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Surface-film thickening: An exactly solvable model
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A model is proposed, and solved exactly in two dimensions, for film thickening at a boundary

in a binary mixture.

In this Communication we consider a model of an
interface between coexistent thermodynamic phases
near a surface of the system. Our model originates
from the lattice gas with a pairwise attractive potential
and thus can describe liquid vapor, binary alloys, and
mixtures as we11 as the usual uniaxial ferromagnetic
properties. ' Suppose that the state of the system is
such that phases 3 and 8 coexist, but that the bulk is

entirely in phase A. Now suppose that the surface
wets phase 8 differentially and that this phenomenon
is represented by a differential surface fugacity ~. It
is known' for the planar lattice gas with nearest-
neighbor interactions that, according to the magni-
tude of ~, we have a phase transition at temperature
T = To(z) between a low-temperature region charac-
terized by a surface phase C& of microscopic extent
in equilibrium with the bulk A phase. For T, & T
& To(z) there is a surface phase C), then a bulk

phase of type 8 having infinite extent followed by the
bulk A phase. This is an example of the surface-
wetting phenomenon of Cahn. ' The length scale in

both C& and C( as we go to the scaling region is the
bulk correlation length.

If, on the other hand, the surface differentially
wets phase A, then we have a surface phase of type
C& and no included layer of 8 phase. This is in ac-
cord with the theory of Au Yang, de Gennes, and
Fisher. 4

A natural question raised by the above concerns
the vicinity of the coexistence region. Suppose the
bulk fugacity favors phase A. Is there ever a bulk in-

cluded 8 phase? We now discuss a simple extension
of the solid-on-solid or Onsager-Temperley version of
the above model. 5

Let phases A and 8 be separated by a region which
we represent by a thread with no overhangs (see Fig.
1).

There is a Boltzmann factor exp( —2 $E
x ~yi

—y, +t~) describing the stiffness of the line. This
is the SOS model. In our model there is an extra fac-
tor exp( —2H X ly;I) which weighs the inclusion of a

8 layer by the bulk fugacity. (Reference 2 refers to
the case H =0.) When the y, are assigned continuous

positive values we can introduce a transfer kernel act-
ing parallel to the surface whose spectrum can be
determined exactly: We take the nonsymmetrical

form of the eigenvalue equation

exp —2E x —y e H~ y dy=A. x . 1

We note that the integral operator is Hilbert-
Sehmidt whenever H & 0, whereas, when H =0, it
has a continuum spectrum on [0,1]. Thus we expect
substantial mathematical differences from Refs. 5 and
6. Using the fact that the exp( —2E

~
x —y ~ ) is the

Green's function for the differential operator

1

d 2

(1) can be written in the Schrodinger form

—4K'@ =—4K e 'H~"'$(x)
l

dx2

with the boundary condition

2Zy(0) = y"l(0) .

(2)

j J+~

Substrate

X

FIG. 1. Geometrical arrangement showing typical contour
separating components in solid-on-solid version.

Define a =2K/Hand v =1jJAE. Then the solution
of (2) and (3) is

P, (x) =A,J (o.vie H")

where the v, solve

1 )(ovi) =0

with ordering vo & v~ & . With o. &0, all solutions
are real. The correct normalization for (4) [recall (1)
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Equations (5) and (8) may be analyzed for H 0 us-
ing the uniform asymptotic expansions of Ref. 8. It
turns out that, to leading order in n, (5) gives
vi=1 +y, ni ' ', where y, solves Ai( —y, ) =0,
y, & y~+i for j «0. The y~ are real positive. The
function Ai is of Airy type; there is an equivalent
fractional Bessel form

with

Jtt3(tj) +J ti3(tj) =0

tj =2y /3 (10)

Returning to (8), the Bessel functions can be ex-
pressed in terms of Ai(u —yp), where u =2Exn 'i'.
The leading term in n tends to zero as u

Length scales other than 0, ' ' are insignificant.
Another way to anticipate this new length scale is to
expand the exponential in (2) to order Hand then to
scale the variable xas above: (2) becomes an Airy
equation directly. The conclusion to be drawn here is
that when H )0 the absorbed phase is neither of in-
finite width, nor does it scale like 1/Has might have
been expected on naive grounds; rather, it grows as
H 0 on a length scale K ''H ''. There is no evi-
dence for a sharp Cahn transition except at H =0
(Ref. 3).

The model described above is slightly inconsistent
since there is nothing prima facie to stop the surface
film detaching and disintegrating. Equation (1) can
be extended to include a contact potential p8(x)
creating a "sticky" hard wall, which gives

exp( —2Eix —yi) e 2~"P(y) dy

+pe 2&I "Iy(0) X$(x) —(11)

in place of (1). This gives the same Schrodinger
equation as (2) but with the modified boundary con-
ditions

Qt'i(0) =2E(1 —2PA. ')@(0) (12)

is not in self-adjoint form] is

~, =42H /J. (nv, ) .

Equations (4), (5), and (6) can be established by
perusal of Watson's work. 7 Evidently eigenvalues
have a homogeneous representation X, =1/Ev,' with

vj =fj(n).
The distribution of matter near the surface is given

by the function

F(y) = Jl dx e 'H"[@ (x) ]'

Define u =e 8"; then

F(y) =u'[[I —(vpu) '][J,(nvpu)]'

+[J."'(nvpu)]']/[J. (nv)]' .

The eigenvectors are again of form (4) but with the
eigenvalue condition (5) replaced by

J i(nv) =2EpvJ (nv) (13)

which is equivalent to the equation

p, =1/2E

Given E, for p & p, there is no bound state, whereas
for p )p, there is; this is the roughening transition
as in Refs. 2 and 6. Again, the scaling region can be
investigated as H 0. Taking 2PE = I+(n't3 and
v = I +2y(()n, it turns out that y(g) is smooth,
strictly positive, but has a minimum at f =0.

There is thus no Cahn transition except at H =0;
rather, the surface phase can be made arbitrarily
thick, in particular, of macroscopic dimensions, by
taking H small enough. Thus for 0 & 0, the
Burton-Cabrera-Frank argument holds: There is no
surface phase transition since the surface is one
dimensional.

We have carried out a Monte Carlo simulation of
the underlying lattice gas model using a procedure
tested against an exact solution. " This is consistent
with the length scale n' 'K ', provided K is not too
small.

Scaling Theory. Equation (1) can be modified to
obtain a scaling theory for the critical region which
gives the known profile structure for the two-
dimensional Ising model when H =0 (Ref. 11) and
the correct surface tension. ' Scaling the lengths by

gp, where gp = 1 (E ——, ln cothE) [note that the
1

correlation length is actually gp/2 (Ref. 13) showing a
breakdown of Ornstein-Zernike theory], (1) becomes

exp( —J2ix —yi) exp[ —2g(h) hy]4(y) dy = A. C (x)

(16)

Here h is the scaling field —H[ ( T, —T) / T, ] '5 8 and
the magnetization m(H, T) has been put in the form
m'g(h) (Ref. 14), where m'= [(T,—T)/T, ]'i' is the
spontaneous magnetization. '5 In this way we get a
correction to the Au Yang —de Gennes-Fisher critical
film theory; this absorbed film, already of thickness
the correlation length (p, should diverge even faster

(2Hp) t = v2 Xl/(v —v )
0

with v„ the solutions of (5): (14) may be investigat-
ed graphically. There is a pure point spectrum. As
Hp decreases, the minimal v satisfying (14) increases
from 0 towards vo, there is always a bound state in X

outside [0, 1/E] for H )0. On the other hand,
when H =0 there is a critical value of p satisfying
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in width, as /oh
' ' as h 0+.

Note. the correlation length along the direction of
the interface is given by (~j =in(ao/X~), where Xo

and A. ~ are the maximal and next-to-maximal eigen-
values of (l), provided H %0. The asymptotic
behavior of this as n 0 is thus g~~

' —2(y~
—yo) n 2~ . This type of behavior, as well as the
transverse correlation length reported, has been seen
in an approximate renormalization-group calcula-
tion. "
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