
PHYSICAL REVIEW B VOLUME 26, NUMBER 1 1 JULY 1982

Critical behavior of m-component magnets with correlated impurities

Daniel Boyanovsky and John L. Cardy
Department of Physics, University of California, Santa Barbara, California 93I06

(Received 16 February 1982)

We study the critical behavior of an I-component classical spin system with quenched
impurities correlated along an ed-dimensional "line" and randomly distributed in d —ed
dimensions (d =4—e). The presence of this line of impurities makes the system anisotro-
pic and the interactions highly nonlocal. The renormalization group (RG) is used to ap-
proach the critical region and the quantities of interest are calculated in a double e, eq ex-

pansion. A two-loop calculation is needed to expose fully the divergent structure, and the
theory is proved to be renormalizable up to this order. A consequence of the double e, e~
expansion is the fact that the RG functions and consequently the critical exponents de-

pend on the ratio ed/(a+ed). The solution of the RG equations leads to the existence of
two correlation lengths: parallel to the "line" and perpendicular to it, with critical ex-

ponents v~~ and v&, respectively, with the relation v~~=zv&. The exponent z results from
the presence of anisotropy in the system. New scaling laws are found for the critical ex-

ponents: y= v&(2 —g) and a=2 —(d —ed ) v& —eqv~~. We establish a relation between our
model and a quantum model in one less dimension with random pointlike impurities. For
this system we predict a quantum-to-classical crossover at finite temperature with cross-
over exponent v~~ .—1

I. INTRODUCTION

The effect of randomly distributed pointlike im-

purities on the critical behavior of magnets has
been studied by several authors. ' Lubensky has
considered a model with random pointlike impuri-

ties, and using renormalization-group (RG) tech-
niques he found fixed points in an e expansion
(@=4—d, d is the dimensionality of the system)
and calculated the critical exponents. More recent-

ly Dorogovstev has studied the case of line defects
using the RG approach and e expansion. He pro-
poses a model in which the impurities are correlat-
ed in ed dimensions and distributed at random in
d —e~ dimensions.

In his work an expansion in terms of' both e and

ed is suggested and the RG functions are calculat-
ed to order e,ed. The case @=2, eq ——1 corre-
sponds to the model studied by McCoy and Wu.

However, in this paper we point out that the full
structure of the theory has not been taken into ac-
count properly. Actually the system is no longer
isotropic, and as will be shown in the next section,
the interactions are highly nonlocal. As a result,
new divergent quantities appear and the infrared
behavior of the theory is drastically changed. The
idea of two different correlation lengths naturally
arises since we expect the system to behave dif-

ferently along directions "parallel" to the impurity
"line" and in the "perpendicular" directions.

We will use the RG and the e expansion to
study the critical region. Even though we will be
ultimately interested in the case where e& is an in-

teger, it will be argued in the following sections
that an expansion in terms of e and ed must be
used. The anisotropy is taken into account by de-
fining a parameter ao that differentiates between
the parallel and perpendicular directions. We show
that this parameter is indeed nontrivially renormal-
ized already in lowest order in perturbation theory,
and that in order to expose the full structure of the
RG a calculation up to second order must be per-
formed.

A novel feature of the calculation is that the RG
functions and critical exponents depend on the ra-
tio eel(@+ed). The solution to the RG equations
brings a new set of scaling laws between exponents
and we learn that y=vq(2 —rl) and a =2
—(d —Ed )vj

&dan~ ~,
wher—e y'and a are the usual

susceptibility and specific-heat exponents and v~~

and vz are the critical exponents for the parallel
and perpendicular correlation lengths, respectively.

The paper is organized as follows. In Sec. II we
define the model and extract some exact results
about the relevance of randomness in the system.
In Sec. III the technical details of the renormaliza-
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tion program are discussed and the calculation of
the different functions through second order is per-
formed. Section IV is devoted to the solution of
the RG equations obeyed by the two-point vertex
function and the specific-heat vertex in the scaling
regime and the scaling laws are extracted. In Sec.
V we discuss the connection of our model with a

quantum spin system at finite temperature with
point impurities distributed at random. We learn
that our model is equivalent to a quantum impuri-
ty system for ed ——1, and the crossover from
quantum-to-classical behavior is discussed. An ap-
pendix is devoted to some technical details in the
calculation of Feynman integrals.

II. THE MODEL

We start with a model described by a Hamiltonian of the Landau-Ginzburg type for a magnet with 0 (ni)
symmetry:

r

m m m

~y, 5r] =f1 x —,g [Vy;(x)] +g [r +5r(x)]y;(x)+ g—tp;(x)
i=1 i=1 i=1

2

(2.1)

where 5r(x) is the impurity field and r is the mass of the field q&(x}.
The partition function of the system for a given (quenched) configuration of impurities is

Z[5r]=f&p(x)e

and the free energy is

P [5r]=—lnZ[5r] .

The quenched free energy is given by the average over the probability' distribution P [5r]:

a =«W[5r])) .

(2.2)

(2.3)

(2.4)

(We denote «2 )) =Tr(s„i„i)IP[5r(x)]A I.) Using the identity lnZ =lim„~(Z —1)ln the free energy is
given by

P =—lim
«Z ))

(2.5)

Write Z" as the product of n replicas of the same model. Then

«Z" )) =f&pi(x). ..&q&„(x}Tr(s„i„i)P[5r (x)]
r r

n m m m

&(exp — fd x $ —,
' $ [Vtp~;(x)] + g[r+5r(x)]qr~;(x) + —" $qr~;(x)

a=1 i =1 i=1 i=1

2

(2.6)

Now we define the impurity-probability distribution to yield

«5r(x))) =0, (2.7a)

and

«5r(x)5r(x'))) =65 "(x—x')

(with b, )0). We expand (2.6) in cumulants:

(2.7b)
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i

n m

exp — d x 5 xy~;x =exp —, d xd x 5rx5r x
a=].i =1

Xgg q';(x)q jIj(x')+
ai pj

(2.8)

where the ellipsis represents higher-order cumulants of the form: qP~;(x')yjIj(x')hark(x") . . These
operators may be dropped because they are irrelevant by power counting, near four dimensions. "

The partition function reads:

Z= f&g) (x)exp —,fd x g +rgb&;(x)+ —,g g[y;(x)]
[Vy;(x)]', Ij

a,i ai a i

'2

——fddx fd"x'5 " (x —x')gq&' (x)gtpp (x')
2 ai pj

(2.9)

In this expression a,P= 1,2, . . . , n are the replica
ls and I,j =1,2, . . . , III ale 0(111) symmetry 111-

dices. Expression (2.9) clearly indicates that the

system is anisotropic in space: The impurities are
correlated along e~ dimensions, whereas in the
d —Gg remaining directions the impurity-
correlation function (2.7b) is zero for impurities at
different points.

Since we will use the renormalization-group "
approach to understand the critical behavior, this
leads us to the search for fixed points in the

parameter space. We will calculate the functions
of interest in perturbation theory, so that in order
to have consistent and meaningful results we have

to compute the contributions from perturbation

theory in an e(d =4—e) expansion. However, our

system is characterized by two dimensionalities,

namely e and e~, and the Feynman diagrams of
the perturbative expansion will involve, in general,
both dimensionalities.

In the next section it will be shown that the
framework of a double expansion in terms of e and

ed is needed. The perturbation expansion is de-

fined in terms of the coupling constants u and b,

represented by the vertices in Fig. 1.
Hereafter we set the (renormalized) mass rjt to

zero and work with a massless theory. Since the
theory is anisotropic, there is the need to distin-
guish between the parallel and the perpendicular
components of the momenta. %e then generalize
the (bare) propagator to be

[Kl]2
l&]=

[jr ]
(211.8)

where [ ] stands for units in terms of momentum

a.
I

a&
a; a)

a[

(a)
FIG. 1. Interaction vertices:

(a)= ——~ijk(~ '(gP) @'(gj3~')
4I

1

~ijkl 3 + ~ ~ij ~kl +~ik ~j l +~il ~jk ~

Tijkl~ (jj1+jj2)5 (P3+j34)(3 (~i ) I

Tjikl =~ij ~ki ~

where it will emerge that the anisotropy constant

ao is renormalized.
In order to define dimensionless couplings let us

analyze the canonical dimensionalities" of the
various operators and couplings. Throughout this
analysis we will regard the components of the mo-
menta to have different units along e~ directions
than those along d —e~ dimensions.

The propagator (2.10) suggests

(p yp )
&oP +P

(2.10) The superscripts
~ ~

and j. mean along sd directions
and along d —e~ directions, respectively.
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(inverse length). Since the argument of the ex-

ponential in (9) must be dimensionless, we then
find

(2.11b)

FIG. 2. Graph with an internal free-replica index a.

[~]=l~l

This analysis leads us to define

(2.11c)

(2.11d)

&&~))=~,„„+afd"rfd'r5' "(r r)—
x «'(.}&'(.) &,„,.+

(2.13)

g=ua ' a ', 5=ha (2.12)

where g and 5 are dimensionless and e=e+eg.
After the perturbative series is summed we are in-

structed to let the number of replicas go to zero
[Eq. (2.5}]. However, each Feynman diagram is
analytic in terms of n, so we can take the limit
n ~0 order by order in perturbation theory. As a
result, those diagrams with an internal loop carry-
ing a free-replica index will vanish in this limit. A
loop carrying a free-replica index is connected to
the rest of the diagram only by dashed lines (Fig.
2}.

Before we begin the task of renormalizing the
theory, some exact results can be inferred. If the
term 5r (x)qP(x) in (2.6) is regarded as a perturba-
tion, the free energy can be expanded around the
"pure" term, and averaging over the quenched pro-
bability distribution we get

where ( )~„„stands for the average in the pure
theory, and we have used (2.7a) and (2.7b).

The term fd r(y (r)y (r') )~, is proportional

to the specific heat of the pure system and (2.13)
can be written as

+O(h'), (2.14}

where g is the correlation length in the pure sys-

tem, and t is the reduced temperature. This rela-
tion can be cast as

«P »=P „„+const)&b, t
+ +O(b, 2) .

(2.15)

For a+e~v& 0 randomness is relevant. We identi-

fy P=a+edv as the crossover exponent. This is
the generalization of the Harris criterion. '

TABLE I. Contributions to BI' '/ijpII and 3I' '/Bp from graphs in Fig. 3.
P (p) =ln(ap II/~)

Graph
a

gp II2

a

gp
l2

(2)

—4—1————P(p)
ao e

—16 ~ [1——e—eP(p)]

(3)

(4)

—24 1 ———eP(p)
2

1——— P(p)m+2 2 2
R

3 .(.+-.)
m+2 aR[1 ep(p)]—

18 ge

——[I—~P(p)l
2

P(p)m+2 2

2(a+e)
m+2 1 —eP(p)

18 ge
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i R 2gR R 3gR
2 2

ao aR(1+a25R+a2~R2

+a3gR4+a4gR+ (3.2b)

(5)

FIG. 3. Diagrams contributing to I' '. The expres-

sions for the derivatives with respect to p II and p
' are

given in Table I.

(4)

III. RENORMALIZ ATION

In this section we develop the renormalization
program in terms of the (1PI) two- and four-point
vertices I' ' and I'„',I ~', respectively. "The sub-

scripts u and 6 in the I' ' differentiate between

the tensorial and momentum-conservation structure
associated with each of these vertices. Dimension-

al analysis '" shows that these are the only
relevant (in the renormalization group sense) quan-

tities near four dimensions. The integrals related

to the Feynman diagrams have singularities as

e, ed ~0 and we will compute them using the di-

mensional regularization scheme. "' ' We have

carried the renormalization program through two

loops. A calculation to at least this level is neces-

sary to reveal the full structure of the renormaliza-

tion group. The loop integrals can be expanded in

a Laurent series in terms of e, ed . In general the

regular (as e,ed ~0) part of the integrals depend

upon the external momenta in a very complicated

way. However, if we use the minimal subtrac-
tion"' method only the poles in terms of e,e~ are

needed. We do not use the subtraction point"
scheme because the integrals are too difficult to
evaluate. However, both methods differ only by a
finite renormalization. The graphs contributing to
I' ' (p Il,p ) are shown in Fig. 3 (see also Table I).
There are two types of divergences associated with

these graphs, given by

i(p I I,p ) i)ri2i(p I I,p )

gp II2
and

gp
l2

Jl i
I(p, ,pz ) =O'F

K K
(3.4)

where D is the canonical dimension of the integral
(from power counting).

Another feature is the following: The loops as-
sociated with a vertex u have an integral over a
parallel momentum, and this component is always
multiplied by a. So if we define

ai~2qll —gll d dq II ad~ d dgll— (3.5)

this picks out a term a '" which is absorbed in

the definition of the dimensionless coupling [Eq.
(2.12)]. As an example, use Eqs. (3.4) and (3.5) to
compute the u one-loop contribution to I „' '. The
Feynman integral is

J(akll, k )

dllqd q
(aqll +q )[a(qll —kll) +(q —k ) ]

Following the minimal subtraction procedure, we
will demand that the coefficients z„cancel the
poles in e, ed of BrR'/Bp, and that the coeffi-
cients a„cancel the poles of arR"'rap II . This is
equivalent to the conditions:

ar"'
=1+ ' ' as cd6'~0, (3.3a)

gp
l2

gp(2)
a" 1+ ) as e,&d~0), (3.3b)

gp II2

where the ellipsis stand for regular terms.
Since we want to express the renormalization

functions as a power series in the dimensionless

couplings, we must extract a dimensionful factor
from the Feynman integrals. This is achieved by
rescaling all the momenta in the integral by a cer-
tain (arbitrary) scale factor a. After this process, a
typical integral, which depends upon a set of mo-

menta, is written as

We recognize the first as the corrections to ao, and
the second as the wave-function renormalization.

We then define

rR (p p aR gR ~R)(2) II

If we define

Qll Q k —(a ~ kll k )
K K

(3.6)

Now we write:

=Z~I' '(pll, p, ao g 5) (3 1) dl qdlq=ir da d dllQK ddiQ

d~g
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(2) (3) (4)
XXX

(3) (4)

(5) (6) (7) (8)

(6) (7) (8)

(9) (12)

(9) (10) (12)

(13) (14) (15) (16)

(17) (18)
p h

(19) (20)

(13) (14) (16)

FIG. 5. Diagrams contributing to I'„'. The result
for the integrals is given in Table III.

(21) (22) (23) (24)

FIG. 4. Diagrams contributing to I q'. The corre-
sponding expressions are given in Table II.

4 and 5 the contributions to one and two loops for
I'a' and I'„', respectively, are given (see also
Tables II and III). Define e =e+eq,' up to one
loop we find

4 4
Z~ = 1 a) = — ap=ag 1 — 5g (3.10)

then

ddJ(ak, k )=« 'a I
Q (Q —k/«)

(3.7)

where in the one-loop graphs for I' ' we set

5=5+, g =gz. To this order,

I „'
'= —ga «'(1+b~g+b25),

where the variable Q is dimensionless. The proof
of this factorization to all orders can be given
again in terms of a skeleton expansion. As a re-

sult, order by order in perturbation theory, the
renormalization-group functions will depend on the
renormalized dimensionless couplings but not on a.

The renormalizability' of the theory then irn-

plies

I' (p;,p, ,a,5,g„,«)

=Z I'( )(pll p. ao 5 g) (3.8)

I a '=125«'(1+a &5+aug),

(3.11)

where in the one-loop diagrams ao™az.The re-
placement of ao by aR in (3.11) will not contribute
to one-loop (order e,e), so we set ao ——aR and re-

place (3.9) in (3.11) to find:

16 m+2 1
1 ~ 2 3

(3.12)

where we relate the bare and renormalized cou-
plings through a power series:

m+8 1F =
1 F =—

6 e
24

5=5R(1+Di5R+D2gR+D3 R

+D~gR+Ds5RgR+

g gR(1+~lgR ++25R +~3gR

++45R ++55RgR +

(3 9)

Again, the coefficients D;,F; will be defined so as
to cancel the divergences in the I ~ ', I „' '. In Figs.

In order to study deviations from the critical
massless theory we need to study correlatio~ func-
tions I' ', with an arbitrary number of insertions
of the operator —,tp (x)." This introduces a new

renormalization constant Z 2 defined by

Z, =Z Z, I Rr. Z&z&I2I (RL) (3 13)2 ~2 q)v R ~2

where



DANIEL BOYANOVSKY AND JOHN L. CARDY 26

TABLE II. Contributions to I q' from graphs in Fig. 4. Geometrical factors have been
absorbed in the couplings.

(1) =96I7
'2

(2) =96I3
'2

(3) = —12 Ii
3

(4)
12 m +2
3 3

(7) = —48 I3I]
3

(10 =—192 I5
3

(13) =—192 Iio
m+2

3

(16) = 192I3

(19) = 1536I8

(22) =384I]3

where

12 m+2
4 3

{8) = —48 I3I)
3

(11) =—96 I6
3

(14) =384I,'

(17) =768I8
(20) =768I]i

{23)=384I]3

(6) = —16(m+2)I2

(9) =12 I4
3

(12) = —96 I5
3

(15) =384I3

(18) =384I]&

(21) =768I]i

(24)=2 I
3

1 E E 2I]———1 ————L, I
E(E+E)

E+E E+EL
2 2

1 E
I3———1 ————L2, I4 —— 1 ———EL

2 2 2e 2

1 E+E
I5 —— 1 ——— L, I6=

E(E+E) 2 2 E(E+E)

E+E—
1 ——— L2

2 2

=1I7 ———
E

1 ————Li
2 2

1
I8 ——~ 1 ———EL )

2E 2

Iio= 1 E E+E — 1
1 ——— L], I])——~ 1 ———EL2

E(E+E) 2 2 2E 2

1 d'qi{a~p]')' ~'+p& ~p2
«~+e) «a~p I"+(tt')'[a~pi" +(et —~)']

where
1

L =L(p)l p; ) = dx ln[(1 —x)x(apll~+pi2)],

L~ =Li(p, ,p; )=I dx in[apl x+app(1 —x)+(pt+pz) x(1—x)],

Lz ——L2(pllp. ) dxln[apll +(pt +p2 )x(1 x)]
0

Z 2 ——1+ZggR+Z25R+Z3gR

+Z4~R + 55RgR (3.14)

To first order there is no need for a or coupling
constant renormalization, and we find

The coefficients Z„will be defined so as to cancel
the poles in I R". This is equivalent to

1m+21 4Z ——
1

Z—
2 3 E' 2 (3.16)

Z 2I' ' '=1+ . as ee~O,(2 1) (3.15)

where the ellipsis again represents regular terms.

To carry the program up to two loops, the ao in
the one-loop integrals must be expressed in terms
of az. For the two-point function we replace
(3.10) in the one-loop integral:
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TABLE III. Contributions to I'„' from graphs in Fig. 5.

(1)
m +8 I,

6
(4) =—96I1

(7) =4 I)Ip
3

5m +22 I
9

(13) = —192I8

(16) =96Ii3

(2) = —24I7

(S) = —48I7

(8) =2 +'I,
3

(11) =16 I5
3

(14) = —348I8

(3)
6m+m'+20I2

36
(6) =—96I8

(9) 8
m +8

3

(12) =24 Iio
3

8
m+8 I(v=7/2)

6

d' d'
4 a„pll'4

II2+q~2 a p II2+q~2

(~ p((2+ j.2)2 (3.17)

In all two-loop graphs we can set uo ——az, 5=5+

and g =ga, but in the first-order contribution we

must use (3.9) and the correction given by (3.17)
must be taken into account along with the second-
order contributions.

Ig the I' ' we have to renormalize ao in the two

typical integrals:

dllq&d qI, (ao,p)=
(~~ '+a i')(~o(q —p )'+(ei —p')'l

d
I2(r 0 p)

( op '+e")trop(" +(e —p')'1
(3.18)

With the use of (24),

I&(ao,p) +I, (aa,p)+—8 I(v=0), (3.19)

where the function I(v) is given in the Appendix. We have

d q)
I2(ao,p)~I2(a~, p)+4 a~p

R
I I2

I2 l2 2 I2 l yp +P1 P2
II

+ei ) l&zp +(ei —p') 1

(3.20)

Using (3.2a), (3.3a), (3.9), and (3.12) and the result for two-loop integrals (Table I), we find:

Z]—

a2=

2 m+2 1 m+2
3

'
p 144

40 10 m+2
3

a4 ——0.a3=—
E e(E+E)'

(3.21)

The contribution of order gz is canceled by wave-function renormalization because for this graph
8/(Bp~~ )=8/(Bp ).

Two comments should be made at this point. (1) The Feynman integrals have poles with momentum-

dependent residues (the higher-order pole is momentum independent). ' For the renormalization program to
make sense these terms must cancel among the various contributions for the coefficients in the
renormalization-group functions to be momentum independent. (2) The renormalization of ao in one-loop

graphs (3.19) and (3.20) leads to the dependence of these graphs upon a~ instead of ao. The analysis of Eqs.

(3.6) and (3.7) implies a factor az in front of each coupling u, so that in terms of the dimensionless cou-

plings,



162 DANIEL BOYANOVSKY AND JOHN L. CARDY 26

'
e&/2

ap
g+a35 +I ~' ——125K' 1+ai5+a2

Ag

' ed/2
(4) apr„=—gap K 1+b, g+b25+b3

a0
g + ~ ~ ~

(3.22)

However, the ratio ao/a~ only depends on 5+ and ga. Then using (3.8)—(3.10), (3.12), and (3.21),

2563= 2

84
D m+2 m+4 —5

4P 24'

D = m+2 64 32 24

ee e(e+e) &(&+&)
r

2
m+2 5 7 6e 6e 2

2
+2 d

2
m+2

e e(@+e) E(e+Z) (&+&) 3 e~ 3 e(e+~)
r

1 m+8 1 3m+14
F3 ———

6 e 24 (3.23)

E'd

F4 ——
2

——64 +164
E' 6

1 56m+304 20 m+8
&(&+e)

1 32m +112
e(@+e)

1——(Sm + 16)——(m +8)+3 e 68+10m
E e(@+e)

+ e 16m+56 2 m+2 2 m+8+ +:e'(e+e) 3 E+e 3 e 6 E

The procedure followed for F' ' and I' ' is applied to 1' "and we find

Z m+2 m+5
6 6e

1 Z 40
4 y 4— 12

m+2 18 12 4

Z(e+Z) e(e+Z)
r

m +2 5 1 4e 2e+ —+—— — +
Z & e(E+E) e(E+E) Ee F(E+E)

(3.24)

The fact that the factors conspire so as to cancel the momentum-dependent singularities is a check of the re-
normalizability of the theory and the calculation itself.

Anticipating the next section, we will calculate the various renormalization-group functions

ag, en„al~, Bcxg
Ps ——K, Ps=K 1~=K r g~ =K

BK BK BK BK

BlnZ ~

p= —K
BK

pz —pz+gq ~

B

(3.25)
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where the subscript B means that the bare quantities are held fixed. In order to calculate these derivatives,
we have to invert the relations (3.2a), (3.2b), and (3.9) and write all renormalized quantities in terms of the
bare ones (u, b,ao) using (2.12), take derivatives, and write the result back in terms of renormalized (dimen-
sionless} constants. We find

Ps= —5R —165R+ 5RgR —1685R+25RgR
m+2 m+2

3 3
10—

E'd 5 m+25
(3.26a)

m+8 3 3m+14 q 2 m —4 &d

P &gR + gR gR5R gR6 12
+gR 5R —(10m +56) +

3 3
I

2—5g gg 328+ 128

2 m+2 m+2
1' =45R —2 5RgR+

3 72

g =aR( —45R 205—R), (3.26b)

m+2 1 m+2 p p m+2 d
y 2 ——gR —45R ——

gR —245R+ 5RgR 6—
6 2 6 3

~s(5R,gR) =0, ns(5R, gR) =0 (3.27)

Since we want to search for fixed pints in an e,eq

expansion we define

5R 51+52+» gR gl +g2 (3.28}

Throughout the analysis we have absorbed a factor
2m ~2/(2m ) I (d/2) into the definition of u and
2a 1(d/2) for h. The novel feature in these ex-

pressions is the appearance of the ratio eq/e as a
consequence of the double e,e expansion. ' [For
systems with one typical dimensionality (e~ =0), it
can be shown that in the minimal subtraction
scheme the renormalization-group functions do not
depend on e.]

Scale invariance of the correlation functions will

be obtained at the fixed points of the functions Ps
and Ps, so we must look for

(4} Random:

(4—m)e+(m +8)eg
5R=

32 (m —1)

3 @+3rd
2 (m —1)

To calculate the eigenvalues, we diagonalize the
matrix of the derivatives of Ps, Ps with respect to
5R and gR and evaluate at the fixed points.

(1) Gaussian:

—e for gR, s for 5R . —

(2) Pure:

e for gR

(4—m)e for 5R ~

m+8

where 5i and g, are of order e»eq» whereas 52 and

g2 are of order e,e~, re~ and we require Eq. (3.27)
to hold for each power of e,ez independently (e
and e~ are regarded to be of the same order). To
order e, e~ we find four fixed points.

(1) Gaussian:

(3) Unphysical:

—e for gR, e for 5„.
(4} Random: two complex eigenvalues,

1
[A+(A B)' ]—

8(m —1)

where"

(3.30)

(2) Pure.

6e
m+8

A =[(3e+ez)m+8@&]»

B= 16(m —1)(@+3')[(m+8)eg+(4 —m)e] .

(3) Unphysical:

~R ~ gR16

(3.29)
For m &m, =4(@+2'~)/(e eq) wher—e e&e~, the
random fixed point (FP) is in the physical region,
and randomness is relevant at the pure fixed point,
for m & m, (e & e~) the random FP goes into the



DANIEL BOYANOVSKY AND JOHN L. CARDY 26

+@~(—,m +8)] .

The system of equations (3.27) with (3.26a) is de-
generate to order 5z,git for m =1 but the degen-
eracy can be removed if the next order is taken
into account. For m =1 we define 5z 5~

+5q+ and gz-gi+gi+ where 5i,g&

are of order e' and 52 gz are of order E,Ed. We'
find"

3(@+3'�)
gr ——165), 5*

328+ 576ed /e

to this order:

1/2

(3.31)

k'= —45i =— 12(e+3m~ )

82+ 144ed / e

52(e+3e~)

328+ 576ed /e

unphysical region and the pure FP is stable, so for
6'p E'd there is a change in stability at m, . For
d) E'the only stable fixed point is the random and

is always physical. The calculation of the fixed
point to order e,Bed, Ed is very tedious and prob-
ably uninteresting. To order e,ed we find at the
random fixed point:

Blno.zg'=x =—45I
K FP

1 (4—m)e+(m+8)ed
8 m —1

correlation functions are independent of this scale
is written as

gp(N)
( {p I ao go»0 )=0 ~

BK

Then by Eq. (4.8)

a a a a'a. 'p ag„'p'a5„"-a, —2"

(4.1)

=x'r,"' {p,p' I,g, ,4 (4.4)

Then we can use (4.2) to write

a a a a
"a~ p

ag, p'a5, '-a, """
X I'"({Ap", Ap'J . ) =0 . (4.5)

X rit"'({p, l,g„,5+,az, z) =0 . (4.2)

The solution of this equation tells us the behavior
of the correlation functions under a change of
scale. We will solve (4.2) for N =2. Dimensional
analysis implies "

p ) g~,4,a~&)(2)

1/2
'
gz 4 (4 3)

where g' ' is a dimensionless function, and we used
the fact that a~ always appears multiplying p ~~,

and this is the only way g' ' depends on a~. If we
rescale the momenta, Eq. (4.3) allows us to write

I R'({~p,~p'I, g~ 5g ag lr)
r

12(E+3m~ )
y2=

82+ 144ed / e
The solution to this equation is as follows': Define
the "running" couplings by (A=ink, )

IV. RENORMALIZATION-GROUP
EQUATIONS

= —Ps(g(A), 5(A)),

= —Ps(g(A), 5(A) ), (4.6)

The invariance of the theory under the RG
means that any change in the (arbitrary) momen-
tum scale should be compensated by a change in
the parameters of the theory, so as to keep the bare
quantities fixed. The statement that the bare

=—g (a(A),g(A), 5(A))

5(0)=5~, g(0) =gii, a(0) =ait .

The solution to (4.5) is

(4.7)
0

I ii'({Ap, kp f,g, 5,a,a)=exp J (2 y+)dt' I ii ({p~~,p—t,g( t),5( t),a( t),a) . —— —
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In the infrared limit A,~o (A~ —oo ) the running constants g( —A), and 5( —A) "fiow" towards the fixed

point gi'(, 5+. Near to this fixed point we write

g( A—)=ga, 5( —A)=5x, r;r—',=r,(g', 5'),
and (4.8)

(~=a( —A)g~, g" =»
B»

where we used

(}aii
=ai(+(gi( 4 } .

K

Then in the infrared limit,

II

r„"'([p,p j,g, 5,a,») —Cl(, ri(', &,g', 5',ax& ' »
~ I

Setting p =bc and by (4.3)

(4.9)

(4.10}

2—f 4
r(2)( () )) P»2y(2)

K

1/2

i —$e/2. .px
(4.11}

we recognize 21 =2—r~. Away from the critical temperature (massless theory) the RG equation obeyed by
p(2) i$1 1

+pg +ps +g~ +r 2t r—~ —rt((Ip p jga 5,», t)=O,8 () 8 () (}

» gi( a ai( t
(4.12)

where t =(T T, )/T, . R—ecalling that t has dimensions of (mass)2, namely [»]2, we follow the same steps as
above with the only addition of a "running" temperature:

Ct(A)
dA

=(2—r, )t(A}, t(0}=t„.

The solution of this equation in the asymptotic region A,~o (A~ —00 } is

(4.13)

p II

I It'(jp, p j,g, 5,a, t,») = CA, r„'', ,g', 5', aA, ',
A, -+0

(4.14)

Now since A, is arbitrary, we define:
—1/2 —y 2

A, =(» /t) ~ . Then

r' '(p,p', g, 5,a, t,»)

(2—Pq)/(2 —y 2)=C't + @(pllgll, p g )),)(4.15)

where

x '= r„"'(p~(-(=o p'=o}~ tr .

Then we recognize

1 —g/2 1
vt —— , , r=vt(2 —21},2-y'2 2-y 2

v~~=zvt with z= 1 —g'/2 .

(4.17)

(4.18)

—(i —ge/2)/(2 —r 2)
II ~t

—1/(2 —y 2)~t
are the parallel and perpendicular correlation
lengths. The susceptibility is given by

(4.16)
The specific-heat vertex I' ' ' is divergent at the
tree level and must be additively and then multipli-
catively renormalized. " Following the ste~s lead-
ing to Eq. (4.2) it is easy to verify that ri(' obeys
an inhomogeneous RG equation. "

In the limit of number of replicas n ~0, the
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only diagrams contributing to I' ' ' are those of
order n; these diagrams carry only one internal
free-replica index and are associated with loops
where a parallel component of momentum is in-

tegrated over (Fig. 6). This allows us to write

I R' (p t gtt an't it fiick )
T

t
, gx 4 (419)

K K

The solution of the RG for this vertex is given by

FIG. 6. Contributions for I' ' in the limit n —+0.
The wavy lines stand for a —y (x) insertion.

classical system there is a crossover to d-dimen-
sional behavior; that is, the quantum system
behaves classically. The crossover region is
characterized by the condition

(4.20) i
U U

i

—v(1+i) T—i (5.3)

where a is given by

a=2 —(d ed }vi—edv~~
—. (4.21)

V. RELATION TO QUANTUM SYSTEMS

(5.1)

where the o's are Pauli spin matrices, I is the
transverse field, and JJ is the interaction between
adjacent spins. This system in d dimensions is
equivalent to the (d + 1)-dimensional classical Ising
model whose Hamiltonian is

CJV g gfJS/SJ
&tj'&

(5.2)

where g,j is a function of I' and JJ of (5.1), and
S's are classical variables (S=+1). The "extra"
dimension is infinite in extent if the original quan-
tum system is considered at zero temperature.
However, if the initial system is considered at fin-
ite temperature, the extra dimension for the classi-
cal system has width P= 1 lkT. ' Two different
situations arise in this case. %hen the correlation
length g is much smaller than P (g « T ') the
system behaves as if the extra dimension were ac-
tually infinite in extent. The effects of finite tem-
perature are negligible; the quantum system
behaves as if it were at T =0, namely, purely
quantum behavior.

On the other hand, when g y& T ' in the d +1

It is known that the critical properties of d-
dimensional quantum spin systems are equivalent
to those of a (d + 1)-dimensional classical system. o

For simplicity let us consider the Ising model in a
transverse field.

The Hamiltonian of the quantum (spin- —,) Ising
model in a transverse field is

where U is the coupling [U =J/r in the Ising case
(5.1)] of the initial quantum system and v(d +1) is
the correlation-length critical exponent of the 4 +1
classical system.

If we introduce quenched random-point impuri-
ties in our quantum system, for instance, defining
in (5.1),

(5.4a)

(5.4b)

this model then is equivalent to the (d +1)-
dimensional classical Ising model with impurities
totally correlated along the extra dimension form-
ing thus an impurity "line." This situation
reduces to the problem we studied throughout the
previous sections with ed ——1, if we identify then
the extra dimension of the classical system with
the parallel direction of the problem we studied.
Various situations can arise depending on whether
the finite-size (finite-temperature} effects are more
important than the randomness or vice versa.

Hereafter we shall concentrate on the case of (re-
latively) strong randomness. By (2.15), the cross-
over from pure, quantum behavior to random
quantum behavior will take place when

1/ta(d +1,P)+v(d +1,P)]

J1/2

U —U,

U,
(5.5)

where the a and v are those of the pure (d + 1)-
dimensional classical system. On the other hand,
the crossover from pure quantum behavior to pure
classical behavior would take place when

1/v{d+1,P)
kT
J

U —U,

U,
(5.6)

The case of strong randomness then corresponds to
the right-hand side of (5.5) being much larger than
that of (5.6). In this situation, the crossover to
classical behavior will not be described by (5.6), but
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by

U —U,

Uc

kT
1/vl l(d +1,R)

J (5.7)

where v~~(d +1,R) is just the exponent defined in
the previous sections. Note that v~~ enters, not vz.

We thus identify v~~

' as the quantum classical
crossover exponent for the random system. We
can also write this as v~~

'=1/zvi. This agrees
with the result 2/z obtained by Hertz, ' since he

1

was studying a system for which vi ———,.
Solving (3.27) for @=0we predict for the three-

dimensional quantum system (for m+1):

&d m+2
9 3

m+2
(m —1) 32 8

2

z =1———— eg+ 3 ( —284m +2208m +21312m+ 13376)
1 1 m+2
2 8 m —1 4096(in —1)

(5.8)

&d
vi ——2 ——ez

+ —
~

(692m +11472m +15552m +8896)
8 m —1 4096(tn —1)

and for m =1:
z =1+0.2'
g =—0.173@~,

=2—0.4'
(5.9)

VI. CONCLUSIONS

The expansion in e~ does not seem to be very reli-
able and requires some resummation method.

2—1l T

2 ].(2) ~
I I

px
(6.1)

while away from T„

I

of e and e~ is the fact that all the RG functions
depend on the regular ratio E~~(E+ed ), and as a re-
sult the critical exponents depend on this ratio.

The RG equations were solved for the spin-spin
correlation function I' ' and its scaling form is
given at T, by

T

We have studied the effect of impurities corre-
lated along e~ directions and at random in d —ed
dimensions (d =4 E) on the —critical behavior of
magnets with O(m) symmetry. The presence of
this impurity line introduces anisotropy and nonlo-
cality in the theory, which implies a richer diver-

gence structure.
The quantities of interest were computed in a

double expansion in terms of e and ed, and in or-
der to expose the full structure of the theory the
calculation has been carried through two loops.
The renormalizability of the theory has been prov-
en to this order.

The renormalization group has been used to ap-
proach the critical region and scaling of the corre-
lation function emerges at the fixed points. For
m+1 nontrivial pure and random fixed points of
order ac+be~ were found, while for m =1 the
nontrivial random FP is of order (Ac+Be~)'
The eigenvalues (for m+1) at the random fixed
point turn out to be complex, bringing oscillatory
corrections to scaling.

A main feature of the double expansion in terms

C

(6.2)

a=2 —(d —ed)vi —
edv~~ .

To one-loop order we find for tn+1

Z=1+ 1

16(m —1)

(6.3)

X [(4—m)e+(m +8)ed ],
(6.4)

vi '=2 — [e(—,m+ —, ) +eg( —,m +8)],

rt-O(e ),

and for nz =1

where pi and p~~ are the components of momenta
perpendicular and parallel to the impurity line,
respectively. g~~-t '~~ and g -t " are the paral-
lel and perpendicular correlation lengths, v~~

——zvq
and y= vi(2 —g). The exponent z is a result of the
anisotropy of the system. The solution for the
specific heat yields
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—1
vy =2— 12(e+3' )

82+ 144ed /(@+ ed )

—52(a+3'�)
328+576ed /(e+ ed )

12(e+3rd )z=1+—
2 82+ 144@&/(@+ed )

r

' 1/2

' 1/2

(6.5)

remaining d dimensions i.e., an impurity "line."
When the quantum system is at finite temperature
we expect a crossover from quantum to classical
behavior. For the random system we predict the
quantum-classical crossover exponent to be

vll = I /zvi.
—1
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APPENDIX: CALCULATION OF A TYPICAL TWO-LOOP INTEGRAL

Some useful formulas for the computation of integrals are the following:

f dqF(q+k)= f dq F(q), f dllqd qF(Allqll P q }=
I

~ll
I

~
I
~

I

~ f dllq d q F(qll qi)

d"q I'(d/2)I (a —d/2) 2 k2 d&z

(q2+2kq+m2) 21 (a)

where a factor 2n ~ /(2m ) I (d /2) is absorbed in the definition of the coupling constant

1 I'(a+P) ' x '(1—x)~
dx

A B~ I'(a}l'(P) 0 [Ax+8(1—x}] +~

We evaluate the typical integral:

dllq&d q&d q

(aqll +q )[aqll +(qi Iri)z][aq I +(q +q pi)2](ap 112+q }

(A 1)

(A2)

(A4)

We define Q =q; —p and use (Al):

The integral over d q2 yields, using (A3) and (A2),

f d q2
. . ——1(d/2) f dx[apll x+g x(1—x)]r(e/2)

2

Introducing two more parameters, using (Al}, and following the steps as above we arrive at

I (d/2} e I (d/2} I ((e+e}/2)
2 2 2 I (2+e/2)

1 1 1

X f dx f dy f dzz'~ '(1 —z)[1—z+zx(1 —x)]

2
—(~+~)/2

&&
~ a. y(l —z)+apll xz+p x(1—x)z- [sy(1 —z)+px(1 —x)z]

1 —z+zx (1—x)

(A6)

(A7)
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The integral is divergent for z =0, so that we write

I
(—e+e)/2

t ()] (—e+e)/2+ Iz I
(—e+e)/2 [z 0j

—(e+e)/2 Iz ()] «—+e e+e Iz]
2 Iz =0]

(Ag)

where

Iz=0I ~ +e / =[K 2y(1 —y)] e+e~/ (A9)

The term proportional to the ln does not contribute
to the singular part. The integral over z is of the
orm:

1f dzz '(1 —z)" '(1 —Pz)

=8(i,,p) zFi(v, A, ;A, +p;P), (A10)

1 ——ln(1 —P) = [x (1—x) ]2

Using
1

8(r,s)= f x' '(1—x)' 'dx,

r(r)r(s)
I'(r +s)

I (1+x)=xi (x) .

(A12)

where A, =e/2, p=2, v=d/2=2 —e/2,
p= 1 —x(1—x), 8(A, ,p) is the beta function, and

2F& is the hypergeometric function

2F, (2 e/2, e/—2;2+E/2; p)

1(p;)=
e(e+E)

The result then is

1 ———
2

'+'
L, (o~')

2

(A13)
p2 p3 pk

=1+2 P+ 2+ 3+'''+
k

to leading order in e.
We recognize that Eq. (All) equals

(Al 1 )

where

I, (tell tc~) —f dy 1„[y(1 y)(atcll~+tc~2)]

The function I (v) is given by

(A14)

d ~~q, d'q,

(a&till +.tl& ) [a&(g Kll) +(tl~ K ) ]{agtlI )"

Following the steps as above we find

(A15)

&R
1(v)= +8(Jl,~')

4(v+e/2)
(A16)

where
1

8(tell tc )= dx(l —x)( —a~tell x )[(aatcll +tc )x (1—x)] '+'/ +" .
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