and the noncommutative model of metal-
lic glasses, this model does not scale into a strong-
coupling regime and the electrical resistivity is not
enhanced at low temperature. These conclusions
point to the need for more careful perturbative cal-
culations of the scattering rate. The noncomrnuta-
tive model will be discussed elsewhere. ' '
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(A 1)

where X, is the electron self-energy and (N~, ) is
the average number of pseudofermions at tempera-
ture T and at fictitious pseudofermion energy A,.
The limit A, —+ m is taken to avoid doubIe occupa-
tion of pseudofermions. Abrikosov has shown

that in the leading logarithmic order

(Np, ) =(2S+1)e (A2)

where S is the spin of the pseudofermion. Thus in
case of TLS, we have

(N„, ) =2exp( —PA, ) .

If the calculations are carried out beyond the lead-

ing logarithmic order, then special care is required
to show that (N~, ) does not contain logarithmic
corrections. In what follows we shall establish that
such logarithmic corrections are absent in both the
leading and the next-to-leading orders. In a previ-
ous calculation by Fazekas and Zawadowski the
normalization factor was incorrectly determined,
resulting in an incorrect coefficient in the expan-
sion of the magnetic susceptibility, as has been
pointed out by Solyom [a renormalization factor
Z is missing in the expression (53) of Ref. 29]. In
the present calculation the numerator and the

APPENDIX

In the main part of the paper we have referred
to electrical resistivity several times, but no detail
has been given. The validity of calculation of elec-
trical resistivity depends very much on the applica-
bility of Abrikosov's pseudofermion technique.
Therefore, the main part of this appendix deals
with the normalization procedure in this technique.
The normaHzation consideration given below is
valid in both the magnetic impurity and TLS prob-
lem.

For the sake of simplicity, s-wave scattering is
assumed, implying that the electron lifetime r, and
the transport lifetime ~„are the same. The life-
time in the leading and next-to-leading 1ogarithmic
order will be determined, keeping terms propor-
tional to V"log" and V"log", where Vstands
for the coupling. In the pseudofermion technique
the electron lifetime is
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denominator of Eq. (Al) will be studied separately
to establish the absence of'ln

~

DlT
~

corrections in
the electrical resistivity for the commutative
model.

It is important to point out the validity of any
calculation using pseudofermion representation, for
the spin relies on the correctness of the normaliza-
tion. As we can prove the normalization pro-
cedure only in the framework of leading and of
next-to-leading logarithmic approximations the va-

lidity of calculation (e.g. , that be Abrikosov and

Migdal ' for the Kondo effect) beyond these orders
is in doubt.

(i) The study of Im X,. The diagram providing
contributions to ImX, (ksT) (co & ks T) of the form
V"log" and V"log" is shown in Fig. 4. In
general the diagram of order n contains n —1 elec-
tron lines, and the integration with respect to the
corresponding kinetic energy variables may result
iri logarithmic terms. However, taking the ima-

ginary part at the cut indicated in Fig. 4, one of
the electron energy integrals is limited to the re--
gion of Fermi energy. Thus not more than n —2
logarithmic integrals remain. If a cut with three
electron lines is considered, then three energy in-

tegrals are limited and n —4 logarithmic integrals
may occur, yielding a negligible term. The dia-

gram in Fig. 4 contains two vertices and two pseu-
dofermion lines and thus transforms like the
square of the renormalized couplings in the
renormalization-group transformation. In the case

of TLS, performing simple spin algebra shows that
the contribution is proportional to ( V") +( V')

=g, which is an invariant. Thus, ImX, does not
contain any logarithmic correction in the order
considered here. This statement does not hold in
the case of the noncommutative model and of the
Kondo problem, because the strengths of the cou-
plings scale to infinity.

(ii) The study of (,N~, ). The following treat-

ment is valid for general spin S. The spectral
function of pseudospin is introduced as

p~(co) = — Im—S(co+i5)1

/ImX,
f

~ (co~—ReX'~) +(ImX'~)

where 9' stands for the pseudofermion Green's

function and

co~ =co —5~= co —A, ——,a —ReX~(co~ =0),

(A3)

(Np, ) = g f dconp(co)p~(co), (A4)

where nF(co) is the Fermi function.
In addition, the spectral function p~(co) obeys

the sum rule

f p (co)dco=l . (A5)

If the width of the pseudofermion spectral func-

tion at the resonance is small compared with k~ T,
then it is useful to divide the range of integration
with respect to co~ as

D —kBT k T

f dco~''' = f dco~'''+ f k
leo~

D
+ f„dc~o. . (A6)

B

In the first and in the last integral ImX and

ReX/co are functions of co, while in the middle

region they are functions of k&T. [ReX is propor-
tional to co~ as can be seen from Eq. (15) and from

Eqs. (20) and (21), in Ref. 29.] In case

~

co~
~

&&ks T,ReX= —co az holds where az is a
polynomial of the coupling and of logk~T. The
contribution of the middle region to the sum rule

given by Eq. (34) can be calculated easily, and by
making use of

~

ImX
~

& ks T it gives

f kBT
dco~p~(co~)=Z = 1 —az,—kBT - ]+~

where H, tt is the effective magnetic field acting on

the spin a (in case of TLS H,tt is the renormalized

energy splitting). Furthermore, a subtraction

ReX~(co~) =ReX (co~)—ReX (co~=0)

has been applied. The quantity 5~ is the renormal-

ized version of 5~ introduced by Eq. (7). Using the
definition of the spectral function (A3), the aver-

aged occupation number of pseudofermions is

FIG. 4. Electron self-energy diagram with intermedi-

ate state represented by —-—line. There is only one
electron in the intermediate state.

(A7)

where Z is the strength of the pole and has the



J. L. BLACK, K. VLADAR, AND A. ZA%'ADO%SKI

Z =1+ V log. . . +. . . V log . . -2 3

Furthermore, for the other two regions the spec-
tral function (34) can be approximated as

part of the self-energy X can be calculated from
the following expression:

ImX.(~.)=2~+ f dg, dg,
~
1,(g.,o,g,g, ) ~'

P

1 ImX (co )
pa(coa) =

7T Q)

(AS)

X [1—n~(k) In'(ki)

X5(co +5 —5p —(g2 —g))),
where the terms beyond the leading and next-to-
leading approximations are dropped.

For the forthcoming considerations the identity

ImX ( —co )=ImX(co )exp( —@co ) (A9)

(A10)

See Ref. 29 for detailed calculation.
Turning to the averaged occupation number

given by Eq. (A4) we consider

(,Ep, ) = J dco nF(co +5 )p (co ) . (Al 1)

Let us divide the integral into three parts again,
like (A6), and use the approximation

will be used. This is valid for PH, ff « 1 and will

be proved at the end of this appendix. It is obvi-
ous from this identity that the first region does not
contribute to the sum rule in the leading and next-
leading logarithmic order. The last integral pro-
vides typical logarithmic contributions as
ImX -co holds for co yk&T. It is straightfor-
ward to check for both the TLS and the Kondo
problem that this integral combined with (A7) sat-
isfies the sum rule, thus

Jk p~( ~co)d ~co= ax.

(A12)

~here there is one electron and one hole in the in-

termediate state with energies g~ and gz, respective-

ly,' furthermore, there is one pseudoparticle with

co~
——0. In case of magnetic impurities the electron

spin variables must be indicated, as well. The ver-

tex I has two pseudofermion and two electron
legs, and it includes the coupling. In order to
prove identity (A9) let us change the signs of vari-

ables co, g&, and g2 in expression (A12). The iden-

tity holds at

II'(~ 04ik) I'= ll( —~ o —4 k) I'

In order to prove (A9) for ImX, up to terms like
V"+ log", one should use the expression for I in
the leading logarithmic order, where I is real and
depends only on the absolute values of combina-
tions of the variables. Hence the result is proved.

Finally, one can make the following remark. If
H ff is large, then the above proof fails at several
points, but the normalization factor can be
nevertheless generalized:

nF(co A, +5 )-exp[ —P(co A, +5,)] . (E~, )x= g exp( —P5~), (A13)

The middle integral has the value

exp( —f35 )(1—ax). Furthermore, as a conse-
quence of identity (A9) and Eq. (A10), the first in-

tegral gives azexp( —P5~) and the last one is negli-
gible. It is interesting to note that, in case of sum
rule (A5), the low-energy tail (and in case of occu-
pation number the high-energy tail) does not con-
tribute. Thus the nonlogarithmic normalization
factor (31) has been verified in weak external fields
(Heff) and weak-coupling (P ImX « 1 ) regions.

(iii) The proof of identity (38). The imaginary
I

which holds instead of (A2). The proof is similar,
but one should consider the non-spin-flip and
spin-flip parts of ImX separately. Thus one can
write

ImX (co )= g ImX '(co ),
a&

where o;~ is the pseudospin in the intermediate
state considered in Eq. (A12). Then one can derive
the following generalization of identity (A9)

ImX ~( —co~) =e "~I ImX (co~)+exp[ —P(5 —5 )]ImX~ (co~)I, (A15)

in a similar manner as (A12) has been proved. Us-
ing this identity instead of (A9) one can prove Eq.
(A13).

In this limit (EP~ 1) the electrical resistivity is

t

influenced by E as well, because the non-spin-flip
and spin-flip contributions have different thermal
weights, thus the resistivity is not simply propor-
tional to the invariant ( V") +( V')~. The resistivi-
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ty is found to be proportional,

min[exp( —P5a)+exp( —P5 )]
(uz)2+ (uz)2

exp( —P5 )+exp( —P5 a)

= (u') + (u") exp[ —P(5 —5 )], (A16)

where the last approximation is valid if
(5 —5 a)P=EP»1. This result means that the
off-diagonal scattering is frozen in. In this case we

can have logarithmic correction of type log(D/E)

for the following reason. The scaling given by
Eqs. (5) and (6) results in a rotation in the coupling
constant plane U —U', but this rotation does not
leave expression (A16) invariant. The contribution
is of type (u') (u") log(D/E). In order to estimate
the resistivity we must integrate over the variable
E with a uniform weight factor. This may result
in a correction term as T(u') (u") log(D/T) which
is decreasing with decreasing temperature.
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