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The electrical and thermal resistivities (p and W) and Hall coefficient (R&) of pure and

impure Cu are calculated. Realistic Korringa-Kohn-Rostocker energy bands and wave

functions, experimental phonon frequencies, and Born —von Karman eigenvectors, and
the rigid-muffin-tin model for electron-phonon scattering are used to generate the veloci-

ties and scattering probabilities in the Bloch-Boltzmann equation, on a mesh of nearly
24000 points on the Fermi surface. The effect of impurities is approximated by an iso-

tropic impurity scattering rate. Solutions for p, 8', and RH are exhibited at three levels

of accuracy: (1) the lowest-order variational approximation (LOVA) where the Fermi sur-

face displaces rigidly; (2) a fully inelastic calculation where the distribution function is al-

lowed arbitrary variations with energy (normal to Fermi surface) to reflect the inelasticity
of electron-phonon scattering; (3) inelasticity plus somewhat increased angular freedom in

the distribution function. For p and 8' we find that above T=100 K the corrections to
LOVA are negligible and that, except at the lowest temperatures T-20 K, our angular
corrections are negligible. For RH the lowest-order approximation is temperature in-

dependent and the addition of both inelasticity and increased angular freedom are not
negligible at any temperature. Agreement with experiment for all three quantities is good
throughout the range T=10 to 300 K. The use of a phenomenological impurity relaxa-
tion time to study deviations from Matthiessen's rule in the electrical resistivity agrees
qualitatively with experiment.

I. INTRODUCTION

A previous paper' described calculations of the
electrical and thermal resistivities of pure Nb and
Pd. %'e use the same techniques in the present
work to calculate these quantities for pure and im-

pure Cu and to extend the formalism to include
the Hall coefficient. The objective is to make a
realistic calculation of transport coefficients in a
d-band metal without fitting parameters to experi-
ment. This involves (1) the calculation of the elec-
tronic parameters of Cu, i.e., the energy bands and
velocities, (2) the scattering amplitudes for elec-
tron-phonon scattering, and (3) combining these
quantities into the Boltzmann equation which then
needs to be solved.

A Korringa-Kohn-Rostoker band-structure pro-

gram generates wave functions and velocities on
the Fermi surface. To evaluate the scattering pro-
babilities we used phonon-dispersion curves and

polarization vectors obtained from Born —von

Karman fits to experiment. These quantities are

then used in the rigid muffin-tin model of the
electron-phonon interaction. To solve the
Boltzmann equation we use the Fermi-surface har-
monic and energy polynomial formalism developed

by Allen and Pinski. This involves transforming
the Boltzmann equation from an integral equation
into a matrix equation which may then be readily
solved. Overall we find good agreement between

our calculations and experiment. The electrical
and thermal resistivities are lower than experiment
throughout the temperature range of 10 to 300 K,
whereas the Hall coefficient tends to be higher
than experiment for this same range of tempera-
tures.

In Sec. II we describe our calculation of the elec-
trical and thermal resistivities of pure Cu. We
present the results of these calculations at various
levels of approximation and compare our values to
experimental values. Section III adds an isotropic
impurity-relaxation time to our scattering matrices.
%e compare the electrical resistivity calculated
with the new scattering matrix to experiment and
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display the expected behavior of the thermal resis-
tivity as the impurity concentration rises. In Sec.
IV a method of calculating the Hall coefficient is
described using the techniques of Sec. II. The cal-
culation is done for both pure and impure Cu.
Section V describes the relation of our calculations
to previous calculations, and summarizes our con-
clusions.

subscripts gO are explained in Ref. 4; X refers to
the "angular" variation of the distribution function
in lowest order, i.e., proportional to Uk„, and 0
refers to the energy variation in lowest order, i.e.,
independent of energy. For electron-phonon in-

teractions Qxp xp is given by

4+kg T
Qxp, xp ~ ( 2)

II. CONDUCTIVITIES OF PURE COPPER

A. Lowest order 2 Q g Q

2

The lowest-order variational approximation
(LOVA) result for the electrical resistivity is

Qxo, xoP=

where the factor of 2 is for spin degeneracy, and

Qxp xp describes the scattering of electrons. The

(2)

Here Q is a phonon frequency, x is fiQ/2k+ T, X,
is the single-spin density of states per atom at the
Fermi energy, and (U ) is the mean-square Fermi
velocity. The spectral function a„(Q)F(Q) is

given by

a„(Q)F(Q)=E„
2 g u~„5(e~)5(eq )

where vk is the velocity of the electron state ek,
and k is short for (k, n). The factor gk k is the
matrix element for an electron to scatter from state
k to k' by the absorption or emission of a phonon
of branch v. The modified potential for Cu is
described in the Appendix of the preceding paper.
We use a mesh of 492 points in the irreducible

4, th of the Fermi surface. At these points the ve-

locities and wave functions are also found. The
Eliashberg spectral function a F(Q) of supercon-

ductivity theory is closely related. In Fig. 1 we

display a„(Q)F(Q), a (Q)F(Q), and the phonon
density of states F(Q).

In Fig. 2 we display the results of the LOVA
calculation of p together with the experimental
data of White and Woods and the composite data
of Matula. The agreement with experiment is
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FIG. 1. Spectral functions for Cu. For reference,
F(Q) as calculated by Nicklow et al. (Ref. 2) is also in-
c)uded. Note that E(Q) has an arbitrary scale.

T(K)

FIG. 2. Electrical resistivity of Cu. The solid curve
was calculated in lowest order, using Eqs. (1)—(3). &('s

and 0's are the experimental values from Matula (Ref.
8) and White and Woods (Ref. 7), respectively.
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pno(T) =4p'T(T/8) J5(8/T),

where

(4)

J„(8/T)=2" ' I dx zo sinh x

reasonable considering the simplicity of our distri-
bution function. We find that the LOVA result is
20% low at 300 K and about 50% high at 30 K.
Higher-order corrections to LOVA will substantial-

ly lower the low-temperature resistivity but will

leave the high-temperature regime essentially un-

changed.
So that we may compare our calculation of the

resistivity to other calculations we also calculate
the Bloch-Griineisen (BG) resistivity, i.e.,

The parameters used in the BG calculation appear
in Table I, as well as the calculated value for k,
which is similar to A«except that a (Q)F(Q) is
used in place of a«(Q)F(Q). We find A« to be
about 4.5% larger than A,. Pinski et al. ' found
that for Nb A,«was about 4% smaller than A,, and
that for Pd A,„was about 12% larger than A,. It
therefore seems reasonable to assume that X and A,„
will differ by only —10% for any of the transition
metals.

The LOVA formula for the thermal resistivity
ls

38'=—
mkksN, (u )

We choose the parameters p' and O~ so that the BG
and LOVA resistivities agree at high temperatures.
This leads to the identification

p'=2@kg A«I{2e2N, (u2) )

and

o Q sinhx.

2 Q g Q
0 Q sinhx

3x
m2

8=faun/ks ——iii(3(Q )„/2)'/ /ks,
A,„and (Q )„being defined by

&«——2 J a„(Q)F(Q),

On the scale used in Fig. 2, the BG result and the
LOVA result are virtually indistinguishable. The
BG result agrees slightly better with experiment,
being about 30% too high at low temperatures.

Nt (states/Ry spin atom)
(v') ' (cm/s}

~tr
((0') }' ' (THz}
p' (pQ cm/K)
8 (K)
kF/q

1.89
1.08g10'
0.111
0.116
4.757
0.00528

279.6
0.582

TABLE I. Calculated parameters of Cu. The single-

spin density of states at the Fermi level N, and the
root-mean-square Fermi velocity {(vi) l'~' were calculat-
ed from the band structures. A,«and ((0 )„)' were
calculated from the spectral function. The final three
parameters give the Bloch-Gruneisen-Wilson fits of Eqs.
(4) and (9).

A,,„(co')«+A, (co')

3A,«(co')„
' 1/2

Here A, and (co ) are calculated like A,«and
(co2)«except that a (Q)F(Q) is used in place of
a„(Q)F(Q).

In Fig. 3 we display 8 ~ov~ and WBG together
with the experimental values of White and Woods.
We note that at temperatures below 150 K the
LOVA result is closer to the experiment, i.e., only
a factor of 2 above experiment, while the BG re-
sult is as much as a factor of 4 too high. Thus in
both the electrical and thermal resistivity we see
the need to allow more flexibility in the distribu-

The spectral function a (Q)F(Q) is identical to
a„(Q)F(Q) except that (uk„—uk „) has been re-

placed by (uk„+uk „) . Again we compare the
LOVA calculation to the BG result, actually
Wilson's result. The BG expression for the ther-
mal resistivity is

~so(T)= (4p'Il 0)(T/8)'

X I [I+(3/ )'(k /qD)'(8/T)']

XJ5(8/T) —(I/2'')J7(8/T)J, (9)

where 1.0 is the Lorenz number and kz/qD is a
free parameter. In order to specify this parameter
we again require that the high-temperature LOVA
and BG results agree. This leads to the identifica-
tion
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FIG. 3. Thermal resistivity of Cu. The solid curve is
calculated from Eq. (8}. The dashed curve is the BG re-
sult. 0's are the experimental values of White and
Woods {Ref.7).

FIG. 4. Calculated electrical resistivity of Cu. )&'s
and 0's are the experimental points from Refs. 8 and 7.

tion function. We next discuss the effect of allow-

ing energy dependence in the distribution function.

B. Energy dependence

By assuming that parameters like N, (e), the
density of states, do not vary rapidly with energy,
a tractable expression for the electron-phonon
scattering matrix Q may be written out

4+kg T
XII,XII —~ ( 2 )

X g J a (s,X,X)F(Q)0

From the variational principle on the resistivity we
find that for Q truncated to some order N, we have
an upper bound on the resistivity. Thus as we in-
crease the order of Q we forin a decreasing se-
quence of upper bounds on p which we may extra-
polate to the N~ ao limit. We have found that
calculating the first eight terms in the sequence
(i.e., polynomials up to order 14) is sufficient to ex-
trapolate to the N~ 00 limit. This extrapolation is
simple linear extrapolation in I/N. In Fig. 4 we
show the results of this calculation for the resis-
tivity together with the LOVA and BG results plus
the experimental data. Only the region 10—100 K
is displayed, as this is where the differences are
most pronounced. Below 10 K the finite size of
our mesh affects our results and above 200 K the

X . — I„'„(x). (10)
slnhx

This omits angular anisotropy but contains full en-

ergy dependence. Here

a (+XX)F(Q)=a„(Q)F(Q),

a ( —XX)F(Q)=a (Q)F(Q),
cC

0
ct.

l.0

0.8-

and I„'„(x)is zero if n +n' is odd, and a polyno-
mial in x of order n +n' if n +n' is even. The
polynomials I„'„(x)have been exhibited by Pinski
and used by Pinski et al. ' Nate that n =n'=0
reproduces the LOVA scattering term as Ioo ——0
and I+ =1.

With the scattering operator now a matrix, the
resistivity is given by

1p= t [Q 1xo,xo
2e

0.6-

0.4
0 IOO

I I I

20 40 80.
T(K)

FIG. 5. Ratio of the electrical resistivity calculated
with and without energy dependence of the distribution
function.
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before we calculate the first eight terms in the se-

quence and then extrapolate N to 00. In Fig. 6 we

display this extrapolated curve together with the
LOVA and BG curves and the experimental data
of White and Woods. Above 200 K the higher-
order calculation and the LOVA calculation are
identical but at lower temperatures the higher-
order curve is much closer to experiment. In Fig.
7 we plot the ratio of the high-order calculation to
the LOVA result. At 30 K this ratio is less than
0.4. As was the case for electrical resistivity, the
addition of energy dependence to the distribution
function brings about a large change in the thermal
resistivity.

FIG. 6. Calculated thermal resistivity of Cu. 0's are
experimental data taken from Ref. 7. C. Angular dependence

(12)

l .0

differences between LOVA and the inclusion of en-

ergy polynomials is not noticeable. It is clear from
Fig. 4 that the energy dependence of the distribu-
tion function is important if good agreement with

experiment is desired. In Fig. 5 we display the ra-
tio of the resistivity calculated using the energy
polynomials to the LOVA result. Near 30 K the
enhancement of the conductivity is in excess of
80%, clearly not a small effect.

For the thermal resistivity with energy polyno-
mials we need to calculate

W= z [Q ]xixt.—1

Again we appeal to a variational principle which
says that for Q truncated at any order N we have
an upper bound on 8', and that the sequence gen-
erating by taking increasing N is monotonic. As

We may further generalize the scattering matrix

by adding angular dependence to it. Lowest-order
approximation assumes that the distribution func-
tion is a rigidly displaced Fermi distribution, hav-

ing an angular variation proportional to vt, . We
now consider the addition of higher-order polyno-
mials in vk. Symmetry requirements dictate that
the polynomials have the same symmetry as vk,
i.e., I'» or vector symmetry. The spectral function
is written as

a ( Js,J')F(Q)

~ gk, k I[+J(k') sFJ(k )]
2N) kk', v

X [Fs (k) —st (k')]

x 5(+k')5(ek')5(+Q El)

where the Fq's are polynomials orthogonal on the
Fermi surface, referred to as Fermi surface har-
monics (FSH). The scattering matrix is

O.B—

O
0.6-

'2

I„*„(x).
sinhx
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I
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FIG. 7. Ratio of the thermal resistivity calculated
with and without energy dependence of the distribution
function.

(14)

The formula for the calculation of the electrical
and thermal resistivity is the same as in Sec. II B,
i.e., Eqs. (11) and (12). We could now extrapolate
J~00 as we do n. In this calculation only the
first three FSH are used, i.e., ~ uk„, ukuI, and vI,
and it would be unreasonable to extripolate J to
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The reduction of the resistivity in our calcula-
tion using three FSH's is less than 5% above 30 K,
typically only l%%uo. Similarly for the thermal resis-
tivity the results above 30 K are reduced by less
than 3%%uo and typically less than 0.1%. At 30 K
and below the difference between the J,„=3and
the J,„=1 calculations for both the electrical and
thermal resistivity rises rapidly. At 10 K, for ex-
ample, the J,„=1 calculation is about 20%%uo larger
than the J,„=3calculation for both resistivities.
This is reasonable, as the thermally excited pho-
nons present have small q, the scattering is more
sensitive to the local Fermi surface topology, and
thus a larger J,„ is needed.

In the low-temperature region Khan et a/. have
found that the quasiparticle lifetimes converge
slowly in FSH's. They find for the range of tem-
peratures 5 —15 K that the first three FSH's
represent only 80%%uo of the quasiparticle lifetime.
Similar disagreements would be expected for the Q
matrices that we have used in our calculations.
Thus it is not completely safe to conclude that an-

isotropy has a negligible effect above 30 K, even

though our work shows that J,„=3gives a negli-
gible improvement over J,„=1.

III. CONDUCTIVITIES OF IMPURE COPPER

To investigate the effect of scattering by both
phonons and impurities, we add a phenomenologi-
cal impurity relaxation time ~ to the scattering ma-

trix, that is,

QJ,r ' Qz„,z' '+5zro „/N, (v )r. (15)

If Qq„j „ is diagonal (as in LOVA), then the above

equation is equivalent to Matthiessen's rule and the
addition of impurities would be of little interest.
The scattering matrix in Eq. (15) is taken to be a
first approximation for studying deviations from
Matthiesen's rule. We calculate the electrical resis-

tivity as in the preceding section with J,„=3 and

extrapolating N to ~. In Fig. 8 we display the re-

sults of our calculation together with the experi-
mental results' of Dugdale and Basinski'"' and

Lengeler, Schilling, and Wenzl. '" ' For all of our
curves p —pp saturates for large pp or equivalently
for large 1/~. For I/r sufficiently large compared
with phonon scattering rates, the Q matrix is dom-

inated by impurity scattering and thus is diagonal.
Therefore the value of p —pp saturates at p+QvA.
As the temperature increases, the experimental and
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FIG. 8. Deviations from Matthiessen s rule plotted vs impurity resistivity for 6 temperatures. The solid lines are
calculated results, o's are experimental results of Dugdale and Basinski [Ref. 11(a)] and &&

's are experimental values of
Lengeler et al. [Ref. 11(b)].
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theoretical results separate. This is, at least in

part, due to our underestimate of the high-temper-
ature resistivity. Taking this into account shows
that qualitatively we have reproduced the experi-
mental results. The curves in Fig. 8 are only al-
tered slightly by using J,„=1 instead of J,„=3.
The alteration consists of a slight increase of p —po
for small po, and no change at large po. The in-

crease at 30 K is 7% as was found for pure Cu.
In Fig. 9 we display the effect of adding impuri-

ties to the thermal resistivity calculation. We see
that the impurities cause the thermal conductivity
to go to zero as T goes to zero. This is readily ap-
parent from our model, in fact one sees that as T
goes to zero W '-T.

IV. HALL COEFFICIENT

Here pk( —Bf/Be») represents the deviation of the

distribution function from a Fermi function. It is
then useful to pick directions for the electric and

magnetic fields so as to simplify the notation. As
the low-field Hall coefficient for a cubic metal is

independent of the directions of the applied fields,

the choice is not a restriction. Choose E=Ex and
H=Hz. The form of P» is assumed to be

Pk =Q (PJ»XJ»E+PJ»XJ»EH),
Jn

(17)

where XJ»(k, e) =I'J (k)harn(e)/E, (u )' and pin"
is a constant to be determined. The function Fq(k)
is a Fermi surface harmonic of vector symmetry in

the ath direction, e.g., Fi (k) ~ uk„and o'„(e) is an

energy polynomial. Inserting Eq. (17) in Eq. (16)
and equating powers of H we find

A. Formalism
eok

BE'k

x 0g Qkk'XJnOJn
k'
Jn

We have previously reported' the high-temper-
ature, T-SD, Hall coefficient RH in Cu and Nb.
The procedure used there yields no temperature
dependence. We shall now derive a way of incor-
porating temperature dependence into RH by al-
lowing energy and angular dependence in the dis-
tribution function.

We start with the linearized Boltzmann equation

"df—evk E+ H (Vk X Vkpk)
Ac ~ek

=QQ»kgk . (16)
k'

80

QZ'(vk X VkXJ») — $J»
Jn BE'k

=g Qkk XJ.A'. .
k'
Jn

Multiplying both of these equations by Xi „(k,e)
and summing over all k, noting that Qkk has
scalar symmetry, yields

0
e5J,X~»0+ ,QJ», J'n'OJ n' ~'

J'n'

QXJ»(V» X V»XJ n )'& —''fJ'n
k BGk

J'n'

=g QJ» J n PJ n, (21)
J'n'

60

hC

40
0

where we have defined

QJ», J'n' =XXJ»(k)Q»k'XJ'n'(k ) ~apQJ», J'n
kk'

(22)

20
Inversion of these two equations yields

06» =—e I.Q 1J»,xo
(23)

0 0
I

30
I

45
T (K)

I

60 75 90
2

I.Q 3J» Jn™Jn' J"n'"tQ '1J" XO ~»

Jt Jll

FIG. 9. Effect of impurities on the thermal conduc-
tivity. Curves a —d represent residual resistivity ratios
(RRR's) of 38500 (pure), 15612, 9825, and 2500. Here
RRR equals p(300 K)/p(10 K).

n', n"

where MJn J-n- is defined by

(24)
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Mg„J „=gXJz(vk X V kXJ'n ) p
&pr — p a . r)f

k ~~k

=Myse pP„„. , (25)

00

on (ek )o'n (ek ')~e=5nn—co
(26)

thus demands n =n'.

The current in the a direction is given by

J = —2eguk pk
df—

(27)

Thus for the electrical conductivity we have the
form given in Eq. (11),and the Hall conductivity
and Hall coefficient are

2e 3 —1
OH = g [Q exp, J.~u [Q lz n, xp

AC JJ&

(28)

[Q ']xp, z ~u'[Q ']r,xp
RH ———2eficR = —2 Pic

(29)

If we truncate Q to Qxp xp we recover Eq. (2) of
Ref. 12.

No variational principle exists to determine
whether Eq. (29) is an upper or lower bound on

RH. However, we have found that for all tempera-
tures the magnitude of RH in pure Cu monotoni-
cally increases as n,„ increases. We therefore ex-
trapolate our results to n,„~ao as we did for the
resistivities. J,„ is again only 3 and we do not
extrapolate J,„ to 00.

and e p& is the I.evi-Civita symbol. Note that
~Jg J yg

' is diagonal in n and n ', and independent of
n. To see this recall the definition of Xz„and that
vk X Vko„(ek) =0. The orthonormality condition
on the 0 s, i.e.,

= —5.58 X 10 ' m /C. The inclusion of anisotro-

py and/or energy polynomials at 300 K is thus
more important for the Hall-coefficient calculation
than for the resistivities at high temperature. This
is consistent with the absence of a variational prin-
ciple.

In Fig. 10 we display the results of calculating

RII with J,„=1and 3, where in both cases we
have extrapolated n,„~Oo. We also present in
Fig. 10 the experimental results of Love' and Bar-
nard. ' Barnard's experiment is especially interest-
ing as he used a magnetic field of only 85 6 which
is some 200 times smaller than a typical Hall-
experirnent field. This enables him to remain in
the low-field region, co,r « 1, down to lower tem-
peratures. Barnard should in fact satisfy the above
inequality throughout the temperature range for
which we perform the calculation.

Our J „=1result is in good agreement with
both experiments. I.ove's high-temperature results
are in disagreement with the majority of experi-
ments, his value being too low, but his geometry is
consistent with ours, and this should minimize the
effects of his use of a larger field, H-10 kG, than
Barnard. The inclusion of two extra angular poly-
nomials, i.e., increasing J,„ from 1 to 3, moves
the calculated value of RH away from experimental
values. Why this should happen is not clear. We
remarked earlier that the Hall coefficient is not
guaranteed to converge monotonically as J,„ is
increased, and perhaps increasing J,„would actu-
ally decrease the magnitude of RH. In fact, we
found that R~ always increased as n,„ increased,

8.0

7.5
I

I

7.0 l
I

l

6.5
O

B. Hall coefficient of pure copper

For the case with n,„=0and J,„=1 we re-
ported' the value of R~ for Cu as being —5.30
&(10 "m /C. The experimental value for R~ at
room temperature is —5. 17)& 10 "m /C. If we
then include energy polynomials in the calculation
and extrapolate n,„~(x) we find R& ———5.38
X 10 "m /C at T =300 K and including the an-

gular polynomials through cubic terms that RH

6.0

5.5

5.0
60 )20 )80

X
I I

240

FIG. 10. Hall coefficient of pure Cu vs temperature.
The solid line is calculated using energy polynomials,
the dashed line is calculated using energy and angular
polynomials. o 's are the data of Barnard (Ref. 14) and
X's are the data of Love (Ref. 13).
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C. Hall coefficient for impure Cu

Proceeding as with the electrical and thermal
resistivities, we add a phenomenological impurity
scattering lifetime to the Q matrix. The Hall coef-
ficients calculated with this new g matrix are
displayed in Fig. 11.

Dugdale and Firth' found that, in CuAu alloys,
the peak in the Hall coefficient is moved to higher
temperatures and reduced in magnitude as more
Au is added. Unfortunately, the bulk of their data

8.0

7.0-
C3

E

O

Z

6.0-

5.0 I

30 60
I

90
T(K)

I

I 20 I 50 ISO

FIG. 11. Effect of impurities on the Hall coefficient
of Cu. Curves a f represent RRR's of—38 500 (pure),
270, 135, 28, 15, and 4. J,„=3was used to calculate
these curves.

except for occasional decreases in impure Cu; these
fluctuations were small and did not affect the con-
vergence in energy of our results. Another point is
that the Hall coefficient depends on derivatives of
the velocities for J,„=1 and on derivatives of
velocity polynomials for J greater than one.
Inaccuracies in the energy bands may then be more
noticeable in a Hall-coefficient calculation. Still
the agreement with experiment is good, qualitative-

ly if not quantitatively.
An important point to note is the decrease in the

magnitude of the Hall coefficient, which is seen
experimentally at low temperatures and in low
magnetic fields, is reproduced in our calculation
even when J =1. Recall that J,„=1corre-
sponds to Pk being proportional to ui, . The energy
dependence alone of the distribution function will

reproduce this feature of the experimental Hall
coefficients. This was first pointed out by
Engquist and Grimvall, ' who did a model calcula-
tion of the Hall coefficient in alkali metals.

is not in the low-field region and thus not directly
comparable with our calculations. We do see that
the trends agree.

V. RELATION TO PREVIOUS
CALCULATIONS AND SUMMARY

Among the first realistic calculations of trans-

port coefficients in metals were those of Hasegawa
and Kasuya' for Cu. Using band theory to con-
struct a Fermi surface, Bardeen's model for the
electron-phonon interaction, experimental phonons,
and assuming only angular dependence in the dis-

tribution function, they calculated the electrical
resistivity, thermopower, and Hall coefficient.
After adjusting the constants in Bardeen's formula
to fit the measured electrical resistivity, their other
calculations agreed well with experiment. Their
Hall coefficient is higher than experiment by
-20% and they do not reproduce the decrease
seen in experiments below -40 K. This decrease
was explained by Schmidt and Mann' on the basis
of angular anisotropy.

Yamashita and Asano' used a model for the
electron-phonon interaction similar to ours to cal-
culate the elex:trical resistivity and thermopower of
Cu. The difference between our calculation and
theirs arises from a different choice of the family
of phase shifts which fit the Fermi surface, as ex-

plained in the preceding paper. At T =300 K,
our value of p agrees with Ref. 19 to five percent.

Recently several other groups have realized the

importance of the energy dependence in the distri-
bution function. Kusio found for K that energy
dependence of the distribution function was more
important than angular anisotropy for thermal
resistivity. Early work of Sondheimer ' and Kle-
inens had shown the importance of energy depen-

dence for thermal resistivity, but at that time it
was not expected to influence electrical resistivity
much. Recently Leavens found for K that the
electrical resistivity is more influenced by energy
variations than by angular ones. Engquist and
Grimvall then used a model energy-dependent
scattering lifetime to account for deviations from
Matthiessen's rule (DMR), Hall coefficients, and
Righi-Leduc coefficients' in the alkali metals.
Zhernov used both energy and angular variations
in a calculation of the Hall coefficient of Na. He
found that at high temperatures energy dependence
dominattxi, but for T (30 K angular variations
dominated. Also in his calculations, contrary to
ours, he finds that the effects of energy and angu-
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lar variations tend to balance whereas we find that
they are additive.

In summary we find that energy dependence
alone can explain qualitatively and often quantita-
tively the transport coefficients in Cu. Our ap-
proximate treatment of angular dependence may
omit as much as half of the angular effect. For
T) 100 K this is a small correction, but increased
angular freedom might lower the electrical and
thermal resistivities by a further 20~o at T-20 K.
Bergman et a/. have calculated DMR in Cu at
temperatures below 10 K. They find that angular

freedom is more important than energy depen-

dence. At those temperatures we agree but for
higher temperatures it appears that energy depen-

dence alone is sufficient.
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