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Several persistent discrepancies between different results for critical exponents of
statistical-mechanical models have recently been shown to originate from inappropriate
treatment of confluent singularities. In this paper a new method for evaluating b l, the
critical exponent of the confluent correction term, from relatively short series expansions
is introduced and applied to d =2 isotropic percolation to obtain estimates of both Al and

y. The discrepancies noted in the literature between values of y are clearly shown to be
removed by the application of our method.

Confluent singularities (CS) have often caused
considerable difficulties in extracting critical ex-

ponents from series expansions. ' For example, the
long-standing problem ' of the differences between
critical exponents estimated from high-temperature
series and from the renormalization group (RG) in
the d =3 Ising model has been shown to be caused
by improper treatment of CS. Another univer-

sality-violating puzzle that has apparently been
remedied by a correct analysis of CS is the discrep-
ancies between estimates of critical exponents ob-
tained on different lattices for this model. In this
paper we propose a method for analyzing CS that
is also adequate for relatively short series and ap-

ply it to d =2 isotropic percolation.
The area of percolation is of considerable in-

terest for both its numerous applications and as
the q~1 limit of the q-state Potts model. The
behavior of the mean cluster size S(p) and of po(p)
the zeroth moment of the pair connectedness is
governed by the exponent y. One has

S(p),po(p)-C(p)(p —p) r for p-p, (1)

where p is the probability that a bond (site) is occu-
pied in the bond (site) percolation problem. The
apparent nonuniversality of certain series estimates
of y and disagreement between RG and series
analysis is a long-standing puzzle [the value of y
has been calculated by Monte Carlo, series, " and
RG (Ref. 12) methods]. Several low-density

(p ~p, ) S(p) series estimates give values of
y& 2.40, typical "central" values being 2.42 and
2.43, whereas the po(p) series (for the triangular-
bond problem) gives y=2. 38+0.02 (Ref. 10) in

agreement with the high-density (p ~p,+) series re-
sults. " The RG and Monte Carlo estimates may
be summarized by the conjectured "exact" value of
y=2. 3888. . ., ' which is below the error bounds of
several low-density series results.

In this paper we will show that the origin of the
systematic errors in some of the series estimates of
y is due to the presence of CS and obtain series es-
timates of both y and b, i [the leading confluent ex-

ponent; see Eq. (2) below].
The analysis of CS for two-dimensional percola-

tion might, at first glance, appear to be simpler
than the analysis for d =3 Ising models since the
value of p, is known exactly for several lattices.
However, there are several complications, and
while we shall now show that some of these can be
ignored, others have forced us to develop a special
method of analysis for confluent corrections in
models with characteristics as specified below.

A priori, there are several types of corrections to
the leading singularity in Eq. (1). Let us firstly
recall the possibility of logarithmic corrections'
in d =2 percolation, whose existence would com-
plicate not only the leading critical behavior, but
also the form of the leading CS (which will now
involve double logarithms instead of powers' ).
We have chosen to ignore these corrections, follow-
ing Refs. 14 and 15, and will show that a con-
sistent picture is supported a posteriori by our cal-
culations of the power confluent singularity. We
consider the critical behavior to be of the form

f(p~p, )=Co(p, p) &[I+a,(p, p—) '-—
+bi(p, —p)+ ' ], (2)
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L
&(p),po(p)=i+ g b,p', (3)

and I.=14, 15, 10, and 18 for the SQB, TS, TB,
and HCB problems, respectively (for the HCB case
bi b5 are ze—ro}. We also chose to consider the re-
stricted form

where the bi term arises from the Taylor expan-
sion of the analytic part of C(p) in Eq. (1). We
are not aware of any series estimates of 5i [for
quantities whose critical behavior is of the form
of Eq. (1)], although RG field-theoretic' (FT) cal-
culations of co =hi/v (co is the derivative of the P
function at the fixed point) suggest b, i & 1, and a
value of hi ——1.1+0.3 can be deduced from Ref.
14.

There are six parameters in Eq. (2) which must
be estimated in order to parametrize the leading
singularities of the critical behavior for d =2 per-
colation. However, the available S(p) and po(p }
series are relatively short, and this means that most
of the series analysis methods that are usually used
to study confluent corrections cannot be efficiently
applied. We are forced to follow a somewhat less
ambitious program and restrict our attention to
those cases where exact p, values are known.
These are the square bond (SQB, p, =—), the tri-

1
angular site (TS, p, = —, ) and bond [TB,p,
=2 sin(ir/18)], and the honeycomb bond [HCB,

p, = 1 —2 sin(ir/18)] problems. The available
series ' are for S(p ) on all four lattices and for
po(p) in the TB case. We have

where hi is close to unity the confluent term does
not appreciably influence the convergence of the
usual D log Pade and thus y and p, can be calcu-
lated rather accurately and then used as input to a
procedure that cancels the leading singularity and
concentrates on the confluent one. For example,
one may construct' the series for

fz(p) =(p, —p) yf(p)—,
df(p)

dp
(5)

whose logarithmic derivative has a pole at p, with
residue i) i —y (if ~ai/bi

~
&&1 or 6, &1). A typ-

ical case where this method proved useful is that
of the d =2 directed bond percolation' (DBP),
where 6i ——1.02+0.02. The values of the DBP
critical exponents agree very well with those de-
rived in Reggeon FT (Ref. 21), which is in the
same universality class.

In isotropic percolation at d =2, 6i is expected
to differ from unity' and thus we have a case
where the calculation of the leading exponents is

appreciably influenced by the (p, —p) ' confluent
term. However, we do not have an accurate in-
dependent estimate of b, i, and we have the problem
that the series are relatively short. To develop a
method to overcome these problems we first follow
Ref. 3 and transform the series to an expansion in
powers of

y =I-(I-p/p. }'
However, unlike Ref. 3, we take b, to be variable in
what follows and study

X[1+ai(p, —p) '+ l, (4)

neglecting the influence of the bi term, and there-
by assuming that

~
ai/bi

~

is sufficiently large to
ensure that the bi term does not manifest itself in
a short power series. This assumption is con-
firmed a posteriori by our results (as will be dis-
cussed bdow). Our last concession is the decision
to concentrate our attention on methods that may
provide information about the universal exponents

y and h~, rather than to elucidate the nonuniversal
amplitude a ~.

In the cases like the d =3 Ising model, where

b, ,=0.5, the nonanalytic confluent term (p, —p) '

has an appreciable influence on the estimates of
the leading exponents. For the d =3 Ising model a
good FT estimate of 4~ was available and a suit-
able method is that of Roskies, which suppresses
the influence of the confluent term. In cases

Ft,(y)=f(p(y))

=p, r(1 —y)

&&[I+a,p, '(1 —y) ' + ],

using the biased D log Pade method. %e analyze

Ga(y) =&(y —1) lnFg(y)
d

dp

aihi(1 —y)
5)/6

f+
1+ai(1—y) '

where a~ ——a~p, '. This function enables the calcu-
lation of curves of —G~(1)=y,„,„„,as a function
of the input 5 in the (b, y) plane.

In the event that 6=1, we have
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Gi(y») = —y+
aid, i(1—y)

'

1+ai(1—y) ' 2.42—

2.40—

2.38—

+0((1—y)), (10)

and again there is a nonanalytic term (which van-

is es as y 1) and which may give small, sys-
tematic nonzero contributions to th P d'e a e approxi-
mants of the fmite power series. However, the e-
eet of these contributions will now be to change

the relative slope of the curves of the output
—Ga(1)=y(4) values as functions of h. The
curves y(h}, when evaluated with different Pade
approximants, will be linear functions with small

slopes when h=b, i. The different y(h} curves

should intersect at the correct value of y and 4i.
Of course, in practice, for relatively short series,
the bi term of Eq. (3) as well as additional finite

series effects alters this ideal situation. Thus, we

expect the different Pade approximants to produce
curves y(h) that converge near the correct values

o y and 6,. The only input required in this
method is h

'
p„which is known exactly in our case.

Using this new algorithm we calculated
y= —Ga(1} as a function of 4 for a suitable range
of b, values. We evaluated the nine central [L,M]
(largest L +M and closest to diagonal) Padh ap-

proximants for each of the five above-mentioned

series. For the SQB, TS, and TB S(p) and the TB
po(p ) series the results are presented in Figs. 1 2
3

&gs

, and 4, respectively. In these four cases
ound the expected behavior: a more or less well-

defined linear region of convergence of the dif-

ferent y(b, ) curves. These regions are enclosed b
the broken line boxes in Figs. 1 —4. The effect of
CS was not taken into account in past analyses;
here we may clearly observe the influence of the
confiuent terms on the y estimates. With b, = 1

and the calculation of Gi(1) is simply the usual
biased D log Pade analysis of f(p). The nonanalyt-
ic correction term is zero at y =1; however, when

ade approximants are formed to q to a~inite power
series this nonanalytic term causes systematic devi-
ations in the value of y.

Let us now analyze the case where the input
value of b, is very close to the correct b, i+1. We
linearize Ga(y) in the difference 5—b, , and retain
the leading terms when y-+1. One finds

G&(y)= —y —a, (1—y) ln(1 —y)(&—&, )

2.56—

2.34—

0.8 1.0 1.2

which is equivalent to ignoring the nonanalytic
confiuent terms} we see (from the bars in Figs.
1 —4) that we would have obtained y& 2.40 from
the $(p) series but y-2. 38 for the po(p) series,
consistent with Refs. 9—11. The correct estimates
from the boxes are

y= 2.375+0.015,

hi ——1.25+0.15 . (12)

The y estimate is consistent with the exact conjec-
ture, Monte Carlo, and RG results, and with the
range of y values which is consistent with the ab-

sence of logarithmic corrections (see Ref. 15). The
4~ value is consistent with the RG FI' estimate
and the estimate of Ref. 14, justifying the neglect

2.42—

7
2.58—

2.56—

2.54—

0.8 1.0 1.2 1.4

FIG. 2.
erc

. y( ) curves for the S(p) series for th 't

p olation problem on the triangular lattice. The
or e site

curves obtained using the [8,5],[5,9],[7 6] [5 8]

by the letters A, B,C,D,E,I', G,H, I, respectively

FIG. 1.. y(L) curves for the S(p) series for the bond
percolation problem on the square latti Th d'ffice. e i erent[, ] ade approximants give curves which are la-
beled as follows: A, [5,8]; 8, [6,6]; C, [5,7]; D, [6,'7 and

[5,6], and E, [7,6], [8,5], [7,5], and [6,5].
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FIG. 3. y(h) curves for the S{p) series for the bond

percolation problem on the triangular lattice. The
curves obtained using the [3,6],[4,5],[4,3],[6,3],[5,4],
[4,4],[5,3],[3,5],[3,4] Pade approximants are indicated

by the letters A, B,C,D,E,I",G,H, I, respectively. The
range of values for 6,=1 extends up to y-2.445.

FIG. 4. y(4) curves for the p0(p ) series for the bond
percolation problem on the triangular lattice. The dif-
ferent [L,M ) Pade approximants give curves which are
labeled as follows: A, [6,3]; B, [3,6], [5,4], and [4,3]; C,
[5,4], [4,4], and [4,5], and D, [3,5] and [5,3].

of the influence of the bt term
For the HC bond S(p) series we did not find

any systematic trend in the y(b, ) curves. This may
be explained by the fact that the transformation of
Eq. (16) affects the distances of different singulari-
ties from the origin in different ways. It is known

that there are unphysical singularities near the ori-

gin in this model. We suspect that these singulari-
ties cause the irregular Pade results here (see also
Ref. 3).

We note that the overall slope of the different
curves for each series is proportional to the ampli-
tude at [compare Eq. (10)]. We speculate that at
has sitnilar values for the three S(p) series, but

~a, (I o)«, (S)
~
((1.

The above results concern the intersection of the

yo«p«(kpnp«) curves defined by the different Pade
approximants to Ga(1) of Eq. (8). It is possible to
extend the method of Ref. 19. [Eq. (8)] in a simi-

lar manner and obtain h,«z«(y;„z«} curves in the

(y, b, ) plane. An analysis similar to that leading to
Eq. (10) may again be performed, giving to leading
order in p, —p

f2(p}
D~,.(p) =(p —p, ) +y;' f2(p}

p ~p

(y y}(—p, p—} '«t—,

where y; =y;pp«& 60«p«Dy (pc) 6(yi) The in-

tersection of the different finite series Pade h(y;)
curves (which have large slopes) is expected to be
at y; =y, 4=6~. We have carried out an analysis
for all five series with exactly known p, values by
this technique, but the results are less conclusive
than those presented above. The range of spread
of the different curves in the (y, LL) plane was simi-
lar, but a clear intersection region was only ob-
served for the SQB series, where the (y, h} range
was consistent with Eqs. (11) and (12).

In summary, our analysis provides an exphcit
example of how the presence of confluent terms in-
troduces severe systematic errors in the values of
the leading critical exponents. The technique
presented here enables consistent results for con-
fluent exponents to be found from relatively short
series. It explains and resolves the "puzzle" of the
inconsistent y estimates in d =2 percolation. %e
may contrast the current situation with the outlook
of Ref. 9 and suggest that longer percolation series
may be of use in obtaining more accurate values
for both y and b,

~
and to determine the critical

amplitude of the correction term.
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