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The density-fluctuation spectra S~(k, co) (i,j=3,4) are evaluated with a matrix
dispersion-relation representation in terms of characteristic frequencies and complex self-

energies by the incorporation of damping via decay into He quasiparticle-quasihole exci-
tations and by the use of renormalized fluctuation frequencies. The hybridization of He
rotons with He quasiparticle excitations is too small to induce a peak splitting in

S44(k, co) at the level crossing while the effective phonon-roton exchange potential between

He quasiparticles splits the spectrum S33(k,co) into two peaks. The energy shift of the
main neutron scattering intensity with respect to pure He agrees semiquantitatively with

experiments. It is caused by partly competing effects listed in the order of their impor-
tance: frequency changes induced by the altered structure of He in the mixture, coupling
between He and 'He restoring forces, hybridization with 'He quasiparticle-quasihole ex-

citations, and the contribution of S34(k, co). Decay into two-mode density excitations is
investigated within a mode-coupling approximation.

I. INTRODUCTION

The density excitation spectrum of a dilute mix-
ture of He in superfluid He is an interesting ex-
perimental problem and a challenge for many-body
theories of strongly interacting fermions and bo-
sons. Research activities have been directed mostly
towards determining the dispersion e3(k) of a sin-

gle He atom in HeII. ' The resulting picture is
that, due to the strong He- He bare interaction,
the He atom "polarizes" the He bath, and, sur-
rounding itself by a "cloud" of density excitations,
becomes a quasiparticle. The effective mass in-
creases weakly with wave numbers ' in such a
way that e3(k) slightly bends over near the roton
minimum of the He single-mode dispersion" e4(k)
without forming a minimum. The He quasiparti-
cle excitation is undamped ' since "He is super-
fluid: The gap e4(k) in the bath's excitation spec-
trum kinematically prevents the quasiparticle from
dissipating energy. ' As e3(k) approaches the en-

ergy threshold ' ' ' for roton emission, an un-

damped He quasiparticle excitation is no longer
possible, spectral weight is transferred to a contin-
uum of damped excitations at larger frequencies,

and the dispersion e3(k) terminates at the thresh-
old. ' That is well understood in terms of the de-

cay of a He excitation into a He roton and a He
quasiparticle.

The picture for the density-fluctuation spectra of
a mixture of, say, 6% He concentration is less
clear. Of course, the intensity under the formerly
sharp peak of the He quasiparticle excitation is
spread over a "band" (at least its lower edge is
presumably well defined) of quasiparticle-quasihole
excitations. And, more importantly, the He
density-fluctuation spectrum is changed by the
presence of macroscopically many He atoms.
Earlier conclusions' about large roton energy
shifts inferred from indirect measurements were
disproven by scattering experiments. '

Nonetheless, the density-fluctuation spectra, in
particular near the crossing of the He
quasiparticle-quasihole excitation band with the
He single-mode dispersion, are still a challenge.

The few theoretical attempts made in this direction
were focused on evaluating roton line broadening
and roton energy shifts produced by decay into and
hybridization with He quasiparticle-quasihole ex-
citations within various theoretical frameworks. '
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Common to them is that the shift of the He
single-mode excitation energy is due to the repul-
sion of He and He levels; i.e., it is upwards to the
left of the crossing where e4& e3 and downwards to
the right where e4 & e3. This disagrees, at least
partly, with neutron scattering data' ' since the
more important effect of the changed He structure
in the mixture on the restoring force against a He
density fluctuation has been neglected. The struc-
turally induced frequency shifts turn out to have
the opposite sign of the level repulsion and further-
more, are mostly larger than the level repulsion.

The purpose of this work is to evaluate these
and other features of the density-fluctuation spec-
tra S;J(k,co) (i,j=3,4) To .accomplish this, we use
a dispersion-relation representation of the 2)&2 ma-
trix of density response functions X,J(k,z) (Sec. II)
in terms of a characteristic frequency matrix of
static restoring forces and a complex k- and z-

dependent self-energy matrix. A generalized Feyn-
man model (Sec. III) shows already the importance
of structurally induced frequency shifts and of the
restoring force coupling via off-diagonal elements
of the characteristic frequency matrix. This

wave-number —dependent coupling strength is ex-
pressed (Appendix A) in terms of structure func-
tions, which are input in our theory. In Sec. IV we
introduce renormalized fluctuation frequencies and
incorporate damping by decay into He quasi-
particle-quasihole excitations. We elucidate in
quantitative detail hybridizations, peak splitting,
energy shifts, and linewidths, and we compare the
above-mentioned static effects upon the fluctation
spectra with the dynamical effect due to hybridiza-
tion of excitations. We determine the size of vari-
ous effects causing the main peak of the total neu-

tron scattering intensity of the mixture to be shift-
ed with respect to pure He and compare our re-
sults with experiments. In Appendix C we investi-

gate decay into two-mode density fluctuations and
its influence on the spectra. The last section gives
a discussion of our results that are obtained
without any adjustable parameters.

All numerical calculations refer to number den-

sity fluctuations in a 6%%uo mixture at zero tempera-
ture. Thus we ignore the incoherent contribution
from spin density fluctuations to the total neutron
scattering intensity, which is proportional to

O'3

S„,(k, co) =(1—x)Sq4(k, co)+ 2 x(1—x)
1/2 inc

O3 O3
S34(k,co)+x S33(k,co)+x S33'(k,co)

04 o4

for a mixture of concentration x =N3/(N3+N4). The ratio of coherent cross sections o3/cr4 ——4.34 is about
4 times larger than o3"'/cr4 1.06 (Ref. 18), a——nd the size of S33 (k, co) in a dilute mixture is presumably at
most comparable with $33(k,co) (in an ideal Fermi gas they are the same). Thus it seems reasonable to
neglect the fourth term of (1.1) in comparison with the third, which itself is less important than the first
two.

II. DENSITY RESPONSE OF He- Hc MIXTURES

The fluctuation dynamics of the two particle number densities

j —ik ~ r (t)

pj(k t)= g e ', j =34
NJ „

(2.1)

are conveniently described in terms of the symmetric 2)&2 matrix of complex density response functions,
reading in standard notation' '

XJ(k,z)=+i I dt 8(+t)e'"([p;(—k, t),pj(k)]) for Im z&0

dco XJ(k,co)

7T N —Z

The spectral functions X 1 (k, co) are the imaginary parts of (2.2) along the real frequency axis,

X(k,co+i 0)=X'(k, co)+i X "(k,co),

(2.2a)

(2.2b)

(2.3)

and X'~(k, co) are the corresponding real parts. The matrix X;'J'(k, co) is positive semidefinite for co )0, and all
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its elements are odd in frequency. They are related via the fluctuation-dissipation theorem to the dynamic
structure factors S;J(k,co) determining the neutron scattering intensity. In the zero-temperature limit one
has

(2.4)SJ(k,co) =26(co)XJ'(k, co) .

As in other many-body problems it is advantageous to use a dispersion-relation representation for the ma-
trix of response functions

X(k,z) = —[z —0 (k)+zX(k, z)] 'k m

in terms of complex self-energies X;i(k,z) and a characteristic frequency matrix of restoring forces

(2.5)

co3(k)

1 —W' k —( —)' 'W(k)co (k)co (k)

—(-, )' W(k)co3(k)coq(k)

co4(k)

k
co;(k) =

m;X;;(k)
' (2.7)

which measure the z=O restoring forces of He
and "He density fluctuations via static susceptibili-
ties

X;~ (k ) =X;J(k,z =0)

dco X,'J'(k, co)
(2.8)

The restoring forces co;(k) are coupled with a
wave-number —dependent strength

W(k) =X34(k)/QX33(k)X44(k) (2.9)

which is proportional to the square root of the
mean densities Qn3n4. The coupling also
enhances the restoring forces to
co;(k)/[1 —W (k)]'~ . Note that XJ &X;;X/J.

In order to give an idea of the size of the
characteristic frequencies (2.7) to those readers un-

familiar with them, we mention that in the ideal
Fermi gas, coFo(k) lies for wave numbers k ))2k~
in the center of the particle-hole excitation band.
For smaller k it approaches a linear dispersion
copo(k & kF)-ku~/V 3, which is within the band.
To obtain a first estimate of

Here m denotes the diagonal matrix of bare masses

m3, m4. For convenience we have expressed 0 (k)
in terms of squared frequencies,

X(k, co+i 0)=X'( k, c)o+i X"(k, co) (2.11)

reflects all dissipative mechanisms by which densi-

ty fluctuations of frequency co and wave number k
decay, while the real parts X,'J(k, co) lead to renor-
malization of fluctuation frequencies. The ima-

ginary parts are even in co, whereas the real parts
are odd. Economical and powerful approximations
reflecting the two-component nature of the mixture
are best made within the 2)&2 matrix formalism
for X,J(k,z) rather than for the self-energies

cT33(k,z), o44(k, z), which appear in the single-

component representation of

—k /m4
X4g(k, z) =

z —co4(k) +zo 44( k, z)
(2.12)

or similarly of X33(k,z). Section III (Apendix 8)
demonstrates how elaborate o33(k,z) must be to en-
sure properties obtained within the 2)&2 matrix
framework from a (nearly) trivial approximation to
X,J(k,z). For future reference we mention that the
self-energies can formally be expressed ' as resol-
vent matrix elements

e4(k) & co4(k) & k'/2m4S44(k) .

In particular, co4(k~0) =c4k yields the correct
sound velocity.

The positive-semidefinite matrix X,'J'(k, co) of im-

aginary parts of

co4(k) =co4'(k)X4g(k)/X44(k), (2.10)
XJ(k,z)= p (k) W Q QW pj(k)

k

one might ignore the quotient of static He suscep-
tibilities in pure He and in the mixture and ob-
serve that the characteristic frequency ' coq(k) of
pure He lies for all wave numbers closer' to the
single-mode dispersion ' e4(k) than the Feynman
frequency:

(2.13)

with a scalar product between operators A,B de-
fined by their static susceptibility

(&
~

&) =Xmas(z =0)=i J dr ([~ (t),&]) .
(2.14)
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The time evolution A (r) =e' 'A is determined by
the Liouville operator WA (t) =[H,A (t)]. The pro-
jector Q projects orthogonally to densities p;(k)
and currents Wp;(k) of He and He.

The statistical dynamics of He density fluctua-
tions in mixtures are modified according to (2.5) by
three effects: (1) The static restoring force A@4(k)

differs from that of pure He by the quotient
[744(k)/X44(k)]'~, reflecting mostly the structural
change of He in the mixture. This is the main
cause for the (small) roton energy shift in dilute
mixtures at low temperatures. ' (2) There is a
second characteristic frequency co3(k) to which

co4(k) is coupled via 8'(k). This induces resonance
shifts in the density-fluctuation spectra via the
off-diagonal as well as via the diagonal elements of
the static restoring force matrix Q . (3) In the
mixture there are additional dissipative mechan-
isms to which density fluctuations couple at least
in a restricted range of wave numbers and frequen-
cies. That implies enhanced decay rates described

by the imaginary parts X~J'(k, co) and modified fre-

quency renormalization via the real parts X,'J(k, co).
Although the effects are not independent —re-

storing forces, decay rates X" and real parts X'

determine the fluctuation spectra g;'J'(k, co), which
in turn self-consistently determine static suscepti-
bilities and the coupling to dissipative mecha-
nisms —it is instructive to investigate them
separately. The generalized Feynman model, e.g.,
eliminates effect (3) by taking X=0.

where e+(k) are the eigenvalues of the positive-
semidefinite matrix Q (k)=Q(k) Q(k).

The form of Eqs. (3.1)—(3.3) yields the correct f
sum rule of the spectra

f X"(k,co) = —,k2m (3 4)

and in addition, the choice

Q(k)= —,k m 'S '(k) (3.5)

enforces the density response's having the correct
total spectral weight

Sip(k)= J X'J'(k, co) . (3.6)

As in pure "He, one can also expect here the choice
Q (k)=k m 'X '(k) enforcing the correct static
susceptibilities to be superior' to the conventional
Feynman-type approximation (3.5). Unfortunately,
the static susceptibilities X,z(k) of the mixture are
not known.

The two excitation levels co+4——k /2m4S44(k)
and co+3 ——k /2m3S33(k) cross (cf. Fig. 1) at wave
number k, =1.64 A ' and energy 21.8 K, if the
structure functions as given in Appendix A are
used. Owing to the coupling described by the off-
diagonal elements of 0 there is a level splitting
e+(k, ) —e (k, )=0.4 K. The upper (lower) level

e+ (e ) represents density fluctuations of He
('He) for wave numbers k & k„while for k & k,
the converse is true: The spectral weights Z44 and

III. GENERALIZED FEYNMAN MODEL—
UNDAMPED DENSITY FLUCTUATIONS

30

The density response

X(k,z)= —[z —Q (k)] 'k m (3 1)
25

obtained from the simplest approximation,

X,J(k,z) =0, displays already a large amount of the
characteristic features of the mixture. First of all,
there are two frequencies characterizing the sys-

tem. The spectra (co & 0)

X,'J'(k, co)/n=Z, J+(k)5(.co e+(k))—

—20
3

+Zi (k)5(co e(k))—
consist of two 5 functions of strength

(3 2) 10
0.5 2.0

+k2/2
e+(k) —e (k)

(3.3)

FIG. 1. Excitation energies e+(k) (full curve) and

e (k) (dashed curve) of undamped density fluctuations
in the mixture obtained from the generalized Feynman
model. Closed circles denote k /2m4S44(k) and trian-

gles k'/2m 3S33(k).



1378 M. LUCKE AND A. SZPRYNGER

Z33 (Z44 and Z33) are vanishingly small below
(above) k, . The level repulsion induced by the cou-

pling pushes, for wave numbers k & k„ the He
( He) excitation energy e+ (e ) to higher (lower)
values than coF4 (co+3). For k & k„on the other
hand, the He ( He) excitation levels e (e+) are
shifted downwards (upwards). The upward reso-
nance shifts are mostly of the order of 0.3 K while
the downward shifts, being less than about 0.1 K,
cannot be seen in Fig. 1

However, the net shift of He excitation energies
in the mixture with respect to those in pure He,
coF4, does not follow this simple level-repulsion
scheme. For some wave numbers the different
structure of He in the mixture having the opposite
effect an the characteristic He frequency overcom-
pensates the level repulsion. At k=2 A ', for ex-

ample, A@F4—A@F4-0.3 K, so that the net shift
—Q)p4 0.2 K is upwards, whereas with repul-

sion alone it would be downwards, =—0.1 K.
Thus the generalized Feynman model shows the

importance of the changed He structure. It also
yields an estimate of the absolute size of the net
shift of He fluctuation energies in the mixture.
Its main drawback is the incorrect wave number
and frequency scale: He and He levels do not
cross around the roton but rather at too small a

0
wave number, k, =1.64 A ', and too high an ener-

gy. Thus the repulsive shift, already changing sign
at k„has a wrong wave-number dependence com-
pared to the structurally induced frequency shift.
In summary, the foremost deficiency is the absence
of the proper renormalization of excitation fre-
quencies (X'=0) rather than the absence of damp-
ing (X"=0).

IV. He SINGLE-MODE EXCITATIONS
AND 3He QUASIPARTICLE-QUASIHOLE

EXCITATIONS

A. The renormalized frequency e4(k)

In pure He the bare restoring force coq(k) is re-
normalized by the real part of the self-energy ac-
cording to the relation' '

e4 (k) =A@4 (k) —e4(k)X44(k, e4(k)),

which determines the energy e4(k} of the un-

damped single-mode excitation. In the mixture,
however, we must replace co4 by the frequency
e4 ——@4+de, which is shifted in comparison with
e4 already as a result of the difference dm4
=co4—co4 in the bare restoring forces even if one
ignores for the sake of simplicity that the real part
of the self-energy will be different as well. Doing
just that,

(4.1)

Be (k)
d e~(k)= 0 dco4(k)=

B~,'(k)
(4.2)

is determined by dco4(k) and by the partial deriva-
tive

In this section we (i) appropriately renormalize
the fluctuation frequencies and (ii) include decay of
density fluctuations into He quasiparticle-
quasihole excitations by choosing X33(k,co) corre-
spondingly. We neglect the off-diagonal elements
of the self-energy matrix as well as X4'4(k, co) in
view of the small roton decay rate of 0.06 K mea-
sured for a 6% mixture at T=0.25 K. The real
part X44(k, co) is approximately taken care of by re-
placing the "bare" restoring force co&(k) by a renor-
malized frequency eq(k) obtained as follows.

Be4(k) o [co4(k)]2
=2co4(k) co+ +co

Beg(k}

BX '(k, co)

Bco

Z4(k)
=2co4(k)

co=@04(k) k /m4
(4 3)

which is obtained from (4.1) in terms of the single-mode excitation strength ' Zq(k) or pure He. As a
side remark we mention that relations (4.3) are exact. '

Thus we replace the bare restoring force co4(k) of He density fluctuations by the renormalized e&(k),

Z4(k) 0 2 cog(k)
co4(k)~eq(k) =e4(k)+2 [co4(k)] o

—1
k /m4 co4(k)

(4.4)

and evaluate the quotient B. He quasiparticle excitations

co4(k)/co4(k)=S44(k)/S44(k) (4.5)

within a Feynman approximation which faithfully
reflects the structural effects that are mainly re-
sponsible for the change of the restoring forces.

The remaining approximatians for co3(k) and
X33(k,z) are motivated as follows. A single He
atom moves almost without friction, as in a
mechanical vacuum, in the superfluid bath but
with a dispersion e3(k)=k /2m3(k) determined by
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a slightly wave-number —dependent effective
mass. ' Thus, in view of the dilution, we
describe the He subsystem as an ideal Fermi gas
of quasiparticles with a mean effective mass
m3-2.65m3, averaged for our purposes over the
wave number range up to roton momenta, and re-
place co3(k) and X33(k,z) by the corresponding
quantities of an ideal Fermi gas of mass m 3.

The vertex is proportional to y(k) and thus to
Qn3n4 T. he decay is kinematically possible
within the band

k k—kUp (co( +kvp,
2m3 2m3

(4.12)

where the imaginary part of the polarization opera-
tor

2

co3(k)~coFO(k) = k

m3XFo(k)
(4.6) m(k, z) =mFo(k, z)[1 y(k—)mFo(k, z)]

(4.13)
z +ZX33(k,z)~z +zXFo(k,z)

=coFo(k) [1+m Fo(k,z)] . (4.7)
determined by the particle-hole "bubble" nFo(k. ,z),
is nonzero. The cross susceptibilities

The self-energy is given in terms of the reduced
polarization operator

Fo(k,z) =. XFo(k,z—)/XFo(k), (4.8)

X34(k,z) = —(
—

)
' y(k)X33(k, z)

coFo(k)e4(k)
X

z —e4(k)
(4.14)

m 3 XFo(k,z)
X33(k,z) =

m3 1 —V,ff(k, z)aFo(k, z)
(4.9a)

The coupling W(k) between the restoring forces
against density fluctuations causes a k,z dependent
effective potential between He quasiparticles

z2
V,rr(k, z)=y (k)

z —eq(k)

which describes particle-hole excitations. Inserting
all this into the matrix formula (2.5) one finds that
the He density response is of a random-phase ap-
proximation (RPA) type:

are "almost" products of X33(k,z) and X44(k, z) in
this model.

That the above approximations properly refiect
the decay of a He single-mode excitation into He
excitations can be inferred from a comparison with
the He density response in the single-component
representation (2.12). A standard mode-coupling
approximation (Appendix B) for its self-energy

o~(k, z) by which He density modes and 3He

quasiparticles are explicitly coupled leads to the ex-
pression (4.11). Similarly, one recovers (Appendix
B) Eqs. (4.9) for the He density response.

P(k)
W (k)

1 —W (k)
(4.9b) D. Density-fluctuation spectra

which is induced and mediated by the exchange of
undamped phonon-roton excitations of the He
bath with energy

e4(k) =e4(k)/[1 —W (k)]'i (4.10)

The potential V,rr(k, z), which is analogous and
similar to the Frohlich phonon-exchange potential
between electrons, ' is proportional to the mean
number densities n3n4 via W (k) [see Eq. (A2)].

C. 4He density fluctuations

The coupling W(k) also leads to a polarization
potential for He density fluctuations, reflecting
the fact that they can decay into (interacting) He
quasiparticle-quasihole excitations:

—k /m42

X~(k,z) = (4.11)
z2 —e4(k)[1+y (k)m(k, z)]

To evaluate the spectra of Eqs. (4.9)—(4.14) we
need the ideal Fermi-gas functions for a particle
mass m3 ——2.65m3, the coupling function W(k)
[Eq. (A2)], and to determine e4(k) also
S44(k)/S~(k) [Eqs. (A4)], Z4(k), co&(k), and e4(k).
The last three quantities were not taken from ex-
periments but rather from a previous theory. Its
single-mode dispersion e4(k) overestimates the ro-
ton energy by about 2.3 K. We found that to be
irrelevant for the He energy shifts in the mixture,
whether they are induced structurally or dynami-
cally by decay into quasiparticle-quasihole excita-
tions. We used the results (i) to be consistent
with the He quasiparticle excitation energy e3(k)
obtained with the He response spectrum of Ref.
26, and (ii) to compare with the mode-coupling
theory of Appendix C in which the self-energies
are evaluated with the spectra X44'(k, co) (Ref. 26)
and X33'(k, co) (Ref. 9).
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In our model, all density fluctuations are
damped only within the quasiparticle-quasihole ex-
citation band [Eq. (4.12); thin lines in Fig. 2]. The
frequency a3Fo(k) [Eq. (4.6); dashed line in Fig. 2]
is practically in the center of the band. Outside
the band all response spectra X ~(k, n3) display a 5-
function spike at the frequency (dots outside the
band) where the determinant of the inverse suscep-
tibility matrix (2.5) vanishes. While the 5 function
carries practically the total spectral weight of
X4'4(k, to), the weight of X33(k,o3) is negligible out-
side the band, so we drew open triangles denoting
the upper peak positions of X3'3(k, co} only within
the band. The lower peak (4) of X3'3(k,n3) carries
for small k almost the total spectral weight of He
density fluctuations. Approaching the roton posi-
tion in o3k plane from below its dispersion (k )

bends over (without forming a minimum), and

more and more weight is transferred to the upper
peak (6). The lower (upper) peak remains always
below (above} the energy e4(k) where X33(k,co) has
a zero because of the diverging phonon-roton ex-
change potential (4.9b). This peak splitting in the
spectrum X3'3(k,n3), which is about 1.2 K around
roton momenta, is due to the hybridization of a
He quasiparticle-quasihole excitation with a He

single-mode excitation. The latter is virtually
emitted and reabsorbed by the former, thus giving

20

15

~ 10

3

0.5 1.0 1.5
I((A j

2.0 2.5

FIG. 2. Peak position (closed circles) of the total neu-
tron scattering intensity S„,(k, co) (1.1) compared with
the single-mode excitation energy e&(k) (Ref. 26) of pure
He (full thick curve). Triangles denote peak positions

of X33(k,co) and the dashed line, co„o(k) [Eq. (4.6)]. The
thin lines are the boundaries (4.12) of the He
quasiparticle-quasihole excitation band.

rise to the exchange potential. The spectrum
X34(k, e3 ) changes sign at co =e4( k) but otherwise
resembles " X33(k,co), which is obvious from Eq.
(4.14).

The spectrum X44(k, co) has practically only one
peak, indicated (approximately) by solid circles in

Fig. 2. For all wave numbers shown there, the ver-

tex y(k} for decay of He density fluctuations into
He quasiparticle-quasihole excitations is too small

to induce an additional zero of the denominator in
(4.11) at a real frequency other than that at
e3=e4(k) and marked (approximately) by solid cir-
cles. Only for smaller I(., where that zero is outside
the band, does X~(k,co) have a small side max-
imum in the band somewhat above its center.
However, as soon as the former [closed circle at
co=@4(k)] enters the band around k=1.7 A ' the
side maximum disappears by merging into the
low-frequency wing of the main peak at e3=e4(k).
Thus, in particular around roton wave numbers,

X44,(k,n3) displays only one peak: The polariza-
tion potential y (k)n'(k, ra) due to virtual
quasiparticle-quasihole excitations is too small to
cause a detectable hybridization of a roton with the

. latter.

E. Energy shifts

The position (closed circles in Fig. 2) of the
main peak in the total neutron scattering law

S„,(k,n3) differs very little from the single-mode
dispersion e4(k) (solid curve) in pure He. The en-

larged frequency scale of Fig. 3 reveals an oscilla-
tory behavior of the energy shift caused by various,
partly competing effects (1)—(4) listed below in the
order of their importance. The first two are of
static origin and the remaining of dynamic origin.

(1) The first effect due to the different structure
of He in the mixture dominates the other three.
The structural difference enters via the difference
de4(k) (dash-dot line in Fig. 3) of the He fluctua-
tion frequencies which in turn is dominated by the
difference de3z(k) of the "bare" restoring forces.
The partial derivative Be4(k)/t}e34(k) entering
de4(k) as well is almost wave-number independent,
about 0.6 in the range 1 —2.2 A ', and then it
drops rapidly to zero because Zz(k & 2.2 A ')
~0. ' Thus the wave-number dependence of
de(k) [Eq. (4.4)] is dictated by the relative differ-
ence S44(k)/S44(k) —1 of the structure factors
which changes sign around k=1.9 A '. The al-
tered structure of He in the mixture has been in-
voked earlier' to explain He energy differences by
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FIG. 3. Shift of the peak position of Sf t(k, m) (1.1)
with respect to the single-mode excitation energy of pure
He (full curve and dashed curve) compared with neu-

tron scattering results of Hilton et al. (Ref. 16) obtained
for a 6% mixture at T=0.75 K (closed circles), T=0.6
K (squares), and of Rowe et al. (Ref. 15) (open circles)
obtained for x=5% at T=1.6 K. Error bars of the ex-
periments (solid vertical lines) and from uncertainties of
input data entering theory (dashed vertical lines) are
shown as well. The dash-dot curve denotes the shift
de(k) (4.4). See text for further information.

shifting the roton dispersion curve towards a
smaller wave number, thereby accounting for the
increased He interatomic distance in the mixture.
In view of the above discussion it is not surprising
that this rather crude procedure captures the
essence of the structurally induced energy shifts in
the immediate roton surrounding. Figure 3 shows
that de4(k) (dash-dot line) is almost identical to the
peak shift (solid line) of Sto, (k, co) above k=1.5
A '. The differences are due to effects (2) —(4).

(2) The coupling JY(k) to the He restoring
force enhances the fluctuation frequency e4(k) to-
wards e4(k) [Eq. (4.10)] thus inducing upwards en-

ergy shifts which are typically less than 0.05 K.
However, below k=1.25 A ', where W (k) as well
as e4(k) is relatively large, this enhancement is
large enough to dominate the other effects and
cause the large upward shift of the dashed part of
the curve in Fig. 3, which will be discussed later
on.

(3) The frequency e4(k) is further renormalized
by the polarization potential y (k)n.(k,z), which is
produced by and reflects the decay into He
quasiparticle-quasihole excitations. The real part
of the potential causes a level repulsion between
e4(k) and the center frequency k /2m 3 of the

quasiparticle excitation band: For k smaller
(larger) than about 1.9 A ', where both levels
cross, 74(k) is larger (smaller) than k /2m 3 and
consequently the position of the main peak of
+44(k, co) is pushed towards a larger (smaller) fre-
quency than e4(k). Thus the energy shift induced
by the repulsion between He fluctuation energies,
and He quasiparticle excitation levels is opposite
to the structurally induced shift de(k) (dash-dot
line in Fig. 3) which is negative (positive) for wave

0
numbers smaller (larger) than k=1.9 A '. How-
ever, the repulsion effect is small —at most 0.06
K—compared to the structural effect (1).

(4) The last effect is due to the cross spectrum
X34(k,co) [Eq. (4.14)] being positive below the fre-
quency e4(k), in the immediate vicinity of which
X~(k,co) has its main peak, and negative above.
That causes the total neutron scattering intensity
S«, (k,co) [Eq. (1.1)] to be slightly asymmetric
and also to have a peak at a lower frequency than
the peak position of X4'4(k, co). The downward shift
is quite small, mostly about 0.01 K with a max-
imum of 0.03 K at k=2.2 A

The difference of the peak position of S«, (k, co)
with respect to e4(k) resulting from the combina-
tion of the above four effects is shown in Fig. 3 by
the solid (and dashed) line. It agrees semiquantita-
tively with neutron scattering results (closed cir-
cles, squares, and open circles). The latter also re-
flect thermal effects which are absent in our calcu-
lation. The uncertainties of our input param-
eters —experimental errors of S44(k) and an as-
sumed uncertainty of S34(k) of about 50% (cf. Ap-
pendix A)—cause uncertainties (dashed vertical
lines in Fig. 3) of our theoretical results exceeding
100% for smaller wave numbers. In that case our
theoretical energy shifts are less reliable, which is
indicated by the dashed part of the energy shift
curve in Fig. 3.

Since the peak widths of S«, (k,co) are uncertain
by more than 100% we did not show them here.
Nevertheless we would like to mention that they
compare semiquantitatively with experiments: The
half-width at half maximum of the roton peak in
the total neutron scattering intensity from a 6%
mixture was reported to be broadened with respect
to pure He by 51 =0.15 K at T=0.6 K (Ref. 30)
and by 51"=0.06 K at T=0.25 K (Ref. 25) while
our result is 5I =0.1 K.

V. DISCUSSION

Our investigation of number density fluctuations
in a dilute

He-He'll

mixture with a dispersion-
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relation representation of the 2&2 matrix of
density-response functions X;J(k,z) in terms of a
characteristic frequency matrix of static restoring
forces and a complex k,z dependent self-energy
matrix X;J(k,z) gave the following results.

The He density fluctuations in the mixture
differ from those in pure He because of three ef-

fects: (1) The bare restoring force co4,(k) given by
the susceptibility against static He density pertur-
bations is altered by the different structure of He
in the mixture. (2) The static coupling via the
off-diagonal elements of the characteristic frequen-

cy matrix causes a repulsion of He and He exci-
tation levels. The coupling strength 8'(k} ex-

pressed by equal-time structure functions is rather
small, —0.25 & W(k) &0.1. (3) Density fluctua-
tions of the mixture couple to additional damping
mechanisms, causing enhanced decay rates and ad-
ditional frequency renormalization via hybridiza-
tion with the decay states.

A generalized Feymman model (X=O) gives
first estimates of the relative importance of effects
(1) and (2}. However, the wave number and fre-
quency scale of its unrenormalized fluctuation fre-
quencies, in particular the position of the He- He
level crossing, is wrong. Introducing properly re-
normalized energies and incorporating damping by
decay into He quasiparticle-quasihole excitations
via X33(k,z) we obtained a theory which, without
adjustable parameter, gives (i) a transparent ex-
planation of the fluctuation spectra of the mixture
and (ii) semiquantitative agreement with neutron
scattering experiments.

The resulting He density response is of RPA
type: Between the He quasiparticles acts a k- and
z-dependent effective potential, which is generated
by exchange of (undamped) He single-mode exci-
tations similar to the Frohlich phonon-exchange
potential of electrons in metals. The strength,
determined by 8'(k), is not a fit parameter. This
hybridization of He quasiparticles with He single
modes causes the density-fluctuation spectrum
S33(k,co) to have two peaks. One is for all wave
numbers above, the other one below the "He
single-mode dispersion. Approaching the latter's
roton rnininum, the lower peak's dispersion bends
over and follows it without forming a minimum or
a flat plateau. Simultaneously, more and more
spectral weight is transferred to the upper peak.
The peak splitting of S33(k,co) around roton mo-
menta is =1.2 K.

He density fluctuations feel a polarization po-
tential produced by decay into He quasiparticle-
quasihole excitations. However, their hybridization

with a He single mode is too weak to induce a
peak splitting in the spectrum S44(k, co) since the
decay vertex determined by W(k) is too small.
Our roton linewidth due only to decay into
quasiparticle-quasihole excitations agrees surpris-
ingly well with the experimental low-temperature
roton line broadening in the mixture. (However,
the reliability of our width is obliterated by input
uncertainties of the structure functions entailing,
via the vertex, considerable uncertainty in the de-

cay rate. ) Decay into two-mode density fluctua-
tions described by (a restricted class of) mode-

coupling diagrams in leading order of the concen-
tration changes the spectra only in minor details
except near the crossing of He and He excitation
levels. There two-mode decay causes complex,
partly competing dynamical couplings and hybridi-
zations via the various self-energies which to
describe properly requires a more complete and
self-consistent treatment.

The peak position of the total neutron scattering
intensity is shifted in comparison to that of pure
"He by two static and two dynamic effects. The
largest is due to the structurally induced frequency
shift of the restoring force against He density
fluctuations. The repulsion of He fluctuation en-

ergies and He quasiparticle-quasihole excitation
levels is opposite to and smaller than the structur-
ally induced shifts. The static coupling of He and
He restoring forces enhances the fluctuation fre-

quencies thus inducing shifts that are small around
roton momenta but become larger for wave num-
bers around the maximum of the He dispersion.
Finally, the contribution of the cross spectrum to
the total scattering intensity induces additional
shifts since 734(k, co) changes sign at the He
single-mode excitation energy.

All effects combined yield rather small shifts of
the dominant peak in the total neutron scattering
intensity which agree semiquantitatively with the
experimental results obtained at the lowest tem-
peratures. In particular the upward energy shift
for wave numbers larger than the roton momentum
is a result of the altered He structure in the mix-
ture, whereas level repulsion alone yields a small
downward shift.
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APPENDIX A: COUPLING STRENGTH W'(k),
STRUCTURE FUNCTIONS S,J(k)

X;J(k)=k [0 (k)m '],J
4

2 [S(k)mS(k)];J. (Al)

of the susceptibilities ensures a realistic estimate of
the coupling function

8'(k) = X34(k)

v'X33(k)744(k)

S34(m 3S33+m4$44)

Q (m 3S33 +m 4S34 )(m 3S34 +m 4S44 )

(A2)
even more so since W(k) is determined by a quo-
tient of susceptibilities. Note that the coupling is
pmportional to the square root of the mean num-

ber densities Qn3n4 via S34(k).
The structure functions S;t(k) are needed as in-

put. For S33(k) we use the structure function

Here we evaluate the coupling strength W(k)
(2.9) between static restoring forces for density
fluctuations within the generalized Feynman
model.

Although that is a crude approximation to the
spectra, the frequency integrals X,J(k) (2.8) entering
W(k) are somewhat insensitive to details of the
spectral distribution. This is supported by two
such different systems as an ideal Fermi gas and
pure He. The standard Feynman approximation
for the latter yields a static susceptibility
4m4[$44(k)/k] with the exact long-wavelength
behavior (m4c4 ) '. Its largest deviation (about
40%) from the experimental susceptibility '

X44(k)
occurs at k=2 A '. However, the overall shape
agrees very well with X44(k). The same kind of ap-
proximation for the ideal Fermi gas yields a static
susceptibility 4m [SFG(k)/k] which is almost
identical with XFo(k) above 2kF while its largest
deviation (25%) occurs at k=0. Again the shape
of the two curves is almost identical.

We thus conclude that the approximation [(3.1)
and (3.5)]

work of Massey et al. ' which "yields reliable esti-
mates of S34(k) for the binary boson solution in
the region of intermediate and high k." For
smaller k we modified S34(k) of Massey et al. as
shown in Fig. 4 to obtain physical meaningful
eigenvalues e+(k) of Q(k)= —,k m 'S '(k) (cf.
Sec. III) which are consistent with the results in
the region of intermediate and large wave numbers.

Since S34(k) enters directly into the coupling func-

tion 8'(k) (A2) and determines its size and shape
(cf. Fig. 4), it is highly desirable to have more reli-

able information on S34(k).
$44(k) can, in principle, be extracted from the

experimentally determined total x-ray scattering
intensity S(k) of a mixture if the contributions

xS33(k) and 2&x (1—x)S34(k) were reliably
known. Since that is far from being true we ig-
nored them within a small-concentration approxi-
mation altogether in

$44(k) S(k) x
1 —2

$44(k) S44(k)

S34(k)

S(k)

S33(k)
S(k) (A4)

1.01-

o~ 1.00

g 099-

0.98-

0.00

0,02

0

t/) 002

-0.00

0.1—

and thus used the experimental S(k)/$44(k)
(closed circles in Fig. 4) as input for $44(k)/$44(k)
(solid curve in Fig. 4). The structure function
$44(k) of pure He was taken from the works of
Achter and Meyer " and Hallock.

3 k
1

1 k
4k 12 k

for k (2k@ -0.1

1 otherwise (A3)

of an ideal Fermi gas of density n3 occurring in

the 6%%uo mixture for which 2kF ——0.67 A '. The
cross-correlation function S34(k) is taken from the

2
k (A'-1)

FIG. 4. Input functions (full curves) used in this
work. See text for further information.
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APPENDIX B: MODE COUPLING APPROXIMATION TO SELF-ENERGIES
IN SINGLE-COMPONENT REPRESENTATION

Instead of using the 2X2 matrix formulation we derive here the approximations (4.9) and (4.11) within
the single-component representation (2.12) of the density response functions X;;(k,z) and then make a mode-
coupling approximation for the self-energies,

r

o;;(k,z)= p;(k) W Q; Q;W p;(k)'
Qi~Qt —z

(B1)

(B2)

The above projectors differ from the one in (2.13) since Q4 projects out only p4 and Wp4 but not p3, and
vice versa for Q3. Furthermore, p3 (p4) is a slow mode of the mixture, its fluctuation frequency is compar-
able to that of He ( He) density fluctuations, and both are coupled, e.g., via W p;. Thus the dissipation
spectrum cr~(k, co) [o33(k,co)] contains a damping mechanism whereby "He ( He) density-fluctuation energy
is transferred directly to p3 (p4) excitations. Only this decay channel of He fluctuations is considered here.
Following the standard procedure of mode-coupling theory' ' ' ' we project in (Bl) on the slow mode p3

(p41~'Q4
I p3} 1 (p3 I

Q4~'
I p4) m4

cr~(k, z)= P3 P3
(p31p3}

to obtain

zo44(k, z}=co2(k) W (k)

x [X3 (k z)/X33(k) —1] . (B3)

I

for this restriction of the resolvent by replacing the
susceptibility quotients of (B3) and (B4),

X~(k,z)/X44(k) ~—co4(k) /[z —co4(k) ],
(BS)

The second term in (B3) reflects a restoring force
enhancement caused by the coupling between the
modes. In addition to the analogous mode-
coupling contribution to o33(k,z), reflecting decay
of He excitations into a He density mode, we al-
low the former also to decay into 'He particle-hole
excitations by adding the free gas self-energy (4.7),

za33(k, z)=co3(k) IV (k)

X [X44(k,z) /X~(k) —1]

+zXFo(k,z) . (84)

In the resolvent of (B2) we have ignored the pro-
jector Q4 which suppresses the excitation of a p4
mode by the Liouville operator in

(Q4WQ4 —z) 'p3( k ). We approximately account

X33(k,z)/X33(k) ~XFo(k,z)/XFo(k),

by the expressions obtained in the limit 8'—+0 in
which the modes p3 and p4 are decoupled. As in
Sec. IV we replace the bare restoring force co4(k)
by the renormalized one e4(k), co3(k) by the ideal
Fermi-gas frequency coFG(k), and we evaluate the
Fermi-gas functions for a particle mass m3. Then
the resulting response functions X;;(k,z) coincide
with (4.9) and (4.11) if W (k) is small. That is the
case for all wave numbers since JV (k) (0.06 (Ap-
pendix A). Hence this mode-decay approximation
which couples p3 and p4 modes via self-energies
cJ;;(k,z) yields the same response X;;(k,z) as the
2X2 matrix formalism wherein the fluctuation are
coupled via off-diagonal elements of the restoring
force matrix.

APPENDIX C: DECAY INTO T%0-MODE EXCITATIONS

Here we investigate decay into two-mode excitations as described by the product

8-(k;Im) = —,[5pt(p)5p~(k —p)+5p (p)5pt(k —p)]

of two number density fluctuation operators with I,m=3,4. Within a mode-coupling approximation ' '

we determine the two-mode contributions

(Cl)

X'J'(k, co)
~ 2 ~,— g g V-(k;i - - lm)g-'„'-, (k, co ,lm, l'm')V-, (k';j ~l'm')

k '1mP~P
1',m'

(C2}

to the damping rate X~J(k,co) (2.13) by projecting onto the product "states" (Cl). Thereby one obtains the
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vertices

V-(k;I - - Im)= g(p;(k)
~

W Q ~8-.(k;Im))[(8 ~8) ']- - . (C3)

The spectrum of the two-mode propagator

f~ „.(k,z;Im, l'm')= pt(p)p~(k —p) pt (p ')p~ (k —p ')
W —z

L

is evaluated by factorizing

(C4)

f"(k,m)= f dte'"'I, [5p' (k p,—t}5pi(p, t),5pt(p')5p (k —p')]} . (C5)

That yields

g-"-„,(k,c0;Im, l'm')= f [sgn(e)+sgn(c0 —e)][X/t'(p, e)X~~ (
~

k —p ~, to —e)5--.

+Xt'~(I, e}X~t( I
k —p I

~—e}5-,, ~ -, l

upon use of the fluctuation dissipation theorem. In this work we neglect the decay corresponding to the
vertices V(3 —44), V(4=-. 33),V(3==33). The first two are small since W pi (p4) has no overlap with

the two-mode operator 8(44) [8(33)]—(p& ~

W
~

8(44))=0= (p4
~

W
~

8(33))—and the last two vertices are
small because of the small He concentration. The remaining two-mode contributions (C6) to X,J'(k, to) (C2)
are shown in Fig. 5 where a "bubble" diagram represents a particular convolution of response spectra multi-

plied by vertices. Here we will also neglect convolutions with a cross spectrum Xi4,(k, t0) which is indefinite

for positive frequencies. Thus we are left with the four digrams (a) —(d) in Fig. 5.
Since a He density fluctuation can emit a He density fluctuation only in the presence of a macroscopic

amount of He, the contributions of (c) and (d) vanish for small concentration x; the vertex V(4==34) is

proportional to V x. On the other hand, a He density fluctuation can be generated by a single He atom;
the vertex V(3~ 34) is finite for x~0. The concentration dependence of the vertices is easily seen by ob-

serving first that

(pi(k}
~

W ~8-(k;34))= — k
p~34( I

k —p I
}+("—p $34(p)

v'V 2m' n&

is finite for N& ~1 since

SJ(k)= (5p*;(k)5pj(k) }=5tj. +Qn;nj. fdr e ' " '[gtj(r) 1] . —

(C7)

(CS)

[Equation (C7) does not pose a problem in the thermodynamic limit N4~ ao, V~ ao, N4/V +n4', the fac-—
tor 1/V from the square of the vertices is compensated by the density of states V/(2m) in the wave-vector

integration. ] On the other hand,

(p4(k)
~

W'
~
8-, (k;34))

(pi(k)
~

~'
~
8-, (k;34)} m4 N4

(C9)

vanishes in the thermodynamic limit for a finite number of He atoms. Since, furthermore, the projector Q
in (C3) does not modify the concentration dependence (C9), we approximate the vertex V(4:—.34) by

3 x
V (k;4 —34)

4 1 —x

1/2

V-„(k;3=-34) . (C 10)

Then the diagrams (c) and (d) in Fig. 5 are given by diagram (b) multiplied by the appropriate concentra-
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tion-dependent factor stemming from (C10). Thus we have to evaluate only diagrams (a) and (b).
To that end we used the response spectra X44'(k, co), X33'(k, co) of pure He and of a single He atom in

He, respectively, instead of determining X,'J' in the self-energies self-consistently. Also the vertices
V(4==44) (Ref. 26) and V(3==34) (Ref. 9) were evaluated in the limit of vanishing He concentration.
Then the self-energy matrix reads

x
' 1/2

X,J(k,z)=
XFo(k,z)+ X33(k,z)

0 k )
+233(k,z)

3 x
4 1 —x

1/2
3 x
4 1 —x

(Cl 1)

(k, (il)

~ V(L~L4) QV(3~34)

(o) (c) I

+V (4 ++34)

Z.&3(k, u) )

(b)

Z 3&(k,m)
II

FIG. 5. Two-mode contributions (C6) to the self-
energies XJ'(k, co) (C2) if vertices V(4~33),V(3 33),
V(3 —44) are neglected.

where X33(k,z) is the self-energy9 for a single 3He

atom in He and X~(k,z) that of pure He. De-
cay into quasiparticle-quasihole excitations is also
approximately described here by the self-energy
(4.7} of an ideal Fermi gas of mass rn 3

For the restoring force co3(k) we used co3(k) as
obtained in Ref. 9, and co4(k) was approximated by
co4(k)S44(k)/S~(k) (4.5) with co4(k) taken from
Ref. 26. In contrast to Sec. IV we use here bare
restoring forces co;(k) since the frequency renor-
malization has to come from X'(k, co). We verified
that neglecting diagrams (c) and (d) of Fig. 5, i.e.,
the second terms in (Cl 1},yields practically the
same peak positions of X33 and X44 as obtained in
Sec. IV. This justifies the introduction of the re-
normalized frequencies in Sec. IV to account for
the real parts associated with the diagrams of Figs.
5(a} and 5(b).

Including all labeled diagrams of Fig. 5 one
finds that the spectra X1 (k, co) resulting from (Cl 1)

are in the frequency range co & e4(k), still quite
similar to those obtained in Sec. IV. For higher
frequencies there are additional multimode contri-
butions. Furthermmore, the peak widths of
X,z(k, co) at co=@4(k) are now finite also outside the
quasiparticle-quasihole band (4.12) due to decay
into a p3p4 mode. However, the decay rate is rath-
er small there (the full-width at half maximum is
at most 0.05 K around the maxon) as a result of
kinematic restriction for diagrams (b) —(d) and the
small vertex V(4 --- 34). Of the diagrams in Fig.
5 only (c) and (d) and, to a lesser degree, (b), con-
tribute to the finite life time of He single-mode
excitations. Except for the anomalous phonon
dispersion the latter are stable, ' ' at least in pure
He, against decay into two-mode excitations of
He since X44'(k, co) =0 for co & e4(k).

The peak positions of X~(k,co), X3'3(k,cg), and
S„,(k, co) are almost identical to those obtained in
Sec. IV for k & 1.75 A ', i.e., as long as the dom-
inant He mode lies outside the quasiparticle-hole
band. Otherwise the two excitation energies e4(k)
and e3(k) are so close that there is a strong level
repulsion (see below) leading to a peak splitting in
X33(k,co) and in X44(k, co), which is for k =2 A
about 3.5 K compared to 1.8 K for X33 in Fig. 2.
Owing to the level repulsion, considerable spectral
weight of X33(k,co) remains below the single-mode
dispersion e4(k) even up to k=2.25 A '. The
lower peak positions of X3'3(k,co) are similar to the
solid triangles in Fig. 2. For k & 1.75 A ', howev-
er, they are shifted here to smaller frequencies as a
result of the stronger level repulsion. The corre-
sponding widths are rather small, 2I 33—0 15 K
(1.7 K) at k=2 A ' (2.25 A '). At k=2 A
i.e., just above the level crossing, the intensities of
the two peaks of X~(k,co) are still almost equal
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0

whereas at k=2.25 A ' more spectral weight is
transferred to the upper peak. The width 2I 44

=0.13 K of the lower peak of X44 (k =2 A ', ta) is

practically determined by decay into He
quasiparticle-quasihole excitations since the two-
mode dissipation spectrum X33 is still zero for that
frequency. However, for larger wave numbers, de-

cay of a He single mode into p3p4 excitations is
kinematically possible thus causing broader widths
than those following from decay into He
quasiparticle-hole excitations.

To understand the origin of the large frequency
renormalization and peak splitting around k=2
A ' note that decay into two-mode excitations (i)
hybridizes a He or a He density fluctuation with

p3p4 by virtual transformation of the former into
intermediate excitations of the latter [Figs. 5(b) and
5(c)], and (ii) it induces a direct dynamical decay
interaction [Fig. 5(d)] between a He and a He
density fluctuation by which the former is ab-
sorbed and the latter is generated and vice versa.
Both processes cause frequency renormalization
and peak splitting (here not only the off-diagonal
elements of the restoring force matrix but also the
off-diagonal self-energies induce coupling between
the diagonal elements of restoring force and self-
energy matrix), but mainly the latter is responsible
for the too-large peak splitting. This numerically
confirmed fact can be understood as follows. Both
level repulsion induced by static coupling 8'(k)
and the hybridization of a He single mode with a
He quasiparticle-quasihole excitation are small.

Renormalization of the He excitation frequency

by the real part X33(k,to) of Fig. 5(b) alone leads
to a He quasiparticle dispersion which approaches
e4(k) around roton wave numbers but does not in-
duce a downward shift to about 0.85'~(k) for
k=2.0 A '. So one is left with diagrams Figs.
5(c) and 5(d), both of their real parts having the
frequency dependence of X33(k,ta). However, the
off-diagonal element of the self-energy matrix
(Cl 1) due to Fig. 5(d) enters the determinant of the
inverse reponse matrix with twice as large a weight
as the diagonal element due to Fig. 5(c).
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