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sr-rotation minimum in spin-glasses
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For spin-glasses with large enough triad anisotropy of a uniaxial {as opposed to unidirectional)

nature and an external field H not necessarily along the cooling field H„we find a new energy
h A A

minimum for the spin triad (n, p, q), wherein it is rotated from the anisotropy triad (N P, Q) by

180, about the axis midway between H and H, . Experimental realization of this state is dis-

cussed, as are ESR, torque, and transverse susceptibility measurements.

I. INTRODUCTION

When a spin-glass (SG) is cooled in a field H„ it
goes into a complicated local equilibrium state. '
Since the spins point in all three directions, one must
specify any given spin in terms of an orthonormal
reference triad, which we call the spin triad (ri,p, q).'
We may take n to point along the remanence direc-
tion, but the orientation of p and q (about n ) is not
directly observable. Because of interactions with the
lattice, there is an anisotropy torque acting on the
spin system if (n,p, q ) is rotated from its equilibrium
orientation by an angle irl, the torque being opposed
to the axis of rotation p. s This enables us to define
an equilibrium orientation (with zero anisotropy
torque) for (n, p, q ), which we call the anisotropy triad
(N, P, Q) 'The ani. sotropy triad itself can rotate, but
it does this only slowly, so that for many purposes it
can be considered fixed. ' If we assume this, then for
the applied field H along H„where (n,p, q ) coincides
with (N, P, Q), we see that N is along H, .

If H is not along H„ there will be a Zeeman torque
tending to rotate n towards H. It is thus natural to
seek a ground-state solution wherein n lies in the H-

H, plane. We refer to this as the p1anar so1ution. A
ferromagnet with a single easy axis has the same
equilibrium solution. 4

Experimental studies, for a given transverse field,
of how large a longitudinal field must be to cause a
discontinuous flipping of the remanence, are in
reasonable agreement with the predictions for a fer-
romagnet. ' However, similar studies for the return
flip of the remanence are not in such agreement. 5

This suggests that when the SG flips its remanence, it
may go into a state which is not accessible to a fer-
romagnet, but is characteristic only of SG. We have
found such a state theoretically, wherein (n, p, q) is
rotated from (N, P, Q) by 180', about the axis mid-
way between A and H, . This state minimizes the
Zeeman energy (i.e., the remanent magnetization
points along H) and locally minimizes the anisotropy
energy. We have studied a number of its properties:
the necessary material parameters for its realization,
and how to produce the state when the material

parameters are favorable; its ESR frequencies; and its
expected behavior for torque and transverse suscepti-
bility measurements. The return-flip data are some-
what clarified by the introduction of this new state
(which we call the sr rotati-on state)

Before performing any detailed analysis, it would
be worthwhile to discuss the physics behind the new
solution. Although n is completely dependent upon
the rotation P —= Pitj, one can alternately consider ri

and p as variables, subject to the constraint that
ill ~ cos '(n N). If we choose the equal sign, then
ri and ill are not independent, and we obtain the
planar solution. However, if we choose the inequali-

ty, then we may vary ri and ilI independently, subject
only to the inequality. Variation of n minimizes the
Zeeman energy (giving ri along H), and variation of
g minimizes the anisotropy energy, giving p = 0 and,
for large enough uniaxial anisotropy, i' = m. Since
for H not along H, we must have n N & 1 if n is
along H, we see that the inequality eliminates the
Ill = 0 solution. All that remains, for large enough
uniaxial anisotropy, is the / = sr solution.

II. STATICS

We now proceed to write down and minimize the
energy density e believed to be appropriate to
SG's."' First, however, consider (N, P, Q) fixed at
a standard orientation, corresponding to a rotation
0 = 0. The rotation 8 = 88 of (n, p, q ) from that
standard orientation is then the same as the relative
rotation ill between (ri,p, q) and (Ã,P, Q), and we

may set p = 8. Thus we write

m - mo2 —tn H+ n —Kicos8 ——K2cos 8 . (1)1 2

2x x 2

Here rn is the magnetization, g is the isotropic sus-
ceptibility, mo is the (zero-field) remanence, and Ki
and E2 are the unidirectional and uniaxial triad anisot-

A A

ropy constants. Note that cos8=
2 (n N+p ~ P

+q Q) —
2

for triad anisotropy, whereas cos8 is re-

placed by n .N for single-axis anisotropy, ' which is
not considered in this paper. Minimizing e with
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respect to m, we obtain m = nlpn + XH in equilibrium.
Placing this in (1), and eliminating constant terms
which do not depend on the rotation, we obtain

e= —mpn H —K~COSH ——E2cos 8 .1 2
2 (2)

0= = —maH[ (H N)—sin8+(H 8)(N 8) sin8
BH-

+ 8 N x H cos8j + K sin8 . (5)

Minimization with respect to 8 gives

A A

Expressing n in terms of N, 8, and 8, we can rewrite
Eq. (2):

n = N cos8+ 8(8 N ) (1 —cos8) + (8 x N ) sin8, (3)

a= —maH[(H N) cos8+(H 8)(N 8)(1 cos—H)

+H (Hx N) sin8] —K&cos8 ——,'K2cos'8 .

(4)

Minimization of e with respect to 8 gives, with E —= K~
+K2 cos8,

We will perform a similar analysis for the m-rotation
solution.

Note that if E& = 0, and H is not along H„ the m-

rotation solution is always the minimum of energy,
with both the Zceman and anisotropy energies
minimized. Thus, if one can find a material with a
small enough Eb the m-rotation solution should be
realizable. For example, let a sample of SG be
prepared in H„so that it begins in the 8 = 0 planar
state. Now apply an H opposite to H„with
I&l & (Ki+K2)m . It is straightforward to show
that the 8 = 0 planar state becomes unstable, and n

flips into —X, via a 180 rotation about any axis in
the P gplane-. In this case, the 8= m planar state
and the m-rotation state are degenerate. If E2 )K~,
only the m-rotation state is stable. Thus, if one now
makes ~H~ very small, and rotates H back toward H„
one finds that n points along N. On the other hand,
if E2 (E~, only the planar state is stable, and this
sequence of operations would end with n along —N.
Magnetization measurements should be able to easily
distinguish between these two possibilities.

0=8x
BH,

mpH8x [[H(N— 8)+N(H 8)1(1—cos8)

+ (N x H) sine) (6)

One solution of (5) and (6) is to have 8 along
W x H with 8 finite. This is the planar solution men-
tioned above. Then (6) is identically satisfied, and
(5) determines 8; letting

III. DYNAMICS (ESR FREQUENCIES,
LOCAL STABILITY)

Bm Be „H+ K B cos8=pm x H+yK
Bt B8 BH

(9)

Let us now consider small oscillations 5m and 58
about the energy minimum for the m-rotation state.
The equations of motion are (neglecting dissipa-
tion)'6'

H = H (N cosP+ g sinP)

so N x H = Psinp, Eq. (5—) yields

maH sinp
tan8 =

K+maH cosP Now

BH Be rn - nip .
Bt 0m X X

(10)

Another solution of (5) and (6) is to have sin8 = 0
and 8 in the H Nplane. Then (-5) is identically satis-
fied, and (6) is satisfied either for cosH = 1 (so 8 = 0)
or for 8 midway between N and H (so 8= m). We
can rule out the 8 = 0 solution because then 8 is arbi-
trary, and cannot be restricted to the H-N plane
(small deviations along N x H show an instability to-
ward the planar solution). Thus only the 8= rr solu-
tion, which is the m-rotation solution mentioned
above, is relevant. We will later see that E2) K~ is
necessary for the m-rotation solution to be stable.

From our earlier discussion with i and p as vari-
ables, one can see that the planar and m-rotation
solutions are the only ones. The planar solution has
been studied in detail by Henley, Sompolinsky, and
Halperin, who obtain the ESR frequencies and dis-
cuss the associated hysteresis loop for H along N.
They find that E ) 0 for stability of the planar phase.

cosH
8 B cosH

8 8 588
BH BH

where 58= 58 Hp and we have linearized about
Hp= 7T. With 5n = 58 x n p= 58 x H, the linearized
versions of (9) and (10) become

—Sm = yam x H+ yK (88)8q,
Bt

(12)

B—58 =—(Sm —mp58 x H)
Bt X

(13)

H =N cosP+ g sinP, J =P, K = g cosP —N sinP

Pl

Because of the cross products involving H, it is con-
venient to take components of 5m and 58 in the
(H, J,K) frame, where
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S8=S8 8p=S8~cos+ —S8xsin
2 2

(16)

Letting Sm and S8 vary as e '"', (12)—(16) then im-

ply that the eigenfrequencies co satisfy

0 = «i —oo ( GpL, + «i p + ooz )

+ '[ ' o+( o+ ') . .S—'( o+ r' —
o. L)i

—cdL«io«iz(1 . S )

where S=sin(pl2) and

yH, ~p-=—gamp/x,

~.'-=-y'K/x=y'(K, -K, )/x .

(17)

(1g)

For p = 0 (so H is along H, ), Eq. (17) yields

Then, with ( ) denoting the unit vector of the en-
closed quantity,

8p= ((N+H)) =Hcos+ —K sin+
2 2

plane) for which there is no restoring force. Note
that the transverse modes here are more complicated
than for the case of single-axis anisotropy (Ref. 7)
because in the present case the anisotropy torque
points along only Q(=8p), rather than along both Q
and P. The resulting equations of motion thus have
less symmetry.

From (17) we can learn something about the sta-
bility of the m-rotation state. Use of Newton's rule
tells us that, for «i, & 0 (i.e., K2 & Ki), there are no
negative roots. Further, in the absence of dissipa-
tion, we expect co' to be purely real. Thus for
E2 )E~ we expect all three roots to be positive, and
the m-rotation state to be locally stable. As a conse-
quence, once the system enters the n-rotation part of
(m, 8 ) space, any transitions back into the planar
part of (m, 8 ) space must take place via a first-order
transition. Such transitions are well known to be
metastable, and therefore not easily reproduced.
Indeed, if anything characterizes the return-flip data
of Ref. 5, it is that there is a great deal of scatter in
the data, not inconsistent with metastability.

«I = «lL, «lo, ppz (H Il H~) (19)

The transverse roots (Srn J.H ) «&L2 and «i2p correspond
to those for a ferrimagnet with no transverse aniso-
tropy, cop associated with the "optical" mode wherein
the magnetization "beats" against the internal de-
grees of freedom, and coL associated with the Larmor
precession. There is no transverse anisotropy for this
geometry because, for triad anisotropy associated
with Hp &0, the anisotropy torque can point only
along Ho, which here is H. In addition to the
transverse modes, there is the longitudinal mode
(SR II H) at «i„driven only by the anisotropy. Note
that E2 —E~ appears in ~, because E2 provides a
restoring force, whereas Ei tries to make the state go
unstable («i' & 0 for an unstable state).

For larger values of p, the roots of (17) become
more complicated, so that one cannot clearly label a
given motion as purely longitudinal or purely
transverse. At P = m, the m-rotation state and the
planar state become degenerate, so the ESR frequen-
cies should be identical. Indeed, we find, in agree-
ment with Ref. 6, that for p = m one mode is purely
longitudinal at

IV. TORQUE AND TRANSVERSE SUSCEPTIBILITY

SPlg yg M p
Xy= =—= X+

5Hg H H
(22)

For sma11 H, this is considerably larger than what one
obtains for the planar state, where the anisotropy
prevents m from completely following H. Specifical-
ly, for the planar state with H along H„one has

mp
2

Xj=X+
K+mpH

(23)

where here K =K~+K2.

The results expected fom torque measurements are
easily obtained. Since the anisotropy torque is zero
in the m-rotation state, torque measurements should
yield a null result when the SG is in that state.

Similarly, the results expected from transverse sus-
ceptibility measurements are easily obtained. Since m
follows H in the m-rotation state, we have
Smq/m = SHq/H, or

op~ = 0 (H II —H, ) (20)

and the transverse modes are given by

Cd =
2

(CdL + «lp+ «i+)

+
2

( (cur, + «ip+ «ig) —4(«)Leap+ pog&L&o) 1

(21)

The co2 =0 longitudinal mode signifies that the planar
and m.-rotation states have become degenerate:
There is a distortion of each state (i.e., S8 in the PQ-

V. DISCUSSION

To our knowledge, there is not yet any explicit ex-
perimental evidence to establish that anisotropy in
spin-glasses is specified by an anisotropy triad, rather
than a single anisotropy axis. Study of the ESR fre-
quencies of the planar state (Ref. 6) can do this.
However, the planar state possesses the same statics
as does a uniaxial ferromagnet. The n.-rotation state
discussed here is particularly interesting because it is
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possible only because of the additional degree of free-
dom that spin-glasses possess. In addition, as we

suggest, the reverse-flip hysteresis data (Ref. 5) may
require that we invoke the m-rotation state. Thus, if
the condition Ej & E2 can be satisfied, the m-rotation
state should be stable, and should be realizable in the
laboratory (as discussed in Sec. III). Note that
E2= 4E) if the microscopic interaction causing aniso-
tropy is symmetric under spin interchange. '
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