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Electron-phonon effects in copper. I. Electron scattering rate and mass enhancement
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Phonon-limited quasiparticle-mass enhancement A, „and low-temperature lifetimes

1/~ „=ck T are calculated for Cu. Experimental phonons, Korringa-Kohn-Rostocker

wave functions and the rigid-muffin-tin (RMT) model have been used. The results are
compared with calculations of other groups and with experiment. It is found that the ex-

periment of Doezema and Koch (DK) was not performed at a low enough temperature

(T ) to give the correct limiting value of c „. The results at higher T match well the data

of DK and the calculation of Schmidt and Mann, but do not agree closely with the calcu-

lations of Nowak and Das. In contradiction to an earlier suggestion, the RMT model

seems to work well at small momentum transfers.

I- INTRODUCTION

In a metal, the electron-phonon interaction gives
rise to a complex, frequency-dependent electronic
self-energy. The electronic mass enhancement A, k

is obtained from the real part of the self-energy
and the scattering rate 1/r-„ from the imaginary

part. ' Calculations of A, 1,
and 1/r k for Cu have

been performed before by a number of authors
and compared with experiment. ' Thus Cu serves

as an important test case. As part of a project to
evaluate electron-phonon effects in transition met-

als, ' we therefore tested our procedures on Cu.
The results are published here for the following
reasons:

(1) We believe that we have calculated 1/r t,

more carefully than ever before and have a more
detailed comparison with experimental data of
Doezema and Koch (DK).

(2) Our procedures for calculating 1/r z were

only brieAy outlined in a short paper on Pd, and

the procedures for calculating A, k were omitted en-

tirely from a paper on Nb and Cu. ' This paper
describes the procedures used in those earlier calcu-
lations.

(3) The following paper" presents calculations of
p, W, and RH (electrical and thermal resistivity
and Hall coefficient) for Cu. The present paper
serves as an introduction and as a reference point
for the subsequent paper.

Section II of this paper contains a description of

our method of calculating A, k and a comparison

with the calculations of other groups and experi-

ment. Section III contains a description of our

methods and results for 1/r „T for small T. We

make a detailed comparison with the experiment of
DK (Ref. 6) and the theoretical work of Nowak

(Ref. 2) and Schmidt and Mann (Ref. 4). In Sec.
IV we present our conclusions. The Appendix

contains a description of how the potential used in

our calculations is constructed.

II. MASS ENHANCEMENT

The phonon-limited electronic mass enhance-

ment A, z is given by the expression [Eq. (5.61) of
Ref. 1]

' 1/2

(2)

The notation is consistent with Refs. 7 and 8,
i.e., e'o is the polarization vector of a phonon with

wave vector Q and frequency co"& belonging to the

branch v, and M is ionic mass. The calculation of
A, k needs the following ingredients ':

(i) A mesh of points on the Fermi surface (FS);
specifically, we use 492 points in 4, th of the Bril-
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louin zone (BZ). At each of these points,
Korringa-Kohn-Rostoker (KKR) wave functions

g z are calculated using 16 spherical harmonics

(maximum I=3).
(ii) Phonon-polarization vectors and frequencies

are obtained from Born —von Karman force con-
stants fitted to inelastic neutron scattering data. '

(iii) The rigid muffin-tin (RMT) model has been

used to calculate electron-phonon matrix elements

g'„k,. The RMT was designed for transition met-
7

als where the electronic wave-function amplitude is
small outside the muffin-tin (MT). In Cu, this is
not a very good model. However, by using the
freedom of choice of the MT zero, one can rescale
the phase shifts without altering the band structure
and thus attempt to improve the electron-phonon
matrix elements. ' Our procedure is similar to that
used by Nowak and is described in the Appendix.

The calculation of A, -„proceeds as follows. The—„th of the BZ is divided into 1378 bins, and each

bin is assigned three polarization vectors and fre-
quencies corresponding to the Q vector at the cen-
ter of the bin. In order to perform the FS integra-
tion in Eq. (1), k ' is made to assume all the 492
values in 4, th of the BZ on the FS. The 48
cubic-point-group operations are performed on k '

so that the point k ' traces the whole FS. For each
k ' the vector k —k ' —K=Q is obtained, where K
is the reciprocal-lattice vector which brings k —k
into the first BZ. The point-group operation re-
quired to rotate Q into the « th of the BZ is deter-

mined, and the phonon frequencies and polariza-
tion vectors of the corresponding Q bin are used.
The wave functions are obtained by the appropriate
point-group operation and the matrix elements are
calculated.

The resulting angular variation of A, z in symme-

try planes of Cu is plotted in Figs. 1 and 2 along
with the previous results obtained by other groups.
Our results do not agree very well with the analysis
of experiment by Lee and differ from his values

by 60% in the (110) direction and by 28% in the
(100) direction. The agreement with the work of
Nowak is better, with 10% and 28% agreement in
the (110) and (100) directions, respectively. The
values of A, ~ calculated by Das are also plotted in

Fig. 1. We have very good agreement with the re-
sults of Schmidt and Mann, who have used wave
functions composed of both plane waves and Bloch
sums of atomic d functions and have used a pseu-
dopotential to calculate the electron-phonon matrix
elements. The results of Schmidt and Mann plot-
ted in Fig. 1 are the ones obtained by using the
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FIG. 1. Electronic mass enhancement A, „ofCu for
k lying on the (010) and (110) symmetry planes. The
results of Das (Ref. 3) are given by the symbol +.

where k is measured in units of 2n/a. If we in-

clude the next FSH, which gives an additional
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FIG. 2. Electronic mass enhancement A, „ofCu for

k lying on the (010) and (110) symmetry planes. Solid

line gives our A, „. The dashed line is a fit to our results

using Fermi surface harmonics (see text). The dash and

dot line is the interpretation of experiment by Lee (Ref.
5).

pseudopotential denoted by CH 2 in their paper.
1

The contour plot of 1, z drawn on « th of the FS
is shown in Fig. 3.

In a previous paper' we expanded A, k in terms

of different orthonormal polynomials on the FS,
and found that the Fermi-surface harmonics (FSH)
in k polynomials [FSH(k)] show good conver-

gence. With the use of the results of Ref. 10, the

following equation represents our A, k to 2% accu-

racy:

A, k
=—0.46476+ 1.4626k —0.8486k
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Cu: X-
k 0.149

l4
0.126

O. I 38

FIG. 3. Contours of constant A, k shown on —th of1

the Fermi surface of Cu. The bold lines are intersec-
tions of the Fermi surface with the (100) and (110)
planes, not contours. The jagged line is boundary of the
neck on the face of the Brillouin zone in the (111)
direction. The jaggedness reflects the finite mesh size.
Because of the way we have chosen the spacing of sam-

pling rays, the mesh is coarsest near the neck where
there is a glancing angle of intersection.

where g(3) is the Riemann's zeta function
[g(3)=1.202] and Eq. (6) is obtained by using Eqs.
(5) and (3). The experimental rate I/r*-„differs
froin Eq. (6) in two ways. ' First, at temperature
T, electrons are sampled not just at the Fermi ener-

gy (co=0) but in a shell of thickness T. This can
be approximately taken into account by averaging
Eq. (6) by t)f/t}c—o, which enhances I/r k by —,.
Second, 1/~z is reduced by 1 + A, z, the mass-

enhancement factor.
Calculation of a F(k,Q) needs the same in-

gredients as are needed for the calculation of A, k,
and the construction of a histogram of a F(k, Q)
proceeds in a similar fashion. The only difference
in the procedure is that the 0 axis is divided into
bins and as the vector k ' traces the FS, contribu-
tions given by Eq. (4) are made to the appropriate
Q bin dictated by the delta function 5(Q —c0"-„-„,).
Results of a F(k,Q) for k lying along the (110),
(100), and "neck" ((111))directions are given in
Fig. 4. It is obvious from the figure that it is dif-
ficult to determine the Q behavior of a F(k,Q) for
small 0 from these histograms. One way to over-

term in the expansion of A, k of the form

A(k„+ kz + k, ), the convergence improves by only
0.05%.
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III. PHONON-LIMITED LIFETIMES
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U

a
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+f(Q —co)], (3)

a F(k,Q)= —gg ~g"-„k,
I
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The quasiparticle lifetime is given by the expres-
sion [Ref. 1, Eq. (5.63)]

I/r(k, co)=2m f dQa F(k,Q)
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For ni=O and T «coD (coD is the Debye energy),
only small values of Q contribute to the integral in
(3). In this regime a F(k, Q) is quadratic in Q and

I/r(k, O) varies as T (Ref. 14):
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FIG. 4. Histograms of a'F(k, Q) for k lying in the
(100), (110),and "neck" ((10.0651)}directions. The
dashed line represents a „0 where a „=aF(k,0)/0
for small Q. The insets are enlarged views of the
small-0 region.
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come this difficulty would be to increase the num-

ber of Q bins in the BZ and to make the FS mesh
finer, if needed, until the Q behavior of a F(k,Q)
for small Q can be determined unambiguously
from the histogram. This approach is extremely
time consuming. Instead, we calculate the qua-
dratic coefficient a-„directly.

For small Q, the delta function 5(Q —co"k k .) in

Eq. (4} restricts k ' to lie near k, i.e., the integra-
tion is over small values of Q where Q= k —k'.
For small Q the matrix element (k

I
VV

I
k + Q &

is linear in Q and therefore. it can be replaced by
M(k, 8,$}Q, where the angles 8 and P give the
direction of the vector Q. Similarly, co(i can be re-
placed by u "(8,$)Q in the small-Q limit, where
u "(8,$) is the sound velocity associated with the
phonon of branch v and the direction of propaga-
tion is given by 8 and P. The delta function
5(Q —co'& ) in Eq. (4) -can be used to perform the
integration over Q. The remaining integral is over
directions of Q, where Q lies in a plane tangent to
the FS at the point k. Therefore, the integration
in Eq. (4) is reduced to one dimension, which gives
the following expression for a-„:

V 1 z~ F(8) M(k, 8}
CXk = d8

(2ir)i 2Mu ~
o u "(8)i

8 ( k
I
VV

I k+Q
IQI

The limit in (8) is to be taken such that Q lies in
the plane tangent to the FS at k making an angle
8 relative to a reference direction on the tangent
plane.

Now the task is to evaluate M(k, 8). This can
be done by creating a sufficiently fine local mesh
around each k point of interest. There is little
guidance in earlier work to indicate how fine a
mesh is needed for the limit (8) to be accurate.
Therefore, we examined this question in detail and
found that our existing mesh of 492 points was
sufficient to get M(k, 8) to about S% accuracy pro-
vided some care was exercised. Figure 5 shows
that M(k, 8) is quite well specified simply by tak-
ing vain~ «&k IVVlk+Q&/IQI «» IQI
&0.1(2ir/a} without explicitly taking the Q~0
limit. The fluctuations are not very large and are
smoothed by doing the 8 integral. The final calcu-
lations used typically 40 angles 8;, taking M(k, 8;)
to be defined by the smallest Q in the direction 8;
on our mesh, up to a maximum of 0.08 (2ir/a).
Polarization vectors P(8) and sound velocities
u "(8) were taken from experimental
elastic constants. ' " The function Ve(k)
=—P(8) M(k, 8) is quite anisotropic, especially for v

O
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~ as a function of 8 for the k point (0.38,0.0,0.65). The
angles 8=0 and 180' correspond to Q in the plane Q~=0 where this. matrix element vanishes. Since the k point lies in
a mirror plane, —8 is symmetric with 8. The open circles represent points for which
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corresponding to transverse phonons.
The resulting values of a-„Q are drawn in Fig.

4 along with the histograms of a F(k,Q) for three
specific directions of k. Also shown in Fig. 4 is
an enlarged view of the small-Q region from which
we see that the histogram is consistent with n k 0
for small Q. The crossover to more complicated
behavior occurs somewhere in the range 5 —10%
of the maximum phonon frequency, coM.

The temperature dependence of I/r k goes as T3

only at sufficiently low T For. a pure Debye spec-

trum, the T law is fairly accurate up to 02en,
but the departure of a F(k,Q) from Debye Q
behavior at fairly low Q causes the T regime to
end at a much lower T, typically 0.028D. Specifi-

cally, we have examined this in detail by doing the

integral in Eq. (3) for the three k points in the

(100), (110),and "neck" directions. It is neces-

sary to choose a crossover frequency Q„above
which a F(k,Q) is given by the histogram in Fig.
4, and below which the limiting a

&
0 form is

used. The results are given in Fig. 6. In each case
the frequency Q, was varied by —+40% with no
discernible change in the I/r z curves. Above 4 K,
the departure from T becomes noticeable in all

three cases.

The coefficient c z (I/r z
c——

k T ) in symmetry

planes is shown in Fig. 7, along with experimental
results and previous calculations by other groups.
Selected values are also given in Table I for sym-

metry directions. Experimental values of c k were

measured by Doezema and Koch (DK) using
surface-Landau-level resonances at microwave fre-
quencies. We have multiplied their values by —„
and given them in Fig. 7 as open circles. We have
not multiplied the results by 1+kk since A, k is

small. The results of DK are higher than ours,
specifically by a factor of 20 in the (110) direc-
tion, 5.4 in the (100) direction, and 1.15 in the
"neck" direction. We attribute part of this differ-
ence to the fact that whereas our results suggest
that I/r k shows a T behavior only up to about 4
K, the experimental values of c k used data poirits
obtained at much higher temperatures. DK (Ref.
6) determined the experimental values of c k by

plotting I/r z vs T; their c z is the slope of a
straight line fitted to these points. For the "neck"
and (100) directions, the data points to which the
straight line is fitted are almost all at temperatures
above 4 K extending up to 13 K, except for one or
two points which lie in the 0 to 4 K range. The
data points for determining c k for the (110)

l3.00

l1.40-

u) 9.80-
f~

8.20-
O

5.00
0.4 0.8 l. 2 2.0

log, (T) K

FIG. 6. Graphs of log~o(1/r „)against log~0(T) for k lying in the (110), (100), and "neck" directions on the Fer-
mi surface of Cu. The solid lines are the results obtained by using the histograms of a F(k, Q) given in Fig. 4 for
Q ~ Q, and using the small-Q form: a „Q for Q & Q, . A value of 0.7 THz has been used for Q, . The dashed line is
obtained by using a Debye a F(k, Q).
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FIG. 7. Results of c „=1/~ „T (T~O) for k lying in the (100) and (110) symmetry planes. Solid line is our re-

sults. The dashed line is the c „calculated by Nowak (Ref. 2). The dash and dot line shows 1/~ „T calculated by

Schmidt and Mann (Ref. 4) for T=12 K with the use of their CH2 pseudopotential. The crosses are their results using

Eq. (4) of Ref. 4 [Eq. (7) of this paper]. The results of Doezema and Koch (Ref. 6) are represented by open circles and

the values found by Das (Ref. 3) by the symbol +.

direction have not been given in Ref. 6 but it is
mentioned that temperatures in the neighborhood
of 25 K were used to obtain c k for this direction.
In Fig. g we have plotted DK's values of I/r z

Present work
Schmidt 4 Mann'
Nowak"
Das'
Doezema and Koch"

'Reference 4.
Reference 2.

'Reference 3.
Reference 6.

0.149
0.5
0.34
0.70
0.81

0.004

0.07
0.07
0.08

2.18
2.9
2.8
3.2
2.52

TA.BLE I. Values of c„—=(1/~ „)T found by dif-

ferent groups along the (100), (110),and "neck"
((111))directions. The results of Schmidt and Mann
(Ref. 4) are obtained by using Eq. (4) of Ref. 4 and have
been taken directly from Fig. 1 of Ref. 4. Their value
of c „along the (110) direction is too small to be accu-

rately read off from the figure and is not given in this
table. Results of Refs. 2—4 and 6 have been multiplied

by a factor of
12

7

c„=(1/v. „)T ' (10 s 'K )

( 100) ( 110) "Neck"

against T for the "neck" and (100) directions.
The residual scattering rate has been subtracted
from I/r-„so that the values of I/r k ~0 as

0; 1/~I, has also been multiplied by ]p The
solid line represents our calculated values of 1/~k
and the dashed line is tangent to the solid line at
T =0, i.e., the calculated c-„T . In Fig. 9 we have

plotted our calculated values of 1/r-„vs T for the
(110) direction (solid line) in the temperature
range from 20 K to about 25 K, which is the tem-
perature region used by DK, the dashed line has
the same meaning as in Fig. 8, and the dotted line
has the slope of c k found by DK. It is clear from

Figs. 8 and 9 that our calculations agree well with
the experimental data of DK for the (110) and
the "neck" direction but not so well in the (010)
direction, where our values of 1/~k lie about a
factor of 2.5 below experiment. We have no ex-
planation for this remaining discrepancy. There is
a "dip" near the (100) direction in our calculated
c k which was not found by other authors. This
seems to be a real feature of our calculation associ-
ated with wave-function character. The experi-
mental results (which are especially reliable in this
direction' ' ' suggest that the dip is not real. Ap-
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FIG. 8. Experimental results of 1/v „obtained by Doezema and Koch {taken from Fig. 4 of Ref. 6) for the ( 100)

and "neck" directions are represented by the symbol +. The solid line and the dashed line are our results of 1/~ „and
are the same as the solid and dashed lines of Fig. 6 for the "neck" and (100) directions.
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Experimental results of 1/r „obtained by Doezema and Koch {Ref. g for the (110) dirmtio . Th dott&

line is a straight line with slope equal to the c „ found by Doezema and Koch (c „=1/~ „T ). The solid line and the
dashed line are our results and are the same as the solid and dashed lines of Fig. 6 in the (110) direction.
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parently the experimental values of c k do not

represent the true low-T limit because extrapola-
tion to T=O can not be performed safely unless
data below 4 K are available. Thus the "data" in
Fig. 7 should not be compared closely with theory.
This is consistent with conclusions of Schmidt and
Mann (SM). Therefore, when comparing with ex-

periment, SM plotted 1/r k T calculated at 12 K
instead of its low-T limit, cg. This is what is

given in Fig. 7 as the dash-dot line. The points
represented by the symbol + are the values of c-„
obtained by SM using Eq. (7) [Eq. (4) of Ref. 4]
and lie much lower than the experimental values of
DK (except for the "neck" direction).

Nowak used methods somewhat similar to ours,
and his values of c k are plotted in Fig. 7 (the

dashed curve). Nowak assumed that only longitu-
dinal phonons contribute in Eq. (7) for the belly re-

gion. He also set the longitudinal-sound velocity
v (8) in Eq. (7) equal to a constant 4.69 X 10
cm sec ', for k lying on the belly. Our results
show that even for k points on the belly, transverse
phonons make an appreciable contribution to
I/r k, e.g., for the (100) direction the contribu-

tions are 45% and 55% from the longitudinal and
transverse phonons, respectively. Also we find that
the longitudinal-sound velocity v (8) varies with 8
(from 5 to 4.4 for the (100) direction and from
5.2 to 4.4 for the (110) direction in units of 10
cm sec '). Nowak has not made these approxima-
tions for the neck region, where his results match
very well with ours. The results of Das are shown

by the symbol e in Fig. 7. Note that the results of
Nowak, Das, SM, and DK have all been multiplied

7
by the factor» to compare with our results ob-

tained by Eq. (7). There is apparently a factor of
—, error in the equations for I/rk (at low T) used

by both Nowak and Das. We have not corrected
for this in plotting their results. The contour of
c k drawn on —,th of the FS is shown in Fig. 10.

IV. CONCLUSION

Although our values of A, k do not match ex-

tremely well with the interpretation of experiment
by Lee (Fig. 2), it should be kept in mind that for
the interpretation of experiment band-structure
values of electronic velocities u k are needed. A
value of 1 + A, k is obtained by comparing mea-

sured and calculated velocities. Because A, k is only

of order 0.1, a 10% uncertainty in the band veloci-

ty becomes a 100% uncertainty in A, k. We suggest

Cu: C-{l0 s K )
k

I.O

0.5

.02

0.2

FIG. 10. Contours of constant ck ——1/~ „T {T—+0)
1

drawn on —th of the Fermi surface of Cu. (See the cap-

tion of Fig. 3.)

that our results are not necessarily inconsistent
with experiment. Similarly our values of c k

=(r k T )
' disagree with experiment, but the ex-

periment actually did not achieve the true low-

temperature limit of I/rk T . In those cases where

a direct comparison was made (Figs. 8 and 9), very

good agreement was found for the (110) and
"neck" direction and a difference of about a factor
of 2 in the (010) direction.

We get a value of 0.11 for A, (the average of A, k

over the FS). This agrees well with earlier calcula-
tions. It also agrees reasonably with experimen-
tal values of A, inferred from superconductivity.
Hoyt and Mota' have estimated A, for pure Cu by
extrapolating values of A, obtained from the
McMillan' equation, for superconducting Cu-Ga
alloys. They find A, =0.16. Chaikin' et al. have
used proximity tunneling measurements to extract
a value of A, =0.10+0.02 for pure Cu.

The only uncontrolled aspect of our calculation
is the RMT model. The results of this paper and
the next paper" increase our confidence in the
RMT model. Earlier work' suggested that the
RMT model worked badly at long wavelengths for
Nb. In contrast, we find that the present version
of the RMT model works quite nicely at long
wavelengths for Cu. It is encouraging to note that
although SM (Ref. 4) have used a very different
method without the use of the RMT model, their
results agree well with our calculation. Expansion
of I/r k in terms of FSH(v k ) and FSH(k) gives a
convergence of only 8% and 10% accuracy, re-

spectively, even when 16 orthogonal polynomials
are used.
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In order to calculate the electron-phonon matrix
elements, one needs to know the self-consistent
change in crystal potential 5V(r) which results
from an infinitesimal displacement of one of the
atoms 5Rn. The rigid muffin-tin approxima-
tion ' ' consists of approximating this change by

~ V( )
—V~ V(r), r E cell n

0 otherwise,
(A 1)

where V(r) is the total crystal potential. The name
"rigid muffin-tin" is attached to this approxima-
tion because V(r) is usually approximated by a
sum of nonoverlapping, spherical potentials
(muffin-tins)

V(r)= g uMT(r —R„)—Vp . (A2)

Equation (Al) is equivalent to moving one of these
muffin-tins rigidly when an atom is displaced.

The rigid muffin-tin approximation gives reason-

ably accurate results for the average magnitude of
the electron-phonon matrix elements in transition
metals. ' ' This is probably because the largest
contributions to the matrix elements involve d elec-
trons which (we expect) move relatively rigidly
with the atom. Equation (A1) is, however, not ap-
propriate for the simple metals. In the limit of a
weakly perturbed electron gas, there is an accepted
procedure for calculating the electron-phonon ma-
trix elements. ' In this case, the crystal potential
is written as a sum of screened ionic potentials
u„(r) which move rigidly when an atom is dis-
placed:

V(r) = g u„(r —R„), (A3)

5V(r) = —V u„(r —R„) .
na

(A4)

For calculating the energy bands, the two forms

APPENDIX: ADJUSTED RIGID MUFFIN-TIN
APPROXIMATION FOR THE ELECTRON-PHONON
INTERACTION IN NOBLE AND SIMPLE METALS

uws(r Rn } uMT(r Rn)+gn(r)up t

1, rE cell n
g„r ='

0 otherwise .

(A5)

(A6)

This maneuver only affects the band structure by
causing a rigid shift equal to vo.

One problem with a potential such as that of Eq.
(A5) is that the KKR method is no longer rigor-
ously applicable. This is not a serious practical
problem for fcc metals, however. If one calculates
the phase shifts for scattering off of a spherical-
ized version of Eq. (A5) and plugs them into the
KKR equation, keeping vo on the order of 0.5 Ry
or less, one obtains essentially the same band struc-
ture as for vo equal to zero. The insensitivity of
the KKR band structure to vo is equivalent to the
empirical result that when Fermi surface data are
fitted using a KKR phase-shift parametrization,
good fits are obtained for a wide range of values of
the energy parameter. Figure 11 shows phase
shifts. calculated for Cu using a sphericalized form
of (A5} [Op(r}=1, r & rws] and a range of values of
vo. Also shown for comparison are phase shifts
fitted empirically to de Haas —van Alphen data. '

The shifted potentials give at least as good a Fermi

for the crystal potential are equivalent. They
differ, however, for the electron-phonon interac-
tion. The rigid muffin-tin approximation signifi-
cantly underestimates the strength of the electron-
phonon coupling in the limit of weak scattering.
The reason for this is that the two types of poten-
tials correspond to two different ways of appor-
tioning the same total crystal potential among the
ions. ' The muffin-tin potentials vanish for r
greater than rMT, the radius of the largest sphere
that will fit entirely within a signer-Seitz cell, and
their values are referenced to the muffin-tin zero
(the average value of the interstitial potential). The
screened ionic potentials have a longer range (their
tails overlap) and their values are referenced to the
vacuum as zero.

For a noble metal such as Cu, neither the rigid
muffin-tin approximation nor the simple linear-
screening theory is rigorously applicable. Never-
theless, we have made an ad hoc adjustment to the
rigid muffin-tin approximation which improves the
agreement with experiment and (we believe) with
reality. Similar adjustments have been made be-
fore. ' ' The rigid muffin-tin potential can be
made stronger and it can be given a longer range
without affecting the electronic structure by simply
adding to it a potential which is constant through-
out its Wigner-Seitz cell:



26 EI.ECTRON-PHONON EFFECTS IN COPPER. I. 1547

f v„(r)r dr = Z/N(—E~), (A7)

surface as the original muffin-tin potential.
In order to complete the prescription for the ad-

justed potential, we must specify the magnitude of
the shift vo. We attempted to choose vo so that
vws(r) satisfied the following result which is valid
for a weak ionic potential in a electron gas, linearly
screened '

0.3803

C
o-

x o

o

Cggo-

oo — A+-

0.2803
I

V

0.1803
I

0.0803
I

-0.019'7

where u, is the volume per atom and N(Ez) is the
Fermi-energy density of states (both spins). When

Eq. (A7) is applied to a real metal, v„(r) must be
interpreted as a screened pseudopotential and Z as
the number of valence electrons. Linear screening

suggests this result is valid for Z ((1.
Since our formula for rigid muffin-tin electron-

phonon matrix elements is written in terms of the
Fermi-energy phase shifts, we need to write Eq.
(A7) in terms of phase shifts. This is easily ac-
complished by expanding the Fourier transform of
v„(r) in terms of spherical harmonics:

v„(q) = f exp[i(k k')r]v„(—r)d r/0,

g(2I+1)P (ik. k')
0,

X f r drji(kr)ji(k'r)v„(r),
(A8)

where q =k —O'. Since we are interested only in

scattering between points k and k' which are on
the Fermi surface, we can write Eq. (AS) in terms
of the Fermi-energy phase shifts by using the ap-

proximation (valid for weak pseudopotentials),

fi, (Ez)- k„r drj—'(kiter)v„(r) .
0

(A9)

Thus, Eq. (A7) may be written

lim v„(q)- g (2l+1)5i(E~)4m

q~0 0, Ep

Z/N(EF) . — (Alo)

We adjusted vo so that the phase shifts from the
potential vws(r) satisfied (A10). The magnitude of
the shift Uo was 0.2825 Ry. The original and ad-

o
025 0,35

1

0.45

El;

0.55 0.65

FIG. 11. Phase shifts for Cu using a sphericalized

form of the potential given by Eq. (A5) (solid line).

Phase shifts fitted empirically to de Haas —van Alphen

data are also shown for comparison. The value of the

Fermi energy used here is shown by 8. See the text for
an explanation of the other symbols used in the figure.

justed phase shifts are denoted by A and B, respec-

tively, in Fig. 11.
There are other ways of choosing Uo which are

equivalent to (A10) in the weak-scattering limit but
which differ somewhat when applied to Cu.
Nowak chose a shift that set the Fermi surface

average of the q =0 limit of the augmented plane

wave form factor equal to Z/N(E~). His c—hoice
is denoted by C on the figure. Coleridge pro-

posed setting Ez Ezo Z/N—(E~)——w—here Ezo is

the Fermi energy for free electrons,

Ego (3ZH/fl, )
~——. This choice leads to phase

shifts. appropriate to an EF of 0.24. One could

also argue in favor of satisfying the Friedel sum

rule,

(2/ir) g (2l+1)5i(Ei ) =Z .
l

This choice would lead to an even smaller value

for E~. We doubt that the differences between

these proposals merit extended discussion. Self-

consistent density-functional theory should be ap-

plied to this problem instead. This has not been

done yet because of technical difficulties.
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