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A new approach for ground-state-energy calculations, based on the density-functional
formalism, is proposed. It enables us to express a shear modulus as a sum of two simple
terms, a one-electron “band term,” based on a “frozen-potential” condition, and a
“Madelung term” based on an effective ionic charge. This method is applied for the
tetragonal shear moduli of the thirteen nonferromagnetic cubic transition metals, using
the linear muffin-tin orbital —atomic sphere approximation band method. The results
agree fairly well with experiment. To our knowledge, this is the first successful ab initio
calculation of shear moduli in transition metals, and the results for Rh preceded the ex-

perimental measurement.

Ab initio calculations of the ground-state energy
in solids have been considerably advanced with the
development of fast computers. A powerful
scheme for such calculations is the density-
functional formalism.! This approach was found
successful in its local-density approximation® for
self-consistent calculations of the cohesive energy,
the bulk modulus, and the equilibrium interatomic
distances of both simple and transition metals® and
of metallic compounds.* It gave correct value also
for the heat of formation of such compounds.’

In this work we are interested in ground-state-
energy variations under symmetry removing
change of the lattice. To calculate shear moduli,
one must know the effect of strains on total
ground-state energy. In Sec. I we present, within
the density-functional formalism, two stationarity
properties which allow us to define and use, in Sec.
11, model electronic density and effective potential.
From them we deduce an expression for total-
energy differences which enables us to formulate in
Sec. III the tetragonal shear moduli as a sum of
two contributions: the band contribution (studied
in Sec. IV) and the Madelung contribution (Sec. V).
Finally, in Sec. VI we present and compare with
experiment results for the tetragonal shear moduli
of all the cubic, nonferromagnetic, transition met-
als.

The theoretical approach of this work is based
on a generalization of the force theorem of Ander-
sen,® which is worked out in details, and published
in a parallel paper by one of the authors.” In that
paper it is shown that this approach can be applied
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to calculate shear moduli for symmetry removing
strains.

I. STATIONARITY PROPERTIES

Within the density-functional approach,’? the
total ground-state energy & of a system of elec-
trons (with a fixed total number), under the influ-
ence of an “external” potential v(T), is the
minimum among the admissible electronic densi-
ties: n(T), of a unique functional of v and n:

glon)=F(n}+ [o(@n(@d’r, (1)

where F is a universal functional of the density.
The minimum property could be expressed by the
relation,’

8{vn} g vreq @)
8n(T)

where Er is the Fermi energy and Q is the
Wigner-Seitz (WS) cell volume. Then this func-
tional (1) has a stationarity property, under first-
order density variations,

&{v,n}=&{v,A} +0((A—n)?), (3)

where # is a slightly varied density.

Considering electrons in a crystal, v is the
Coulomb potential of the nuclei, and the energy
functional must be renormalized to include the
Coulomb interaction between the nuclei. The exact
form of F{n} in Eq. (1) is unknown; however,
Kohn and Sham? have shown that the energy func-
tional (neglecting lattice vibrations) can also be ex-
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pressed as a sum of three terms:
Elon}=T,{n}+U.fv,n}+&[n}, (4)

where U, is the total classical Coulomb energy of
the crystal, T, is the ground-state kinetic energy of
an equivalent [i.e., having the same ground-state
density »n (T')] system of noninteracting electrons,
and &, is the effective exchange-correlation ener-
gy, which includes the exchange and many-body
effects of the interaction U, and the difference
between the real kinetic energy T and T,:

Exeln}=T{n}—T,{n}+Ug{n} . (5)

Let us now consider this system of noninteract-
ing electrons in a crystal represented here by a
periodic potential v,(T). The electrons have, in
this system, one-electron wave fEnctions ¢3(7) and
a spectrum of band energies E (k), in the Brillouin
zone (BZ). The ground-state energy of this system
can be expressed as a functional of v,:

Enlvn)= [, d°k OEr—E7)
E
= [ " ENEVE (6)

where Ef is the Fermi energy, and N (E) the densi-
ty of states corresponding to the one-electron po-
tential v,(T). (The BZ integration also includes a
summation on a band index which is omitted here
for simplicity.) Let us define, for any v,(T) and
n(T), the functional

To(n0,) =&, (0,) — [0, (@D . ()

It coincides with the ground-state kinetic energy
T,{n} for the density

n(@)= [ dkOE—Ey)[¢p@D|*.  ®

Furthermore, Eq. (1) can be applied to the system
of noninteracting electrons, where the functional
F{n} is replaced by T,{n}. An energy functional
&, {v,,n} is then obtained, whose functional
derivative with respect to v, is given by

8% ,{v,,n} /80, (T)=n(T), 9

and which has a minimum with respect to density
variations around the ground state.

The functional T}, {v,,n} introduced in Eq. (7)
could be interpreted as the Legendre transform of
&,{v,}. Thus its minimum property will be with
respect to potential variations around the ground
state. This can be written as:

T, (A} =T, {0, 7} +0(D, —v,)) , (10

where U, is the potential which yields 7" through

(8), and v, is a band-structure potential which
should be close to it. Then, with the use of these
two stationarity properties, the total ground-state
energy can be expressed as follows:

&= Ucivaﬁ}+gxc{ﬁ}+$n{vn}
— [ o (OAE@dPr + 07T —n))
+0((T, —v,)) 1y

which can be used for an approximate energy cal-
culation with the use of a density 7 and a one-
electron potential v, which are simpler than the ex-
act physical ones.

II. TOTAL-ENERGY DIFFERENCES,
CONDITIONS ON DENSITIES,
AND POTENTIALS

In order to calculate shear constants, total-
energy differences between two crystals with the
same atoms but with slightly different structures
are to be evaluated. Let us consider a volume con-
serving lattice strain characterized by a strain
parameter ¥ and introduce n,(T) and v}(T), the
electronic density and the equivalent one-electron
potential, respectively, of the sheared crystal. One
can then define

8,8=&{v,,n,}—&{v,n}, (12)

and, with the use of Eq. (4), express this difference
as a sum of three contributions,

8,8 =8,T,+8,U, +8,8 . . (13)

The problem will then be to calculate those terms.
Following the idea of the first paragraph, we now
impose conditions on the densities and potentials.
Let us assume that our densities 7 (7)) and n,(7)
are close to model densities 7(T) and #,(T) satisfy-
ing the following conditions.

(i) They are muffin-tin densities (i.e., spherically
symmetric around the WS cell center up to the
smallest MT radius, chosen so as to avoid the over-
lap between spheres in both crystals, and flat from
it up to the boundaries).

(ii) They are identical within the WS cells
(frozen density).

Similarly, let us introduce conditions on the ef-
fective potentials v,(T) and v}(T) of the one-
electron system:

(iii) They are muffin-tin potentials.

(iv) They are identical within the WS cell (frozen
potential).
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Working now with spherically averaged quantities,
we denote them replacing the variable T by r, the
distance from the WS cell center. Before discuss-
ing these conditions, let us examine what are their
consequences on Eq. (13). For this purpose the
quantity Z,, which is essentially an electric charge,
is defined as follows:

Zy=Qn(s), (14)

where n (s) is the value of the density at the
Wigner-Seitz radius s,

1/3
30

o (15)

S =

Condition (i) makes the crystal similar to a system
of charge point (or spherical) ions in a uniform
neutralizing background. Then 8,U, may simply
be written as

8,U.=Z%8,8 s , (16)

where &), is the Madelung energy of unit point
charges® and Z g is, following Eq. (14), defined as

Zeffzﬂﬁ(S) . (17)

(The change in the self-Coulomb energy within the
spheres has vanished by the frozen-density condi-
tion.)

Conditions (ii) and (iv) give

8, fwsv,,(f')h”(f')d3r=0 , (18)

since both v, and 7 are identical within the WS
cell in both crystals, and 8,7, becomes

EF
8,Tn=5,8,=8, [ __EN(E)E , (19)

the difference between the total ground-state ener-
gies of the one-electron systems.

The last term in Eq. (13) §,& . vanishes by con-
dition (ii). This is because &,.{n} can be ex-
pressed as a sum of a local term (function of )
and a nonlocal term, expanded in gradients of
(1)}, which are zero [condition (i)] in the region
where the WS cells match.

To sum up, with the use of conditions on the
densities and potentials of both sheared and
unsheared crystals, it is possible to reduce the
total-energy difference to a simple expression,

8,8 =8,8,+Z%5, 8 nr , (20)

which contains two terms: a “band term” (the
first one), and a “Madelung term” (the second
one). These terms cannot be calculated analytically
and numerical work is needed, which is presented

in the next section.

In the monoatomic crystals we are interested in,
condition (i) is automatically satisfied for free-
electron wave functions, and, to a great extent, for
simple metals. But this is not in principle the case
for transition metals, where it requires a radial
density variation. The “frozen-potential condition”
was first pointed out for homogeneous pressure on
the basis of the virial theorem,”!° and then for
more general cases® on the basis of stationarity
properties. It is closely related to the modified
tight-binding approximation.'!!2

Expressions for 8, of a similar form have also
been suggested in previous works,'*~!* using a
pseudopotential technique for simple metals.

III. ELASTIC CONSTANTS CALCULATION

In this section small volume-conserving lattice
changes are treated, and the energies of two crys-
tals are to be compared. Following the idea of the
linear muffin-tin orbital (LMTO)—atomic sphere
approximation—(ASA) method, the crystal is con-
sidered to be composed of WS cells of volume Q
which are assumed to be close to spheres of radius
s, as happens in dense structures (bcc, fcc, and hep
metals). In order to calculate the energy change,
one has to use, in this case, two calculations
around the equilibrium position. Equation (20) is
applied here for the calculation of the tetragonal
shear moduli C’=—;—(C11 —Cj,) of the bee and fec
transition metals through the expression

c'=3 1in})5ysf/y2 : 1)
‘y—»

From this expression it is obvious that y is to be
sufficiently small, and it has been chosen to be a
z-symmetric tetragonal strain'? under which the
point T'=(x,y,z) of the cubic crystal is transformed
into T,=(x,,y,,z,) by the vectorial equation

Xy e~ "2 0 0| |[x
.V'y = 0 e _Y/z 0 y . (22)
zy 0 0 eV| |z

This transformation keeps the volume constant to
all orders in ¥ and has a tetragonal nature.

The cubic crystal is interpreted as a tetragonal
lattice with two atoms per unit cell. The c/a ratio
of such a lattice is V"2 for fcc and 1 for bec. The
tetragonal strain expressed in Eq. (22) conserves
the symmetry of this lattice, changing the c /a ra-
tio to



1530 M. DACOROGNA, M. PETER, AND J. ASHKENAZI 26

c,/a,=c/a exp(%y) . (23)

8,% is calculated by comparing results for crystals
with ¥ values of zero and of +2% and +4%.

With the use of Egs. (20) and (21), C' is ex-
pressed as a sum of two terms

C'=Cy+Cy , (24a)
a band term defined as

Cy== i‘_‘}}, 8,80 /7", (24b)

and a Madelung term,

Cy=3Z% lim 8,8 3 . (24c)
‘y—»

Expressions of the type of Egs. (24) have been sug-
gested in the past for calculations of elastic con-
stants, but without condition (iv) for 8,%, and
condition (i) for Z . Such a work has been car-
ried out by Harrison'3 who calculated the elastic
constants of Na, Mg, and Al with the use of the
pseudopotential method.

Our calculation of the band term is described in
Sec. IV and of the Madelung term in Sec. V. The
discussion of the results and the conclusion are
given in Sec. VL.

IV. THE BAND TERM

The band term Cj is calculated by Egs. (19) and
(24b) with the use of the frozen-potential condition
(iv) for its variation under shear. This is done with
the LMTO-ASA band method,®® which has the
advantage in being able to separate between the
structure and the potential dependences of the
band problem. The former is represented in terms
of structure matrix which contains all the informa-
tion about the lattice; the latter is represented in

terms of potential parameters which characterize
the potential within a WS sphere. The application
of the frozen-potential condition under shear can
be easily interpreted within the LMTO-ASA
method, by keeping the potential parameters con-
stant, while the structure matrix is varied. As we
have already said, we use a structure matrix of a
tetragonal lattice with two atoms per unit cell (dis-
cussed in Sec. III) and a ¢ /a ratio given for any
value of y by Eq. (23). The potential parameters
are those obtained by self-consistent band calcula-
tions for the bee and fec transition metals,!” based
on the “scalar” Dirac equation’® (i.e., including the
Darwin and the mass-velocity shifts, but neglecting
the effect of spin-orbit coupling).

We introduce a variable n =n (E) which is the
number of electrons with band energies below E,
and replace Eq. (19) by

ne
8,8, =5, fo E(n)dn , (25)

where n, should be in principle the total number of
electrons per atom, but in practice we assume that
the core electrons are not affected by the strain and
consider only the valence electrons. The density of
states N (E) is calculated in discrete equidistant en-
ergy points E, with intervals E, , | —E,=AE, and

r =R is the index of the highest energy point
below Ep. Then Eq. (25) is approximated by

R—1
2 Er(nr+l’—nr)+_;'AEnR

r=1

8,8,=5,

+ [, Emdn |, (26)

where we denote n,=n(E,). One has the identity

dE 1
dn~ N(E) @n

TABLE I. Results for 8,&, in mRy/atom for fcc transition metals.

Metal
Y Cu Rh Pd Ag Ir Pt Au
1=0,1,2

y=—4% —0.310 +0.654  —0.861 —0.198 + 1.235 —1.108 —0.603
—2% —0.087 + 0.161 —0.270  —0.057 +0.304 —-0336 —0.163
2% —0.118 +0.088 —0.100 —0.067 + 0.201 —0.215 —0.192
4% —0.505 +0.287 —0.671 —0.284 + 0.733 —1.049 —-0.821

1=0,1,2,3
—4% —0.449 +0.402 —0918  —0.365 + 0.825 —1.051 —0.992
—2% —0.123 + 0.089 —0.279  —0.099 + 0.195 —0.307 —0.260
2% —0.171 —0.064 —0.190 —0.134 —0.050 —0.303 —0.337
4% —0.721 —0.340 —0.977 —0.553 —0.285 —1.363 —1.394
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TABLE II. Results for §,%, in mRy/atom for bec transition metals.

Metal
v A\’ Cr Nb Mo Ta w
1=0,1,2,3
—49 + 0.266 + 1.854 0.305 2.849 0.193 2.847
—2% 0.062 0.443 0.098 0.829 0.128 0.759
2% 0.116 0.497 0.216 0.954 0.194 0.855
4% 0.293 2.199 1.073 3.201 0.951 3.351

and denoting N, =N (E,), one gets by linear inter-
polation for ng <n <ng

—1 —1
E _ Ng41—N
51——: "4 (n —nR)—Rﬂ—-R— , (28)
dn RR +1—HR
which can be used in a quadratical approximation
for E(n) in the integral

n
S, Emidn = (n,—ng)Eg+ 3 (ng —ng ’Ng '
Ngii—Ng'!
+%(ne—nR pErl_ R
NR +1—HNR
(29)
With the use of Eq. (26), one then gets

R—1
8,8n= 3 E (8, 11—6n,)+5AESng

r=1

+8, [, E(n)dn , (30)

where the last integral is calculated by (29), and by
8, we denote the difference between the results for
v and y=0 based on the same energy scale, and
the frozen-potential condition (i.e., different struc-
ture matrices but the same potential parameters).
We use a fine energy scale (AE~0.5 mRy) for
good numerical accuracy in Egs. (29) and (30).

In order to test the accuracy of §,%,, we have
calculated it for fcc metals once for a band struc-

ture based on the values / =0,1,2 for the orbital
quantum number, and once for the values
1=0,1,2,3. The results for y=+29%,+4% for fcc
metals are represented in Table I. There turns out
to be a considerable effect due to the inclusion of
the [ =3 value. This seems surprising at first
sight, because band-structure results based on
1=0,1,2 are known to be quite accurate for the fcc
transition metals.’~2° However, we should not for-
get that the sum in Eq. (30) contains contributions
from all the valence bands with considerable mutu-
al cancellation, while the error effect due to the
neglect of [ >2 is additive. In Table II we
represent the results for bce metals calculated with
1=0,1,2,3 and for y=+2% and +4%.

Another test of these results is on the problem
of how accurately they can be used for the repro-
duction of C; by Eq. (24b). For this purpose, we
represent in Tables III and IV the averages
(6,85 +08_,&)/2, eliminating the odd y power
terms in a series expansion of the results for 8, ,.
It turns out that the ratios between the values for
v=4% and y=2% (also represented in Table III)
are always close to 4 for fcc (except for one case,
Rh, where the values divided are very small) indi-
cating that the 7? term is dominant, and that the
effect of the “computation noise” is small. How-
ever, this test on bcc metals is less satisfactory, and
the error on the band term is not as well evaluated
for this structure. One reason could be that bec is

TABLE III. Results for (3,8,+8_,&,)/2 in mRy/atom for fcc transition metals.

Metal
Y Cu Rh Pd Ag Ir Pt Au
1=0,1,2
4% —0.407 +0.470 —-0.766  —0.241 +0.984 —1.078 —0.712
2% —0.102 +0.124 —0.185 —0.062 +0.252 —-0.275 —0.177
Test 3.99 3.79 4.14 3.89 3.90 3.92 4.02
1=0,1,2,3
4% —0.585 + 0.031 —0.947 —0.459 + 0.270 —1.207 —1.193
2% —0.147 +0.012 —-0234 —0.116 +0.072 —-0.305 —0.298

Test 3.98 2.58 4.04 3.96 3.75 3.96 4.00
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TABLE IV. Results for (6,8, +6_,&,)/2 in mRy/atom for bec transition metals.

Metal
Y v Cr Nb Mo Ta w
1=0,1,2,3
4% 0.280 2.027 0.689 3.025 0.572 3.099
2% 0.089 0.470 0.157 0.892 0.161 0.807
Test 3.14 4.31 4.39 3.39 3.55 3.84

less close packed than fcc, so a change of symme-
try is more sensible and the corner corrections,'®
which are neglected here, may be important for
this structure. By the above averaging we have
mainly eliminated the y* contribution to 8,8y,
which is quite large here. It should be noted also
that this contribution does not represent a real
anharmonic effect because Eq. (20) is valid only up
to the order y? (see Ref. 7). Using a polynomial
decomposition up to 7* of these results we can
uniquely determine the y* term, and calculate Cj,
(in Ry/atom) by Eq. (24b). The obtained values
are represented in Tables V and VI. They turn out
to be negative for most fcc (except for the metals
of the IXth column of the Periodic Table, Rh, Ir),
and positive for bcc metals. Negative values of
similar band terms in elastic moduli have been ob-
tained in calculations for simple metals in the past,
as the pseudo potential calculations of Harrison!?
for Na, Mg, and Al.

The calculation errors in our results for C; come
mainly from inaccuracies in the band-structure
method (and not from the numerical work). The
errors in the results for / =0, 1,2 are (comparing
them to the [ =0,1,2,3 results (of order 200
mRy/atom, and the absence of the correction term
has an effect on the accuracy of the results for the
bce metals.

V. THE MADELUNG TERM

In order to determine Cy, [see Eq. (24c)] both
the effective charge Z ¢ and the y dependence
(around y=0) of 8,8, are to be calculated. 5,
is the change under strain in the Madelung energy
of unit charge point ions in a homogeneous neu-
tralizing background. Similar to the band term,
we calculate 6,8 ), for y=+2%, +4%, and deter-

mine the y? term in a power series expansion, by
polynomial decomposition up to ¥*. The
Madelung energies are calculated very accurately
by the method proposed by Harris and Monk-
horst,?! based on a modification of the Ewald
method, with the use of a summation in the re-
ciprocal space only and omitting an infinitesimal
sphere around k =0. The results depend here only
on the structure and not on a particular metal (up
to the inverse linear dimensions). Making the
above polynomial decomposition, one gets, for

2 4.
5 1lim 8,% ,
boalt /7

0.0750e2/a for fcc and 0.0576e2/a for bee, where
a is the cubic lattice constant. These results are
similar to the ones calculated by Fuchs.?

To evaluate the effective charge Z., let us de-
fine the spherically averaged electronic density as
given by the LMTO-ASA (within a WS cell):

1 Ep )
n(r)=z;§ [ NUE) | $E,n | HE, (1)

where N;(E) and ¢,(E,r) are, respectively, the Ith
partial density of states and the solution, for / and
E, of the radial Schrodinger (or Dirac) equation for
the spherical band-structure potential, normalized
within a cell. Equation (17) has defined what is
the effective charge but 7(s), which is the value of
the model density at the WS cell, is not defined.
So noting that nV(s) (the first  derivative) is zero
due to crystal symmetry, one can write down an
expansion in n'%(s) of Z? (since we want to mini-
mize the energy which depends on Z? and not on
Z) and keep only the first term:

d(Z?

Z%=2Z3—n(s)—" , (32)
im0 dn'¥(s) |z=z,

TABLE V. Results for C, in Ry/atom for the two calculations for fcc transition metals.

Metal
Cy Cu Rh Pd Ag Ir Pt Au
1=0,1,2 —0.17 +0.21 —0.30 —0.10 + 0.42 —0.46 —0.30
1=0,1,2,3 —0.25 + 0.02 —0.38 —-0.20 +0.12 —0.51 —0.50
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TABLE VI. Results for C, in Ry/atom for the bee transition metals.

G \4 Cr

Metal

Mo Ta : '

1=0,1,2,3 + 0.16 + 0.76

+ 0.25

+ 1.56 +0.28 + 1.36

knowing n‘?(s) and the derivative of

d(Z?)

dnP(s) ’

one gets Z2. This calculation is again based on
the self-consistent LMTO-ASA band-structure re-
sults for the fcc and bec transition metals.!”

There remains the question of how to calculate
the derivative d (Z?)/dn‘?(s) appearing in Eq.
(32). For this purpose we use the expression (31)
for the spherically averaged electronic density. We
are looking here for small variations around the
band-structure result, and there are many ways of
varying n. Variation of n(r) contain a “Fermi-
surface (FS) term” due to the variation in the occu-
pation of one-electron states close to the FS, and a
BZ term due to mixtures of states lying close to
the Fermi level from both sides.””!? Variations due
to the FS term can be expressed as variations of
N;(Ep) in Eq. (31). Variations due to the BZ term
can be expressed as combinations of products of

the form ¢;(E,,r)¢;(E,,r), where E; and E, are
the energies lying close to Er from both sides. If
such a product is approximated by ¢;(Eg,r)?, then
also the BZ term can be expressed by an effective
variation of N;(Er) in Eq. (31). But we want to
keep the number of particles constant. Certainly if
N (E) is not varied this condition is satisfied. So,
following this discussion, to vary »n one can use the
possibility offered by the LMTO-ASA method to
vary the partial density of states N;(E) at Er.
Such variations are then done with the two restric-
tions: (a) the sum Y, N,(E) is kept constant, (b)
the first r derivative n‘(s) is kept close to zero.
In transition metals, N;(Ey) are important for
essentially three / values (I >2), so restrictions (a)
and (b) leave almost one degree of freedom for
such variations and the derivative is then sharply
defined.

For the fcc metals we compare here results for
1=0,1,2 and for / =0,1,2,3. The spherically aver-
aged density and its r derivatives at r =s are calcu-

TABLE VII. Results for the effective charge and for the various quantities involved in its calculation; the units are
in powers of a,, the Bohr radius; the results for dn?'(s)/dZ | z - z, are based on assumptions (a) and (b), respectively;

Z . is calculated by Eq. (32), and rounded to two digits; it coincides (up to 0.1) with both (a) and (b) results. Here only
for fcc transition metals.

Metal
Quantity Cu Rh Pd Ag Ir Pt Au
) 79.6 92.8 99.3 113.7 95.4 101.8 113.3
1=0,1,2
n(s)x 100 3.51 4.14 3.34 2.53 4.73 4.03 3.12
nM(s)x 100 —1.86 —3.29 —2.82 —1.95 —4.14 —3.64 —2.78
n¥(s)x 100 19.8 23.2 27.2 24.5 27.5 34.1 34.5
Z, 2.79 3.84 3.32 2.88 4.51 4.10 3.53
dn'®(s)/dZ (a) —0.098 —0.112 —0.081 —0.104 —0.140 —0.109 —0.115
dn'®(s)/dZ (b) —0.107 —0.117 —0.085 —0.108 —0.154 —0.117 —0.122
Zs ' 4.3 5.5 5.7 4.7 6.1 6.4 5.7
1=0,1,2,3
n(s)x 100 3.25 4.05 3.21 2.44 4.74 3.96 3.03
nV(s)x 100 —0.78 —1.68 —1.27 —0.79 —2.17 —1.74 —1.18
n‘2(s)x 100 23.2 29.8 32.9 28.7 35.3 414 40.6
Zo 2.59 3.76 3.19 2.77 4.52 4.03 3.43
dn'®(s)/dZ (a) —0.113 —0.122 —0.090 —0.120 —0.153 —0.124 —0.130
dn'¥(s)/dZ (b) —0.119 —0.129 —0.092 —0.126 —0.170 —0.128 —0.135

Z ¢ 4.2 5.7 5.8 4.6 6.4 6.6 5.8
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TABLE VIII. Calculated values of Z, Z 4, and the relative difference between them in percents.

Element K Ca Sc Ti v Cr Mn Fe Co Ni Cu
Z, 1.126 2.16 3.28 3.36 3.13 2.84 2.59
Zr 1.106 2.08 3.34 3.72 4.5 4.8 42

éffz_i —1.8% —3.7% 1.8% 11% 449 69% 62%

0

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag
1.123 2.18 3.92 4.25 3.76 3.19 2.77
1.111 2.13 3.95 4.54 5.7 5.8 4.6

—1.1% —2.3% 0.8% 6.8% 52% 82% 66%
Cs " Ba La Hf Ta w Re Os Ir Pt Au
1.123 2.17 4.3080 4.78 4.52 4.03 3.43
1.101 1.99 4.3084 5.00 6.4 6.6 5.8

—2.0% —8.3% 0.01% 4.6% 42% 64% 69%

lated by Eq. (31), making an integration (by
Simpson’s method) based on 99 energy points in
the valence band, with a variable energy interval
proportional to N (E)~!. The wave functions
¢;(E,r) are calculated by solving the “scalar” Dirac
equation (see explanation before) with the self-
consistent potential. The first » derivatives
#y"(E,s) are calculated by accurate interpolation
(they are related to the logarithmic derivatives
which play an essential role in the LMTO-ASA
method). The second 7 derivatives ¢\°’(E,s) are
calculated directly on the basis of the radial
Schrédinger equation, which relates ¢\>/(E,s) to a
combination of ¢;(E,s) and ¢{"(E,s) (relativistic
effects on the wave functions are not expected to
be important close to the WS cell boundaries).
Let us denote

di
o
By multiplying these quantities (for i =0, 1,2) by
N;(E) /4w, and carrying out the / summation and
the integration of Eq. (31), we calculate # (s),
n(s), and n?(s), and the obtained values for the
1=0,1,2 and the [ =0,1,2,3 cases are represented

(33)

nl(i)(E,s) [ |¢I(E7r) | 2]r=s .

in Table VII for fcc metals. We also represent in
this table the values of the WS volume?® Q and of
Z, obtained by (14). The calculated value of
nM(s) deviates somewhat from zero (mainly due to
incomplete convergence of the band calculation,
especially for / =0,1,2). For monoatomic crystals
one should get by crystal symmetry that the sum
> N;(E)n{"(E,s) is close to zero for any E; so the
derivative dn'?(s)/dZ | z=z, needed in Eq. (32), is

calculated by the formula

SN/ Ep)n(Ep,s)
dn'?(s) ; pEe F

dz  |z-z, Q3 ON(Epn(Epys)
!
(34a)

where n;(E,s)=n{""(E,s) and 8N;(Ey) are calculat-
ed by restrictions (a), (b):

S SN,(Ep)=0, (34b)
1

S SN(Ep)nV(Ep,s)~0 . (34c)
1

The value obtained in (34a) is determined sharp-
ly, for transition metals, but not uniquely, due to

TABLE IX. Results for C), in Ry/atom for the two calculations for fcc transition met-
als. Also represented are the inverse cubic lattice constants a in Bohr radius units a, used in

this calculation.

Cu Rh Pd Ag CIr Pt Au

ag/a 0.1464 0.1391 0.1360 0.1300 0.1379 0.1349 0.1302
Cy for 1<2 0.41 0.63 0.66 0.43 0.77 0.83 0.63
Cy for 1<3 0.39 0.68 0.68 0.41 0.85 0.88 0.65
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TABLE X. Results for Cy, in Ry/atom for bce transition metals; aq/a is also presented.

\' Cr Nb Mo Ta w
ag/a 0.0924 0.0971 0.0848 0.0891 0.0849 0.0884
Cy for 1<3 0.12 0.15 0.15 0.21 0.18 0.25

the inaccuracy in (34c¢), and to the small contribu-
tion from />2. In practice we have carried out
two approximate calculations of (34a), based on
values of SN;(Er) determined uniquely (up to a
proportionality factor) as follows.

(a) We have assumed that 8N;(Er) is zero for
I >2 [which concerns in our case just the 8N;(Ey)
value for the calculation with [/ =0,1,2,3], and
determined 8N,;(Er) for / <2 by Egs. (34b) and
(34c), where (34c¢) is considered as an exact equa-
tion.

(b) We have applied Eq. (34b) involving 8N;(Er)
for the / values involved in the band calculation,
and in addition assumed that

[N/(Er)+8N;(Er)]/Ni(Er) , forl>2
and that

S [N/(Ep)+8N(Ep)In{(Ep,s)]
]

S N(Ep)n{"(Eg,s)
1

are both equal to
[N(Ep)+08N,(Er)]/Ny(EF) .

This assumption is based on the linkage of the
high-/ (greater than 2) components, and of the de-
viation of the calculated n''(Ep,s) from zero with
the d band (for transition metals).

The values obtained for fcc metals for

dn'?(s)/dZ | 7 _g,

under assumptions (a) and (b) are represented in
Table VII. These derivatives can now be used to-
gether with Z, and n'®(s) to calculate Zg by Eq.

(32). It turns out that the Z ¢ values obtained
under assumptions (a) and (b) coincide with each
other up to about 0.1 (i.e., about 2%). So we
represent in Table VII the Z ¢ values up to two
decimal digits, which agree with both assumptions
(a) and (b) up to a theoretical dispersion error
AZy <0.1.

By comparing the results of Table VII for
1=0,1,2 and [ =0,1,2,3, we find that the change
in Z g between the two cases is up to about 5%.
Since the LMTO-ASA band method® !¢ is based on
the determination of the band energies through a
tail-cancelation condition, obtained by expansion in
! around the WS cell center, and does not empha-
size the convergence of the density close to the cell
boundaries, it is not possible to assume, as for Cj,
that the error in Z 4 for / =0, 1,2 is considerably
larger than the error for / =0,1,2,3.

In Table VIII we show the results we got for
both Z, and Z 4 for all cubic metals and the rela-
tive change in percent between Z; and Z . It
turns out that Z . is greater than Z, by a factor
of 1.5—2 for the fcc transition metals, whereas the
charge is minimal in the first and the fifth
columns of the Periodic Table (especially for Ta).
The physical meaning of the transformation be-
tween Z, and Z . is that it represents energy ef-
fects through the variation procedure. And this
concerns, among other effects, nonlocal exchange-
correlation effects. So a large difference between
Z 4 and Z, might indicate that such effects (on
the strain energy) are important. As was men-
tioned earlier, in the free-electron limit, Zg coin-
cides with Z,, and Eq. (20) with Z ¢ replaced by
Z, should not be a bad approximation for simple
metals,>~13 with only s and p valence bands. So
pseudopotential calculations with a Madelung term

TABLE XI. Results for C’ in 10'° N/m? compared with experiments for fcc transition

metals.

Cu Rh Pd Ag Ir Pt Au
C —4.6 +0.3 —5.6 —2.6 + 1.8 —74 —6.4
Cy +7.2 + 10.7 + 10.0 +5.3 + 13.0 +12.7 + 8.4
Clac 2.6 11.0 44 2.7 14.8 5.3 2.0
C;XP 2.56 11.5 2.9 1.71 17.2 5.22 1.6
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TABLE XII. Results for C’ in 10'® N/m? compared with experiments for bec transition

metals.

\'% . Cr Nb Mo Ta w
C + 2.5 +13.9 + 3.1 +21.8 +33 + 18.8
Cy +1.9 +2.8 + 1.9 +29 +22 +3.5
Cla 4.4 16.6 5.0 24.7 5.5 22.3
C;Xp‘ 5.86 15.3 5.98 15.6 5.4 16.4

based on Z; turned out to be successful for such
metals.!?

For fce transition metals, it will be seen later
that the transformation from Z to Z . is essential
for the calculated value of C’, and that it even
determines their positive sign (except for Ir and Rh
where Cj is positive).

The values of Cj, (in Ry/atom) are obtained
w1th the use of Eq. (24¢), multiplying the result of
llm,,_,OS &y /y* by the calculated Z 2 (Table

VIII) and by a/a, the ratio between the Bohr ra-
dius and the cubic lattice constant. The obtained
values (for / =0,1,2 and /=0, 1,2,3) are represent-
ed for fcc in Table IX, together with the values of
ag/a calculated from Ref. 23 and for [ =0,1,2,3
only for bee metals in Table X.

VI. DISCUSSION AND CONCLUSION

In Tables XI and XII results for C; and Cj,
based on the / =0,1,2,3 calculations are shown in
units of 10'® N/m? for fcc and bee, respectively.
And by summing them, one obtains the calculated
tetragonal shear modulus C{,, which is compared
with C¢,y, the experimental results extrapolated to
T=0K [Pd,** Cu,”® Au and Ag,?® Pt and Ir,”
Rh,2 Vv, Nb,'? Cr,* Ta, Mo, W (Ref. 31)].

The experimental result for Rh was measured re-
cently,”® after the calculation was completed, and
its value was correctly predicted. All the theoreti-
cal results agree fairly well with experiment con-
sidering that it is a parameterless calculation and
that there is some uncertainty on the experimental
results. The only data actually needed are the
crystal structure and the electronic structure of the
atoms, all other quantities are calculated. For bcc
metals the results are less accurate. We have al-
ready noted that the band term for these metals
did not satisfy well the parabolic behavior. We
think that the main source of error comes here
from the evaluation of this term. The results,
though, are still in the right order of magnitude.

This work represents, to our knowledge, the first

successful ab initio calculation of shear moduli in
transition metals, and proves the validity of the
theoretical method presented above. Conceptually
this work completes previous works on shear
moduli in transition metals, based on a tight-
binding parametrization'?*? (where only the band
term 8,&, was actually calculated) explaining
anomalies in the temperature and the composition
dependence of the shear moduli in Nb-Zr and Nb-
Mo alloys. In Ref. 12 we have found for the band
contribution of the tetragonal shear modulus of Nb
C, =0.16 Ry/atom. It was also positive con-
sistently with what we find here 0.25 Ry/atom.
The difference may be coming from all the contri-
butions to the band-structure calculation which
were not included in these earlier works. But the
band contribution to the trigonal shear modulus as
(CZ,,,) was negative. Since the Madelung contribu-
tion to Cy4 is almost 1 order of magnitude larger
for trigonal shear (C}:=0.4286e2/a instead of
Cj;=0.0576e2/a for bee, it is reasonable to think
that we also should find a negative contribution
with this approach.

In the present work we also calculate the
Madelung term, which is essential for the magni-
tude (and even for the right sign for some fcc met-
als) of the moduli, but whose behavior is typical of
the crystal structure and is not expected to be
anomalous for a particular substance.

The use of the LMTO-ASA method enables us
to develop a perturbative expansion for 8,&, (con-
sidering only the structure constant matrix, due to
the frozen-potential condition) similar to the tight-
binding one.'>3%33 The use of the method of
Harris and Monkhorst enables a similar expansion
for 8,& ), also. Since we have made no assumption
on the type of deformation considered here (except
that it should be small), such a representation of
the method becomes adequate also for phonon cal-
culations, where again tight-binding calculations
were found successful explaining anomalies in the
phonon spectra of transition metals and their com-
pounds.?®3*3% The effective charge Z ., introduced
in our approach, being the same for all volume-
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conserving deformation of the lattice, might be
used for any phonon.
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