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We discuss some refinements of semiclassical calculations for the spin-wave excitation
spectrum of easy-plane ferromagnets such as CsNiF; and examine their validity for low--
spin values. We also introduce a new overcomplete set of spin states, which is used to
derive integral representations and variational approximations for the partition function
of magnetic chains with positive uniaxial anisotropy.

I. INTRODUCTION

One-dimensional magnetic systems have been the
subject of intensive experimental and theoretical
study in recent years.""? Since exact results are
scarce for all but spin-—;- models, theoretical predic-
tions have been based primarily on approximate
semiclassical calculations. The validity of semi-
classical approximations is often questioned for
low-spin magnetic systems. A typical example is
the spin-1 magnetic chain observed in CsNiF;,
which is described by the effective Hamiltonian

H=—J3S, Sy 1+43(87)?, (1.1)
n n

where J and 4 are positive constants. The purpose
of this work is to examine the domain of applica-
bility of semiclassical calculations, and to present a
new variational method for the study of easy-plane
ferromagnets such as (1.1).

Thus, in Sec. II we discuss various refinements
of semiclassical results for the spin-wave excitation
spectrum of (1.1). A coherent-state approach is
shown to lead directly to a renormalization of the
anisotropy constant familiar from the work of
Lindgard and Kovalska.> We also find that, if a
magnetic field parallel to the anisotropy axis is in-
troduced, transition to an ordered state occurs
above a critical field value B)|=Bfj. For CsNiFs,
the critical value lies in the experimentally accessi-
ble region: Bf =56 kG. We further examine the
first quantum correction to the spin-wave disper-
sion of (1.1) calculated within the conventional 1/s
expansion. We have found that both the Villain*
and the Holstein-Primakoff> (HP) transformation
lead to the same result for the spectrum, despite
claims in the literature that the HP theory is

inadequate for the description of systems without
long-range order. It should be noted, however,
that the Villain transformation offers definite cal-
culational advantages for systems with azimuthal
symmetry. We finally show that the quantum
corrections remain small throughout the spectrum,
and that agreement with experiment is obtained us-
ing the currently accepted values for J =23.6k and
A =9k.

In Sec. III we introduce a new overcomplete set
of “planar” spin states, which shares some proper-
ties with the more familiar overcomplete set of
coherent states.*” However, planar states differ
from coherent states in an important way: They
are not minimum-uncertainty states. Rather, they
favor spin configurations lying in a plane, which
suggests that planar states may be used to advan-
tage in the study of easy-plane ferromagnets.

It is notable that overcomplete sets containing
the coherent states as a special case were intro-
duced within a general framework developed long
ago by Klauder.® The same author emphasized
that judicious choices of overcomplete sets,
designed to accommodate special characteristics of
a given physical system, may prove profitable in
the study of dynamical questions. The example
described here may be thought of as a concrete il-
lustration of Klauder’s ideas, even though some
important differences arise that were not anticipat-
ed by the general treatment. For instance, path in-
tegrals derived on the basis of planar states lead to
singular classical mechanics. Nonetheless, integral
representations for the partition function are ob-
tained that can be used to derive variational
bounds through the Peierls-Bogoliubov inequality.
Hence, the results of Sec. III are used in Sec. IV to
derive a variational approximation for the partition
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function of (1.1). At zero temperature this pro-
cedure leads to a Hartree-Fock approximation for
the ground state, whereas the calculation at finite
temperature is effected by a transfer matrix tech-
nique analogous to that developed previously for
classical spin systems.>!® The results are com-
pared with semiclassical calculations, and the po-
tential as well as the limitations of the present
method are discussed.

Current interest in magnetic chains such as
CsNiF; is centered around possible observation of
nonlinear (soliton) modes.? This subject is not ad-
dressed directly in the present paper, but some of
the techniques discussed here might prove useful in
the study of difficult questions involved in that is-
sue.

II. SURVEY OF SEMICLASSICAL RESULTS

Path-integral representations have already been
used for the derivation of semiclassical approxima-
tions for spin systems.!’~!* They are most directly
derived on the basis of spin-coherent states. Con-
sider a system described by a Hamiltonian 5 that
is a function of the spin operators S,
n=1L12,...,N. Werestrict ourselves to equal
spin for all sites, namely, Sf, =s(s+1) foralln. A
coherent state associated with such a system is
then defined as the direct product of coherent
states for individual spins:

z=[ tel[_o[ﬂdﬂ(t)exp

A careful short-time definition of (2.5) and dis-
cussion of related ordering problems, boundary
conditions, etc., are not necessary for the Gaussian
approximation we consider below. Equation (2.5)
may then be interpreted as follows: The system is
described by the effective Hamiltonian

K (Q)=(Q|#|Q)=H(mp,d,) , (2.6)

quantized with the commutation relations
1
[Tnsm]= 78,,,,, , Tp=scosb, . 2.7)

Given an operator Hamiltonian 5, such as (1.1)
the effective Hamiltonian is obtained by calculat-
ing the diagonal matrix elements of 5 in the
coherent-state basis (2.1). The following table of

b

ifont Lélscose,,é&,, —(Q|x| Q)

N
|‘Q>= @1 lQn> ’
"= @.1)

|S>n ’

2s

0 0 i
[Q)= cos—2i exp[ tan—zn— s,

0<O,<m, 0<¢, <27

where S, is the usual lowering operator and |s),
is the state with maximal weight.

The resolution of unity in terms of the overcom-
plete set of the (normalized) coherent states (2.1) is
given by

fdajaxe|=r,

d0=T[

whereas traces of operators may be transformed
into integrals over diagonal matrix elements in the
basis (2.1). For instance, the trace of the evolution
operator may be written as

Z(T)=Tre ~#*T

2.2)
25 +1
47

sin6,d0,ds,

’

= [da(a|e~*T Q). (2.3)
The identity
T A
e T lim |1—i—wr| , (2.4
Ao A

and repeated application of (2.2), may be used to
convert (2.3) into the path-integral representation

. (2.5)

[

matrix elements taken from Ref. 11 will be suffi-
cient for our current calculation:

(Sy) =s sinf,cosd, ,

(S ) =s sinf,sing, , 2.8)
(S7)=scosh, ,

((SE)?)=s(s — % )cos?0, +s/2 .

Extending (1.1) to incorporate a magnetic field
B, in the x direction, we write

H=J3[-S, Spp1+a(SIP—b,S7],
n (2.9)
a=A/J N bl=g,uBBl/J .
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The corresponding effective Hamiltonian is calculated with the aid of Eq. (2.8):
H(Q)=J3, { —s*[c080,c080, 1 +5inb,sinb, , 1cos(¢, —d, 1 1)]
n

+a[s(s — % ) cos?0,, +s /2] —sb sinf,cosd, } , (2.10)

which should be viewed as a function of the coor-
dinates ¢, and the canonical momenta
T, =5 c0s0,.

To derive the Gaussian approximation, we ex-
pand (2.10) around its minimum at 6, =/2 and
¢,=0, or 7, =0 and ¢, =0, and keep terms that
are at most quadratic:

H( Q)T (—s2+as/2—sb ) +H, ,

(2.11)
b
Ho=J, 1+a+— Mo — T Ty 41
" 2s
2 b, 2 2
+s 1+—2_— ¢n_s ¢n¢n+1 »
S
a=a(l—1/2s).

The c-number term in the above expansion is the
leading contribution to the ground-state energy.
2y may be diagonalized by the standard Bogo-
liubov transformation to yield the magnon spec-
trum

b,

E,=2sJ 1—cosp+—2;—
1 b 172
X |1—cosp + s +a >

(2.12)

A
a= —1 =
ad=a(l—1/2s) 7

1—

b

1
2s

b,=gupB,/J .

The magnon dispersion (2.12) differs from
Villain’s” classical dispersion only by a “renormali-
zation” of the anisotropy constant, a—&
=a(l—1/2s), which occurs also in the work of
Lindgard and Kowalska.> The importance of this
renormalization in the analysis of experimental
data for CsNiF; is discussed in Ref. 14.

The case of _a magnetic field parallel to the an-
isotropy axis, B=(0,0,B“), may be treated in a
similar manner. The operator Hamiltonian is now
given by

[
H=J3 [—Sy - Spp14+a(SP—bSE],
" (2.13)

and the associated effective Hamiltonian is found
to be

H(Q)=J, { —s*[cosB,cosb, . |
n
+sind,sinb,  cos(¢, —d, 4 1)]
+afs(s— % )cos?0, +5 /2] —sb/ cosb, } .
(2.14)

A translationally invariant minimum of (2.14) is
given by ¢, =4¢ (arbitrary constant) and 6, =0,
minimizing the function

H(0)=NJ | —s?+ 52_S_ +as(s — ) cos?0
—sbjcosf | . (2.15)
This leads to the algebraic equation
(2s@cosf@—b))sind=0, (2.16)
a=a(l—1/2s),
which possesses the solution (s#_%)
_ by
cosf= , 2.17
2sa

a local minimum for magnetic field strengths
below a critical value Bfj:

b
—L <1 =B <(2s — 4 /guy =B .

25
(2.18)

For B _>_B|°|, the second root of (2.16), sin@=0, be-
comes a local minimum describing an ordered (fer-
romagnetic) state in the z direction. Notice that
the ordered state is an exact eigenstate of (2.13) for
all values of the magnetic field B||. In general,
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however, it is not the ground state. The preceding
semiclassical argument indicates that level crossing
occurs at B =B|°|, so the ordered state becomes the
ground state of the system for B > Bf).

To probe the validity of the above picture we
calculate the magnon dispersion in both regions.

(1+@sin®0)ymr’ —mymy 41

%(Q):Jz

n

sin%0

which leads to the magnon dispersion
E,=2sJ[(1—cosp)(1—cosp +asin’0)]'/?,

(2.20)
» By <Bj .

2
— 25—1 A

in2g==>""-2=
asm o=

B

Bj}

1—

The critical behavior revealed by the preceding
calculation could, in principle, be an artifact of the
employed approximations. However, an argument
due to Alevizos (private communication) suggests
that the critical-field value given by Eq. (2.18) may
be exact, even though (2.20) is an approximation to
the spectrum. As mentioned earlier the state with
all spins aligned in the z direction is an exact
eigenstate of the original Hamiltonian. Further-
more, the exact one-magnon excitation around the
ordered state may be derived in complete analogy
with the case of an ideal ferromagnet:

E,=2sJ(1—cosp)+[gupB —(2s —1)4]. (221

The energy gap E, _o=gupB||—(2s —1)A4 ceases to
be positive below the field value B)=(2s —1)4/
glp, which coincides with the critical value found
in (2.18). This coincidence suggests that the criti-
cal field Bfj may actually be exact. It should be
noted, however, that the above argument does not
prove that ordering occurs for B|| > Bfj; it merely
establishes that the ordered state cannot be the
ground state for B)| < Bf).

The critical field for CsNiF; is found by using
the values'* s =1, g =2.4, and 4 =9k in Eq. (2.18),
which yields the relatively low value B f| =55.8 kG.
Experimental verification of the above result
should thus be possible and might provide further
tests of the model. Already at B||~40 kG, the
dispersion (2.20) differs appreciably from the free-
field result, and from the magnon dispersion for a
magnetic field in the easy plane, Eq. (2.12).

The Gaussian approximation discussed so far

For B)| < Bj), the Gaussian approximation is ob-
tained by expanding (2.14) around its minimum,
shifting fields according to 7, —m, +5 cos@ and
¢,—¢, +¢. Dropping inessential constants and
higher-order terms, a straightforward calculation
yields

+52sin’0(92 —dpdbn 1) | » (2.19)

|
may be extended to include higher-order correc-
tions obtained by a loop expansion of the path in-
tegral (2.6). Such calculations require special care
to avoid ordering problems and will not be
described here. Instead, quantum corrections will
be considered later in this section within more con-
ventional operator techniques. As it stands the
path integral (2.6) might, however, prove useful for
WKB quantization of space-time—dependent ex-
trema of the associated classical action. These are
solutions of the classical equations for an effective
anisotropy a—a =a(1—1/2s) and spin magnitude
equal to s. In the continuum limit the relevant
classical equations are those studied by Long and
Bishop,!® with minor modifications to incorporate
the effective anisotropy @. Notice that the classi-
cal spin magnitude is equal to s rather than
§=Vs(s +1). The latter choice is often con-
sidered to be more appropriate in order to account
for quantum effects. Our calculations do not sup-
port such a choice. Rather, quantum corrections
are properly handled as small fluctuations around
classical configurations and by the appearance of
the renormalized anisotropy @. Similarly, Lieb’s
semiclassical bound for the partition function'!

Zy=Tre #"= [ dO(Q|e~#7|Q),

Zo> fdQe‘ﬂ(m”]mEZc (2.22)
may be calculated by the transfer matrix technique
developed for this system in Ref. 16, modulo the
reinterpretation of parameters discussed in the
preceding paragraph.

We finally turn to a brief description of quan-
tum corrections to the ground-state energy and the
magnon dispersion, without giving calculational
details. Anharmonic corrections have already been
calculated by Mikeska and Patzak.!” The reason
we reconsider such calculations is to provide more
detailed expressions than those given in Ref. 17,
and to discuss a few theoretical points concerning
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the method of calculation. We only consider the
case of vanishing magnetic field for which closed-
form results may be given. Thus, the 1/s expan-
sion of the ground-state energy of (1.1) reads

Egy=NJs’[ey+€/s+€/s*+0(s )],

€=—1, (2.23)
5 172 5 172

€§=— z + 1+Z |arctan | = -1,
T 2 2 a
2 |a 172 ) 172

62=—1—r2— [?] arctan ;J —%ef,

a=A/J
whereas the magnon dispersion is given by

E,=2sJ[(1—cosp)(1—cosp +a)]'/?

X[1+8,/s +0(s~ )],
(1—cosp)C(a)+Cy(a)

8, = ,
l1—cosp+a (2.24)
1 172 ) 12
a T
Cila)= 113 +arctan | — ] ) l ,
172
a a a
== |= 34—
C2(a) o 2 + + 2
1/2
Xarctan |— | —7

Reexpansion of the above expressions in inverse
powers of §=V's (s +1) is straightforward using

. 11 (2.25)
s=f|l——4+—+...
l 26 8§°

For instance, the ground-state energy (2.23) may be
written in the form

€1—E€ €+ (eg—€1)/2
Eg=NJ§? |6g+ ——— 4+ ————
S S
A—3
+06 )} ’ (2.26)

whereas re-expansion of (2.24) leads to expressions
that can be compared with the explicit results of
Ref. 17, concerning the region p~0; agreement is
thus obtained. However, a closer examination of
(2.26) suggests that the 1/§ expansion may not be
preferable to the 1/s expansion given by Eq. (2.23).
Applied for a=0.38 the series (2.23) reads

—1

2
Eg=NJs .

" 0.15609 "
s s

0.013 373
v,

which is a smooth series that should give reliable
estimates even for s =1. In turn, the series (2.26)
yields

E, =NJ§?| -1

115609 0.s6467 |
§ §2

which is too irregular to provide reliable results for
§=V1(1+1)=V2. From the mathematical point
of view the above series are identical in the sense
that they should both reach the same limit if a suf-
ficient number of terms are included. In practice,
however, only a few terms of the expansion can be
calculated, so the choice of the expansion parame-
ter becomes a pragmatic issue. Within the limits
of the current calculation the 1/s expansion yields
faster convergence; it will thus be used for the
comparison of (2.24) with experimental data for
CsNiF;."%18 Table I contains the results for s =1,
J =23.6k, and a=A4/J =0.38. Notice that the
quantum correction 8, remains small (and nega-
tive) throughout the spectrum; its largest values oc-
cur in the region p~O0 because of the delicate in-
frared structure of this theory.

We conclude this section with some comments
about the method of calculation of (2.23) and
(2.24). They were obtained with the standard HP
transformation, which was shown to lead to the
same 1/s expansion for the energy spectrum with
the Villain transformation used in Ref. 17. In-
frared divergences appear in intermediate stages of
the calculation, reflecting the metastability of the
classical configuration upon which the derivation
of the 1/s series is based. Nonetheless, infrared
terms cancel each other in a consistent 1/s expan-
sion of the energy and the remaining finite contri-
butions are identical to those found by the Villain
theory. The latter theory is computationally
preferable only because it exploits in a natural
manner the azimuthal symmetry of this problem.

III. OVERCOMPLETE SET OF
PLANAR STATES

The remainder of this paper is the result of our
effort to derive independent approximation
methods that could be used to check the consisten-
cy of semiclassical calculations. Experimentation
with simple variational functions for the ground
state of (1.1) suggested to us a new overcomplete
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TABLE 1. Predictions of (2.24) and comparison with experimental data for CsNiF;.

p/m 0.1 0.25 0.35 0.45 0.55 0.65 0.75
5 —0.14103  —0.092768 —0.069571 —0.054574 —0.045071 —0.039041  —0.035265
E, (meV) 0.506 1.638 2.691 3.906 5.177 6.382 7.406
Experimental® 0.45 1.7 2.7 39 5.15 6.4 7.45

*Reference 18.

set of spin states, which appears to be suitable for
the description of easy-plane ferromagnets. This
section is devoted to the study of some formal
properties of such states.

To simplify the notation we first consider the
case of one degree of freedom S=(S*,5”,5%. Gen-
eralization to many degrees of freedom is straight-
forward and will be worked out in Sec. IV alon
with some concrete applications. For spins = -,
a discrete basis is provxded by the usual linearly in
dependent states | + ) defined by the relations

Pl+3)=5(3+D]+3),

Slezd=t3127), 3.
S*|7y=0, $*|-1)=13),
$713)=1-7), $7|-3)=0.

We now consider an one-parameter family of nor-
malized states | ®), which are linear superposi-
tions of the basic vectors | +5 ) with real coeffi-

cients;

| ®)=cos -‘22 |2)+sm

% 1
=Y

(3.2)

(®|P)=1, 0<d<27.

The restriction of the angle ¢/2 to the upper semi-
circle was dictated by the observation that states in
the lower semicircle are already contained in (3.2)
up to an overall sign.

The family of states (3.2) shows some formal
analogies with the coherent states (2.1), which sim-
plify to

| Q) =cos g | +)+sin |- [e] —5)

0<0<m, 0<d<2m (3.3)

for spin s = % Notice that the above superposi-

tion contains complex coefficients in contrast to
(3.2). Nevertheless, the family of states (3.2) forms
an overcomplete set in analogy with the coherent
states. Thus, the resolution of unity reads

[do o) (| =1, d(b:idqb,

O<p<2m . (3.4)

This may be verified by substituting (3.2) in (3.4)
and by usmg the completeness relation

| 35|+ | ——)(—— | =I. Puttmg it different-
ly, a state |¢) = a12)+Bl 5 ), where a and B
are arbitrary complex coefﬁc1ents, may be
represented as

|9)=[do| o) (®|y) . (3.5)

In order to understand the structure of the states
(3.2) in more detail, we calculate simple matrix ele-
ments between the states |®) and | ®’'):

(®|®')=cos -‘L_z—-ﬂl ,
(®|S*| ®')=7sin M—; : )

(3.6)
(® |‘S"|<I>’)=—;—sin $—¢'

(®|S5%| ') =+cos $+¢'

Restriction of the above expressions to diagonal
matrix elements leads to the result:
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(®|S*|®)=7sing, (®|S”|®)=0,
(| S?|D)=5coss .

(3.7

Therefore, the average spin in the y direction van-
ishes, which suggests the name “planar” for the
family of states (3.2). This terminology should not
create the impression that planar states span only a
submanifold of spin states; as is shown in Eq.
(3.4), (3.2) is an overcomplete set in the sense that
it provides an integral representation for the reso-
lution of unity.

Further insight is obtained by examining rota-
tions of the states | ®) around the y axis:

_,—iwSY
"pm)——e I(p> ’ (3.8)

(2]

2

—iwSY (0] . —
e 08 —cog | = | —sin (St—87).

Explicit calculation using the definition (3.2) in Eq.
(3.8) yields the simple result

$+o
2

$+o
2

|5

| ®,)=cos

(3.9

+sin |—';_>’

whereas rotations around the x and z axis act in a
complicated manner. Hence, the kinematical prop-
erties of planar states appear to be suitable for the
description of systems with azimuthal symmetry.

We next consider generalization to the more
complicated spin-1 case. The usual discrete basis
is defined by

LAWRENCE R. MEAD AND N. PAPANICOLAOU

l+cosw  sino  1-—cosw
c; 2 vz 2 ¢
, sin sinw
Co |= ‘/gj COS® -5 Co
Cl l—cosw  sino  14cosw Ca
2 V2 2
where the primed coefficients are defined from
[®,)=Ci[1)+Co [0)+C_ | —=1) . (3.15)
Inspection of (3.14) suggests the parametrization
__ cosf+cosé sinf m
Ci= 3 , 0<0<~
Co=singsin , 0<d <27 (3.16)

cosf—cos¢ sind
Cc_ 1= ‘/'2‘ ’

S| +1)=1(1+1)] +1),
§2[0)y=1(1+1)|0),
S* 1) =(£1)] +1),

$%|0)=0,
S~|1)=v2|0), §7|0)=V2|-1),

(3.10)

S~|—-1)=0, S*|1)=0,
S*T|10Y=v2|1) ,S*|-1)=v2|0).
A family of normalized planar states is sought in
the form

[®)=Cy|1)+Co|0)+C_y| —-1),

(3.11)
cl+ci+cr =1,

where C,; and C, are real coefficients.
To find a natural parametrization of (3.11), we
examine a general rotation around the y axis,

[®,)=e"0% | D), (3.12)

which can be explicitly calculated using the identi-
ty

e oS =1 —;-sinco(S+ —-57)

++(1—coso)( S+ —S—), (3.13)

valid for s =1. The result of a direct calculation
may be presented in the matrix form

) (3.14)
T
so that Eq. (3.14) takes the simple form
cl= cosf+cos(¢ + ) sind ’
V2
Co=sin(¢+w)sinfd , (3.17)

_ cosb—cos(¢+w)sind

C'_]— '\/5

Without loss of generality, the parameters 6 and ¢
in Eq. (3.16) have been restricted to the upper
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hemisphere.

The family of states defined by Egs. (3.11) and
(3.16) forms an overcomplete set in the sense that
the resolution of unity reads

[av|e)e| =1,

d®=——sin6d6ds , (3.18)
21

Osesg, 0<p<2m

as can be established by a simple calculation, in
. . 1 . . .
analogy with the spin- case discussed earlier in
this section.
It is now a simple matter to calculate useful ma-
trix elements such as

(® | ®') =cosb cosd’
+sinfsinf’cos(¢—¢') ,
(®|S*| ®') =singsin6 cos’
+sing'sind’cos6 , (3.19)
(®|S”|®')=isin(¢—¢')sinfsind’ ,
(@ | S%| ') =cosé sinf cosb’
+cos¢'sinf’'cos0 .

Restriction to diagonal matrix elements results in
(®|S*| ®)=singsin20 , (P|S?|P)=0,
(®|S?| D) =cos¢sin20 , (320

where we again note that the average spin in the y
direction vanishes. Nevertheless, the variance of
S? does not vanish:

(®[(S?)?| ®)=sin’0 , (3.21)

a fact that will be important for the dynamical cal-
culations of Sec. IV.

Before considering specific applications of the
preceding kinematical results, we briefly indicate a
generalization to arbitrary spin. An overcomplete
family of planar states may then be defined from

|®)= 3 Culsp), (3.22)
p=-s

where the C,,’s are real coefficients satisfying the
normalization constraint

S
S ci=1. (3.23)
p=-—s
A natural parametrization of the (2s +1)-
dimensional sphere of unit radius defined by (3.23)

should again be found by examining a rotation
around the y axis. We do not work out the details
here but merely indicate that the definition of
planar states requires a number of parameters that
increases with spin, in contrast to the coherent
states (2.1) that are specified by two real parame-
ters for arbitrary spin.

We now assume that a dynamical system is
described by the Hamiltonian J#=2#7(S). The cor-
responding partition function may then be ex-
pressed as an integral over diagonal matrix ele-
ments in the basis of planar states:

Zo=Tre 8= [ dd(®|eP¥|D) . (24

An immediate application of (3.24) is the deriva-
tion of a lower bound for the partition function *
through the Peierls-Bogoliubov inequality

Zo> [ddeFeIxI®) (3.25)

which is studied in Sec. IV. The rest of this sec-
tion concerns possible elaboration of Eq. (3.24) to
derive path-integral representations following the
general treatment of Klauder,® to which the in-
terested reader is referred for a detailed exposition
of the procedure.

The interval [0,8] is partitioned into A equal
links of length e=fB/A. To each site i =0,1,2,...
one associates a variable ®(i) that defines a planar
state | ®(i)). Using an identity analogous to (2.4),
and repeated application of the completeness rela-
tion (3.4) or (3.18), leads to the multiple-integral
representation for the partition function:

. A -1
Zg= lim fl_]odcb,-e A,

A>w) '~

A
In=73 [—In(®(i +1) | ®())
i=0

+e(®(i +1)| 7| D(i))],
(3.26)

P(A+1)=D(0) .

By construction, the limit €0 (A— o) of
(3.26) should reach the exact partition function of
the system described by the Hamiltonian 7. It is
thus instructive to examine the formal continuum
limit of the effective action I, appearing in Eq.
(3.26). This is accomplished by the replacement

62(<I>(i+1)|%[<I>(i))~f:d7'(<l>|%l¢> ,
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and by explicit calculation of the continuum limit
of the kinematical terms appearing in (3.26). For
5= %, we may use Eq. (3.6) to write

2

~ % foﬂdréiz ,

where the dot denotes differentiation with respect
to the continuous Euclidean time 7. Hence, the
continuum limit of the effective action (3.26) is
presumably

£—¢Z+(¢|%|¢>].

B
Is=7)=[ dr
(3.27)

A similar calculation for s =1, using Eq. (3.19),
yields

B . .
Is=1)= [ "dr | =6 +sin0¢")

+(<1>];V|<1>>]. (3.28)

Comparison of the explicit formal limits (3.27)
and (3.28) with the general results of Ref. 8 reveals
a surprise: Terms containing first-order derivatives
have dropped out of Eqs. (3.27) and (3.28) while
second-order derivatives are weighted with the
small parameter €, which will eventually be set
equal to zero at the end of the calculation. One
may then conclude that the “classical” mechanics
associated with the overcomplete set of planar
states is singular, or that the c-number configura-
tions relevant for the evaluation of the multidimen-
sional integral (3.26) become singular in the con-
tinuum limit. Although several methods have been
developed in recent years for handling such singu-
lar problems ( singular perturbation theory, boun-
dary layers, multiple-scale analysis, etc.), we have
not yet been able to directly explore the path-
integral representation (3.26). We shall thus re-
strict ourselves to the study of the variational
bound provided by Eq. (3.25).

IV. VARIATIONAL METHOD

The kinematical discussion of the preceding sec-
tion suggests that planar states may be useful for

the study of easy-plane ferromagnets, whose
dynamics favors planar spin configurations. More
precisely, one should be able to derive approxima-
tions that are sensitive to the planar behavior in-
duced by the dynamics.

In order to exploit the properties of planar states
the Hamiltonian (1.1) is written in the physically
equivalent form

N
H=JZ [—S, Sy 1+alS?)], @.1)

n=1

which is taken to describe a system with spin s =1.
We further generalize the spin-1 planar states de-
fined by Eqs. (3.11) and (3.16) to an arbitrary num-
ber of degrees of freedom:

N
|¢)=n§1 tq)")’

’q>n>=cl,n | l)n +C0,n ’ 0>n +C—1,n I “1>n
cos@, +cosd,sing,
= 3 R

Co,n=sing,sinb, ,

4.2)

Ln

cos@, —cos$,sinf,

Corn= V2
The resolution of unity reads

[dojo)e| =1,

(4.3)

b

N
do=[[

n=1

%sine,,de,,dq&,,

0<6,<—, O0<¢,<27.

SYE}

The statistical sum for the system (4.1) may then
be written in the integral form

Zy=Tre "= [ do(®|eF"|0), (44)

which is an exact representation for the quantum
partition function.

A variational approximation is obtained by ap-
plying the Peierls-Bogoliubov inequality

Zg> [doeFeIX V=7, 4.5)

The free energy defined in terms of Zp is a
rigorous upper bound for the free energy of the
quantum system. It will be taken here to define an
approximation to the thermodynamics of (4.1).
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Therefore, our task will be to evaluate explicitly
the multidimensional integral (4.5). The explicit

form of the diagonal matrix elements of the Ham-
|

iltonian appearing in (4.5) is obtained by a simple
generalization of Egs. (3.20) and (3.21) to many de-
grees of freedom:

N
H(@)=(P | ¥ | ®)=J 3, [—sin(26,)sin(26, ) cos(¢, —d, . 1) +asin’f,] . (4.6)

n=1

The zero-temperature (8— ) limit of (4.5) is
dominated by stationary points of the effective
Hamiltonian #(®). This is equivalent to a
Hartree-Fock approximation for the ground state
corresponding to a variational state of the form
(4.2). A translationally invariant minimum is
found by setting 6, =6 and ¢, =¢ in Eq. (4.6).
The variable ¢ drops out of the energy as a result
of the underlying azimuthal symmetry. Thus,

#(®)=NJ[ —sin*(20) +a sin’0]=570) . @7

Extrema of the function #7(0) are roots of the
algebraic equation

cos20—% $in20=0, oseg%. 4.8)

Restricting our attention to minima of #7(6) we
find that

cos20=% fora<4,

(4.9
sind=0 fora>4.
The variational energy is then given by
2
Eg/NJ=|" 11_“ fora<d4 (410
0 fora>4

and the corresponding variational ground state by

|®)=8 |®,),
|®,)=7(VaFa+cospvd—a)|1),

|
+ YW singvV'4—a |0),

+3(V&Fa—cos¢Vi—a)| —1),
fora<4 (4.11)

I<I>,,)=—‘/l-5(ll),,+l—1),,) fora>4,

where the symbol ® , again denotes the direct
product. The arbitrary parameter ¢ in (4.11) re-
flects the azimuthal degeneracy of the variational
state and may be set equal to zero:

| ®,)=+(VE+a+Vi—a)|1),
+5+(VEra—VvE—a)| -1),

fora<4 .
(4.12)

1
|<I>,,>=75(|1),,+|——1),,) fora>4.

In Fig. 1 we compare the predictions of the sim-
ple variational result (4.10) with Lieb’s semiclassi-
cal bound for the ground-state energy, which can
be extracted from Eqs. (2.11) and (2.22) applied for
s=1; Ep/NJ = —1+a/2, and with the predic-
tions of the 1/s expansion summarized in Eq.
(2.23). It is notable that all three approximations
coincide in the weak-anisotropy region, where
Eg, /NJ~—1+a/2. However, the semiclassical
bound deteriorates rapidly for strong anisotropy,
while the results of the 1/s expansion remain fairly
consistent with the present variational bound over
a wide range of values for a. Ultimately, the pre-
dictions of three terms of the 1/s expansion also
become inadequate, as is shown in Fig. 1. Notice
that our variational result establishes that the
ground-state energy cannot be positive for any a.

The simple variational state (4.12) has shown
unusual resistance to improvements. We have tried
to lower the energy by the moment method, which
consists of constructing a new variational state

) =|®)+r7| @), (4.13)

where | @) is the state (4.11) or (4.12), 5 is the
Hamiltonian operator (4.1), and A is the new varia-
tional parameter. The energy is then obtained as
the minimum of

£ (G| | )
* (Yal )

A nontrivial solution (A5£0) is normally guaranteed
by the nonvanishing of the variance of the Hamil-

(4.14)
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E/NJ

-1
FIG. 1. Ground-state energy for the spin-1 chain: (a)
semiclassical bound, (b) variational bound, Eq. (4.10),
and (c) predictions of three terms of the 1/s expansion
applied for s =1, Eq. (2.23).

tonian in the approximate ground state | ®),
namely, by

(D | #| D) —(D| 7| D)0 .

However, using the variational state (4.12) as in-
put in Eqs. (4.13) and (4.14) does not lead to im-
provement of the energy. Technically, this is due
to the vanishing of the variance of the Hamiltoni-
an in the state (4.12). A lengthy calculation shows
that

lim —12[(<1>|%2|q>)—(<1>|%|q>)2]=0,
N—>w N
(4.15)

which renders the moment method inapplicable.
On the other hand, Eq. (4.15) and application of
the Schwarz inequality would seem to imply that
the state (4.12) is an exact eigenstate; this can be
disproved by a direct calculation. The resolution
of the paradox apparently lies in the N— oo limit
involved in Eq. (4.15). While (4.15) implies that
the variance per site vanishes, the variance itself is
of order N, () —(#)*=0O(N).

We now return to the evaluation of the approxi-
mate statistical sum for any temperature, accom-
plished by a transfer matrix method analogous to
that developed for the study of a classical version
of this theory.!®!® Using a periodic lattice, the in-
tegral (4.5) may be written in the symmetrized
form

N
Zp= [ [] d9,G(®,,®, 1),
" 4.16)

_ in2
G(¢n;¢u+1)=e 1/2apBsin%6,

XeBSiHZBHSin26n+ICOS(¢H —bn11)

—1/2aBsin%g, ,
Xe LA

where we have used the notation B=pJ. The
problem then reduces to finding the eigenvalues of
the integral equation

[ d¥'G(0,8)f,(¥)=A,f,(®) . (4.17)

Thanks to the azimuthal invariance of the ker-
nel, eigenfunctions of (4.17) may be sought in the
form

Su(@)=£,(0,¢)
_ [cosmq&

sinm¢

¢n,m(9) , m =0,1,2 ge e e

(4.18)
Inserting (4.16) and (4.18) in (4.17) and performing
the azimuthal integrations'® leads to the eigenvalue
problem

m/2
fo SINO'd0'G (6,0 0y 1 (6) =5 A, m ¥ m(6) ,
(4.19)
Gm ( 0, 01) =Im (B sin29 sin29' )e —1 /2aB(Sin20+sin29') ,

where we have used the phase space defined in Eq.
(4.3), and I,,(x) is the modified Bessel function of

the first kind. Only the largest eigenvalue of (4.19)
contributes to the statistical sum, in the limit

N — w0, which corresponds to vanishing azimuthal

quantum number (m =0):

/2
fo siné’ d6'Go(6,6' ), o ') = 5 Ay ot ol 0) -
(4.20)

In terms of the largest eigenvalue of (4.20), which
we denote by Ag o=A,, the variational statistical
sum is given by

Zp= Nlim (A . 4.21)

The explicit calculation of Ay=Aq(a,B) is effect-
ed by a numerical method that exploits the special
structure of the kernel in (4.20). Using the Taylor
expansion for the Bessel function

2 (x/2)%
I =
o= 2 =y

which converges for all x, the kernel G, may be
written in the quasidegenerate form

Go(6,8)= S, M (OM,(8),

k=0 4.23)
k
(

, (4.22)

. _ 02,
sm20)2ke 1/2aBsin%6 .

_11|B
Mi(0)=— [2




Therefore, an iterative numerical scheme may be

derived by truncating the infinite sum in (4.23) ac-

cording to
L—1

=3 Mi(0)M;(6') (4.24)
k=0

GE)L)

and by calculating successive approximations to
the eigenvalues through diagonalization of the
L XL matrix (L =1,2,.. .):

m/2
A= [, sinddO MO Mi(0)

_ yk+l

w/2
=_1_[E [ sin6 d6(sin20) +*
k|2 0

% e—aBsin29 , (4.25)

k,1=0,1,...,L —1. The integral in (4.25) may
be expressed in terms of known special functions:

k+1-1
(L _2"""" pk+l,—aB L
A= B*tle=PB(k +1+ 1,k +1+7)

X Ok +1++,2k +21 +3,aB),  (4.26)

where B(u,v) is the B function and ®(u,v,z) is the
degenerate (confluent) hypergeometric function. In
practice, the integral in (4.25) was calculated nu-
merically for a variety of values for k, I, a and B.

To summarize, the maximal eigenvalue of AP
was computed by numerical diagonalization and its
convergence for L =1,2,... was examined. The
procedure was stopped after the result had stabi-
lized to six figures. Apparently because the modi-
fied Bessel function I is an entire function, the al-
gorithm converges very rapidly. A few iterations
suffice in the region B <1. An increasing number
of iterations is necessary for larger values of j, but
matrices not larger than 2525 are required in the
low-temperature region B~15. In the extreme
low-temperature limit B— o0, Aq may be obtained
analytically by a steepest descent calculation analo-
gous to that described in Ref. 16:

Ao~ Zﬁf) Pu—asa?
B

4.27)
y(a)=%/—-2—{(1+a/4)

X[1+V1—(as4)*]}~12,

where we recognize in the exponent the variational
ground-state energy obtained in Eq. (4.10).
An independent verification of the results was
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carried out with the numerical method of Ref. 16,
where the integral equation is transformed into a
matrix eigenvalue problem using Simpson integra-

~tion. While the results of the former calculation

were confirmed, the latter algorithm was much
slower. It should be noted, however, that the
current method does not apply to the classical-spin
problem because the corresponding kernel cannot
be written in a quasidegenerate form.

We shall not tabulate values for A, but calculate
the specific heat

cmv:ﬁ%%—z-lnxo . 4.28)

The second derivative was obtained numerically on
the basis of results for Ay that were eventually ac-
curate within five or six figures. The accuracy
demanded for (4.28) was better than 1%, which al-
lowed us to plot the magnetic specific heat versus
temperature for «=0.38 and a=2; see Fig. 2. The
general structure of the curves obtained is qualita-
tively similar to the classical results of Ref. 16,
especially because the variational specific heat also
reaches the unphysical value C/kN =1 (instead of
zero) at low temperatures, as could have been anti-
cipated from the asymptotic result (4.27). The de-
tailed predictions of the current calculation are, of
course, different from the classical results. Notice
that the low-temperature peak of the specific heat
is suppressed for large values of the anisotropy
constant a.

Analogous computations may be performed for
various correlation functions along the lines of the

_ earlier work on the classical model. The validity

of such calculations would be difficult to defend
on general grounds. Strictly speaking, the only
solid result of this calculation is the derivation of a
rigorous upper bound for the free energy. The
structure of the variational ansatz and the discus-
sion of the ground-state energy earlier in this sec-
tion suggest that the present bound is superior to
the semiclassical bound. We thus hope that, aside
from its methodological interest, our calculation
will provide a valuable guide for checking the con-
sistency of future approximation schemes. It may
also prove useful for the study of models similar to
the model discussed in this paper. For example,
the spin-1 planar magnetic chain with uniaxial an-
isotropy described by the Hamiltonian

H=T3, [ —(SiSnr1+SiSh 1) +a(SIP] (429
n
is often considered in the literature.’® The varia-

tional bound derived in this section for the Hamil-
tonian (4.1) applies to (4.29) without modification
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C/kN

kT/J

FIG. 2. Variational results for the magnetic specific
heat of the spin-1 model.

because diagonal matrix elements of the spin com-
ponent S} in the basis of planar states vanish [see
Eq. (3.20)], so that (®|S;S) . |®)=0. Within
the limits of the variational calculation, the system
(4.29) is identical to (4.1). In fact, the planar states
discussed in Sec. III appear to be ideally suited for
systems such as (4.29).

The difficulties of the classical, as well as the
present, model in the low-temperature region may
partly be attributed to the suppression of correla-
tions in the ground state; both approximations lead
to a variational ground state for the Hartree-Fock
type. The construction of a more sophisticated
variational ansatz including correlations turns out
to be a complicated problem. The following re-
marks might prove helpful in that direction. One
may search for an exactly solvable model that
possesses the basic qualitative features of the sys-
tem described by the Hamiltonian (1.1). This is a
nontrivial task for spin s =1. However, it should
be possible to diagonalize the spin-1 Hamiltonian

Hy=IT [—(SiSi 1+ 3T T% ) +1SP1],
n

(4.30)
Tab=SySy+SpSn ,

using the Bethe ansatz, as was shown to be the
case in the absence of anisotropy (y=0) by Suther-
land.2! The applicability of the Bethe ansatz stems
from the fact that the operator in the first
parenthesis in (4.30) is the exchange operator for

s =1.22 1t is feasible that Sutherland’s solution
may be extended to include the single-ion anisotro-
py term appearing in (4.30). It is further evident
that the above system possesses the standard
characteristics of an easy-plane ferromagnet (for
J>0). The exact ground state of (4.30) could then
be used as a variational state for (1.1), the varia-
tional parameter being 7, in close analogy with the
treatment of the polaron problem.® This pro-
cedure could also provide useful qualitative sugges-
tions concerning the excitation spectrum of (1.1).
Thus, the diagonalization of (4.30) for y=0 and

J <0 leads to a twofold spectrum of elementary ex-
citations.?! While the semiclassical treatment of
Sec. II is incapable of detecting a second branch in
the spectrum of elementary excitations of CsNiF,
there is no a priori theoretical argument that ex-
cludes a second branch. It should be kept in mind,
of course, that the twofold spectrum may be pecu-
liar to the tensor coupling involved in (4.30). It
might also become necessary to reanalyze the
whole issue of elementary excitations for spin sys-
tems without long-range order in view of the re-
cent observations of Faddeev and Takhtajan.*
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