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We discuss the percolation threshold of a two-dimensional continuum system which

has conductor only in those regions where a function I(x) is less than a chosen cutoff in-

tensity. An experimental realization of such a system, with I(x) the electric field intensi-

ty of a laser speckle pattern, has recently been reported. We carry out a computer study

for this case, the results of which are in excellent agreement with the experimental re-

sults. Expanding on earlier ideas that it is the saddle points of I ( x ) which determine the

percolation threshold, we introduce an "equivalent network" which has the same thresh-

old as the continuum system. With the use of this result, the computer study constructs
the network and then easily finds its threshold. The computer study also finds the densi-

ties of maxima, minima, and saddle points of I(x) which are in close agreement with the
analytic results of a companion paper. Finally, we use the equivalent network in develop-

ing an "effective-lattice" estimate for the percolation threshold.

INTRODUCTION

Recently, Smith and Lobb' developed an experi-
mental technique to study continuum percolation
in a system with well-characterized disorder. They
expose high-contrast film using a laser speckle pat-
tern whose electric field amplitude is, to a good ap-
proximation, a realization of a complex Gaussian
random variable. The film is then used as a mask
for photolithography, which yields a planar
conductor-insulator composite with conductor only
in those regions where the speckle pattern electric
field intensity I(x) is less than a given cutoff in-
tensity I*. This paper is concerned with the deter-

mination of the percolation threshold of the com-
posite I„i.e., of the smallest value of I~ for which
the system conducts to infinity.

The problem addressed in this paper is
equivalent to the problem '" of the localization of
classical particles in a random potential in two di-
mensions. If I ( x ) describes the potential, and I~ a
particle's energy, then the particle is restricted to
move only in those regions of the plane where

I(x) &I~. If I» &I„so that all of the allowed re-

gions are finite in extent, then the particle must be
localized; while if I~ &I, the particle is not local-
ized if it is located in the allowed region of infinite
extent which appears when the regions percolate.

A better intuitive understanding of the problem
can be achieved by considering a more easily
visualizable topographic analogy, namely, the
determination of the floodplanes of lakes in a
mountain range. Viewing I(x) as describing a

mountainous surface over the plane with valleys
filled with water to a given height I*, the water-
covered regions correspond to the conducting re-
gions of the continuum system. There exists an in-
terconnected lake of infinite extent if I* is greater
than the percolation threshold, I,.

For many two-dimensional continuum systems,
the exact percolation threshold is determined by a
straightforward argument. In these systems, the
"conjugate" system, obtained by interchanging the
roles of the conducting and insulating regions, is
statistically equivalent to the original system with
the area fractions of conductor and insulator inter-
changed. So, if the conductor percolates at an area
fraction of conductor f, then the insulator will per-
colate when its area fraction is f, i.e., at an area
fraction of conductor of 1 f. But, in tw—o dimen-

sions, the point at which one component first per-
colates and that at which the other component last
percolates must be the same, because the percola-
tion path of one component blocks the percolation
of the other component. Thus, these systems first
percolate at a critical area fraction f, of 50%%uo.

However, the system we are considering does not
have this simplifying property, so the determina-
tion of the percolation threshold is a more difficult
problem.

We might mention that, in addition to the
system's experimental relevance, it is the simplest
such system based on Gaussian random variables
(GRV) defined on the plane which has a nontrivial
percolation threshold. If I(x) were a real GRV
then its distribution function would be symmetric
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between I and —I. The system would then have
the symmetry between conductor and insulator dis-
cussed above, leading to f, =50%%uo and hence I, =0.
Also, if I were the square, or absolute value, of a
real GRV then again I, =0 but with f, =0%. To
see this, consider the real GRV case with I*=0
In this case, the system is below its percolation
threshold I,=0, and the interconnected lakes are
all of finite extent. The area covered as I* in-

creases is the shoreline of each of these lakes, and
when I~=0+, exceeding the percolation threshold,
some of these areas will connect to each other,
joining the lakes they surround into an infinite
lake. But notice that the shoreline areas alone will

percolate, even without the areas of "deep water, "
since each lake is completely surrounded by its
shoreline, and the interconnections between lakes
which lead to percolation are also included in the
shoreline area. Thus, I, =0 in a system where

I(x) is the square of absolute value of a GRV,
since the region conducting when I*=0+ is just
this shoreline area.

In thinking about the percolation threshold of
the system, it becomes apparent that it is the sad-
dle points of I(x) which determine the percolation
threshold because two conducting regions
coalesce into one when I~ becomes greater than the
intensity of the saddle point between them. To see
this, consider increasing the level of two adjoining
lakes at the same rate. They join as the water level

reaches the point of lowest height separating the
two, which is the saddle point between them. In
this paper we show that in fact there is an exact
equivalence between the percolation threshold for a
continuum system and that for bond percolation
on a specific network. The network is completely
determined by the surface I(x): The vertices cor-
respond to the minima (or maxima) of I ( x ), and
the bonds to paths from minima to minima (or
maxima to maxima) through the saddle points.
The states (conducting or insulating) of the bonds
are set by comparing the heights of the corre-
sponding saddle points to I*.

We report on a computer study of the percola-
tion threshold for the system in which we create a
realization of I(x) on a large lattice of points, and
look for the onset of percolation. One method of
finding the threshold would be to construct con-
tours of constant intensity; I, would then be the
height of the first contour to span the system.
However, rather than constructing contours, we
create the equivalent network. This approach has
the advantage that once we have the network, find-

ing its percolation threshold is a straightforward

task. A possible disadvantage is that in construct-
ing the network it is necessary to find all of the
critical points (i.e., the maxima, minima, and sad-
dle points} of I(x). In our case, this is not a con-
cern since we want to find the critical points for
comparison with the analytic results of the corn-
panion paper for the densities of these points.

The rest of the paper is organized as follows:
Section II reviews the connection between laser
speckle patterns and GRV's showing that the
correlation function of the GRV is simply related
to the intensity distribution of the laser spot. In
Sec. III we construct the network mentioned above,
and argue that it has the same percolation thresh-
old as the original system. Section IV describes
the computer study of the threshold of the system;
the results are found to be in excellent agreement
with the experimental results of Smith and Lobb.
Finally, an effective-medium-type of argument, us-

ing the equivalence between the continuum system
and the network, is presented in Sec. V.

II. LASER SPECKLE PATTERNS

A laser speckle pattern occurs when a laser
beam impinges upon a rough scattering surface. If
the scattered light is linearly polarized then E(x),
the electric field amplitude at a point x on a given
"image plane, " is the sum of the amplitudes of a
large number of essentially independent electric
fields due to the scattering of the laser beam by the
many microscopic elements of the rough surface.
Thus, calling upon the central limit theorem, E(x)
is, to a very good approximation, a complex
Gaussian random variable (CGRV) defined on the
plane. The correlation function is

GE( x, y ) = (E( x )E*(y ) &

/»(X2 y2) jd2 P(~ }
2i» x 0 ( x —y )

where ( ) denotes an average over the random
variable, a is a geometric factor, and P(xo} is the
intensity distribution of the laser spot on the
scattering surface. Introducing A ( x )

=exp( isx )E(x), and—assuming that the spot is
rotationally symmetric, i.e., P(xo) =P(

~
xo

~
), we
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Notice that the Fourier transform of G is trivially
related to P (x0): G(k) ~ P (k /2a ).

Thus, in the experiment of Smith and Lobb, the
electric field intensity to which the film responds is
I(x)= [E(x}[

= )A(x) (, where'(x) is a
homogeneous, isotropic CGRV defined on the
plane. Since the film is of very high contrast,
there is a sharp cutoff I¹in electric field intensity
between the transparent and the opaque regions of
the developed film; I* is controllable by varying
the exposure time and laser power. Using the film
as a mask for photolithography results in conduc-
tor being removed only in those regions where

I(x) &I¹.The critical intensity I, is then the
minimum value of I* for which the conducting re-

gions span the system, giving rise to a macroscopic
conductivity. I, is simply related to the quantity
actually measured in the experiment, the area frac-
tion at the percolation threshold, f, = l
—exp( I, /Io)—, where Io = (I ( x ) ) =G (0).

In the experiment, the intensity of the laser spot
on the rough surface is essentially Gaussian in

form, leading to a Gaussian correlation function
G(r), which is the form used in the computer
study described below. In addition to studying t e
isotropic case, Smith and Lobb found it easy to in-

troduce anisotropy into the system by tilting the
scattering surface, thereby making the laser spot
noncircular. They investigated the effect of aniso-

tropy on the conductivity of the system above the
percolation threshold. In this paper only the iso-

tropic case shall be considered; simply stretching
the sytem in one direction will leave its topology
unchanged and thus will not change its percolation
threshold.

tion the plane into a polyhedron with vertices at
the minima of I(x },edges along paths from
minimum to minimum through the saddle points,
and with each face containing a single maximum
(see Fig. l). Consider a point on the surface which
is not a maximum, minimum, or saddle point of
I(x) and which does not lie on any of the (two per
saddle) paths of steepest descent from a saddle

point, and imagine following the path of steepest
ascent which passes through the point. This path
must eventually lead to a maximum; the point be-

longs to the face containing the maximum which
has been reached. In general, a point in the neigh-
borhood of the original point will also belong to
the same face, i.e., the path of steepest ascent pass-
ing through the new point will lead to the same
maximum. In this way, the set of all points which
make up a face of the polyhedron is determined.

Now, at the edge of the face there will be neigh-
boring points which belong to two different maxi-
ma. Lying between these points is a separatrix
which divides flows to different maxima. The
separatrix is well defined since VI is continuous,
and is a path of steepest ascent itself, since it is
bounded on either side by other paths of steepest
ascent. By its very nature this bounding curve
cannot end on a maximum; rather, it ends at the
saddle point between the two maxima. It might
seem that the point at which the separatrix ends
could be a higher-order critical point (such as a
"monkey saddle" ) rather than a simple saddle

point, but for our suitably random function defined

III. EQUIVALENT NETWORK

In this section we show that the percolation
threshold for a two-dimensional continuum system
with conductor in those regions where a function
I ( x ) is less than I¹,and with insulator where I ( x )

is greater than I*, is related to the percolation
threshold of a network which we shall construct in
the argument. I(x) is an arbitrary function, ex-

cept that we shall require that its gradients be con-

tinuous, and that it be suitably random in order to
allow us to argue that certain special configura-
tions (which are unstable to infinitesimal deforma-
tions of the surface) are of measure zero, and thus
can be ignored.

Following Longuet-Higgins, who studied the
scattering of light from random surfaces, we parti-

FIG. 1. Construction of an edge of the polyhedron.
The points marked S, M, and m are saddle points, maxi-
ma, and minima of I(x), respectively. The dotted lines
are contours of constant intensity, and the solid lines are
paths of steepest ascent from minima to maxima. The
heavy line is an edge of the polyhedron, separating
paths of steepest ascent which end on different maxima.
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on the plane such points can be ignored. '

Thus, the faces are bounded by the separatrices
for the flows to different maxima. The separa-
trices are the paths of steepest ascent ending on the
saddle points, each saddle point having two such
paths. These paths must start on a minimum.
The only other possibility, a separatrix starting at
another saddle point, will not occur bemuse it
would require that the path of steepest ascent end-

ing at a saddle point also be one of the (only two
per saddle) paths of steepest ascent beginning on
another saddle, an occurrence of measure zero.

Thus, we have constructed a polyhedron, the
equivalent network, with vertices at the minima of
I(x) and edges following the paths of steepest as-

cent from minimum to saddle and then back to
minimum, and a single maximum contained in

each face. We mn also immediately prove a sum
rule" connecting the numbers of maxima, minima,
and saddle points of a random function with con-
tinuous gradients in two dimensions. Imposing
periodic boundary conditions on the function, so
that it is defined on the surface of a torus, the
polyhedron we have constructed will also lie on the
surface of a torus. Then, we can apply Euler's
sum rule, ' X,dg,

——E„,„,„+Xf„,on a torus, to
find:

&sad +max+&min ~

where we have used the correspondence between
the vertices, edges, and faces of the polyhedron,
and the minima, saddles, and maxima of I(x),
respectively.

For the continuum system with I(x) viewed as a
surface over the plane, it is sufficient that the lake
be at least as high as the intervening saddle point
in order that one minimum be covered by the same
lake as a neighboring minimum. The two vertices
of the network corresponding to the two minima
are connected by the edge through the intervening
saddle point. In order that the two vertices be con-
nected, it is sufficient that this edge be conducting.
Thus, if we consider bond percolation on the net-
work, with the bonds conducting only if I* is
greater than the associated saddle height, then the
network mill first percolate when I*=I„the same
value as that at which our original continuum sys-
tem described by I(x) first percolates. In the next
section we use this result to determine the percola-
tion threshold of a number of realizations of the
continuum system. The network .is constructed,
and then its bond percolation threshold is easily
determined.

The same arguments will clearly apply if we
consider paths of steepest descent instead of ascent
(imagine turning the system over). In this case, the
vertices are at the maxima of the random function,
and each face contains one minimum. This new
network is the dual of the original network, and
will have the same I, as the original network if the
bonds are now taken to be conducting only when
I* is less than the associated saddle heights. The
difference is that, for the original network, as I*
increases through I, the system becomes conduct-
ing, while for the dual network the system stops
conducting as I* increases through I, .

In Fig. 2 we illustrate two special cases, not ex-

plicitly considered in the above argument, which
merit further discussion, although the conclusions
reached above remain unchanged. It is possible for
a minimum to have only a single path of steepest
descent from a saddle reaching it, and also for a
saddle to have its two paths of steepest descent
both end on the same minimum. In the first case,
the path of steepest descent from the saddle acts as
a separatrix for Aows to the same maximum which

go to either side of the minimum, while in the
second the separatrix completely surrounds a max-
imum. The sum rule still applies; the more general
polyhedra generated when these configurations are
allowed have vertices with coordination number of
one, and have bonds with both ends attached to the
same vertex, but still satisfy Euler's sum rule. (A

FIG. 2. Two special configurations of the surface;
one leading to a vertex of coordination number of unity,
the other to an "edge" which begins and ends on the
same vertex. The points marked S, M, and m are saddle
points, maxima, and minima of I(x), respectively. The
dotted lines are contours of'constant intensity and the
solid lines are paths of steepest ascent from minima to
maxima. The heavy lines are the edges of the more gen-
eral polyhedron which is generated.
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more general polyhedron is reduced to a poly-
hedron without the special cases by removing edges
and vertices in pairs, and edges and faces in pairs. )

The special edges and vertices of our equivalent
network are irrelevant to the determination of its
percolation threshold, since they do not affect the
long-range connectivity of the clusters. The corre-
sponding special configurations of the continuum
system can also be seen to be irrelevant to the
determination of its threshold, they result only in
isolated lakes or mountains as the water level is
raised. Thus, the above argument relating the per-
colation threshold of the continuum system to that
of the network remains unaffected.

IV. COMPUTER STUDY

In this section a computer study of the percola-
tion threshold is discussed. A realization of a
complex Gaussian random variable (CGRV) de-

fined on a square lattice of points is created and its
squared modulus is found. A continuous function
with everywhere continuous gradients is then fit to
the points and the function's maxima, minima, and
saddle points are found. Since the gradient is con-
tinuous, the sum rule, Eq. (3), applies, and serves
as a useful check on the algorithm used to find the
critical points. Following the paths of steepest as-
cent from each of the saddle points until they end
on maxima, the equivalent (dual) network is creat-
ed. It is then an easy rnatter to find the percola-
tion threshold of the network, and thus, as argued
above, to identify the percolation threshold of the
continuum system.

A realization of a homogeneous CGRV with
periodic boundary conditions defined on a lattice
of points can be created by taking the inverse
Fourier transform of independent CGRV's defined
on the reciprocal lattice. If A (n) is a CGRV de-

fined on a square lattice of points, n =(i,j)
(ij = 1, . . . , N), with correlation function

then the Fourier transform of A (n),

A(k)= ge'" "A(n),

is a CGRV with correlation function

(A(k)A*(k ')) =N G(k)5-„-„, ,

where G(k) is the Fourier transform of G(n).
Thus, the A(k) are independent CGRV's, and

there are mell-known techniques to create a realiza-
tion of them, ' and to take the inverse Fourier
transform to find A(n). The intensity is then just
I(n)= ~A(n)

To allow us to compare the results of this study
with the experimental ones obtained by Smith and
Lobb, we take the correlation function to be
Gaussian (see Sec. II above),

G(n) =Ioe (6)

where x is the integer part of x, x' is the fractional
part of x, and similarly for y. For each square [la-
beled by (x,y)], the 16 coefficients a„(x,y) are
determined by 16 values of I(n), the values at the
four corners of the square and at the 12 next-
nearest points of the grid. These values are substi-
tuted into 16 equations arising from the constraints
on the function I(x,y) Four of the c. onstraints are
simply that I(x,y) must attain the correct value at
the four corners of the square; the rest arise from
fixing the first and second derivatives of I(x,y) at
the four corners by the values of I( n ) at the 16
points in such a way that I(x,y) and V'I(x,y) are
continuous from square to square.

The algorithm used to find the zeros of V'I(x,y)
in each square involves finding the zeros of I„
along the curves defined by Iz ——0 (where

It is convenient to set the intensity scale to unity,
Io ——1. Also, a choice of o.=8 was found to be a
good tradeoff between two competing require-
ments: (1) Since cr determines the typical length
scale for variations of the intensity, o. should be
large compared to the grid spacing (of 1) so that
we can adequately approximate the true intensity

by interpolating between the values of the intensity
on the grid, I(n). (2) In order to accurately deter-
mine the percolation threshold, the system should
contain many uncorrelated regions. Correlations in
the intensity extend over distances of order 0., so 0.

should be small compared to the system dimen-
sions. The system size of E points is limited by
computer time and memory constraints to a max-
imum of N=512, which is the value used here.

Once I (n) has been created, we wish to deter-

mine a continuous function I(x,y), defined on the
torus [x,y in [O,N] with I(x,y) continuous at the

edges) such that I((x,y)=n)=I(n) and VI(x,y)
is everywhere continuous. These conditions can be
satisfied by using a polynomial interpolation of the
form

3 3

I(x,y)= g g a„(x,y)(x')"(y')
n =Om =0
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I, =t)I/t)a). I„(x,y) =0 is a quadratic equation for
y(x), and is thus easily solved. The zeros of
I„(x,y (x)), as a function of x, are determined by
finding the value of the function on a discrete set
of trial values of x and noting where it changes
sign. Newton's method is then applied to accurate-
ly determine the zero. By only considering those
trial values of x for which [x,y(x)] is in the
square, we avoid having to find the potentially
large number of points at which VI =0 but which
are not in the square, and thus are not of interest.
In addition, computation time is saved by search-
ing a square for the zeros of 7'I only if curves
along which I =0 and curves along which I~ =0
both enter the square. It is extremely unlikely to
have a point in the square at which VI =0 (where
the two types of curves intersect) without having
both types of curve go through an edge of the
square, since o., which sets the characteristic length
of variation of the function, is large compared to
the size of a square. The number of trial values of
x required was reduced to 20 along each square by
developing algorithms to explicitly deal with cer-
tain special cases. An example of such a special
case is illustrated in Fig. 3.

Once a point at which V'I =0 is found, it is
classified as a maximum, minimum, or saddle
point by considering the matrix of second deriva-
tives, IJ. The eigenvalues of Ij describe the prin-
cipal curvatures at the point, so we need only ex-
amine the determinant and the trace of I,j to deter-
mine the signs of the curvatures, and, hence, to
classify the points.

I

0.5—
Computer

The sum rule, Eq. (3), applies to this system,
since I(x,y) is defined on a torus and I and VI are
continuous, and provides a useful consistency test
of our procedure. The sum rule is satisfied very
well, to within less than six out of a total number
of saddle points on the order of 2000, for each of
the realizations created. Comparing the results of
the exact calculation of the companion paper and
those of the computer simulation of this paper, we
find that for intensities & 0.2 the densities of sad-
dle points and of maxima plus minima are in good
agreement. However, our computer simulation has
many more saddle points and minima at small in-
tensity than the exact result predicts for the true
continuum system. Due to these excess points the
total density of saddle points (and maxima plus
minima) is on the order of 10%%uo too high, and
varies from one realization to another. In Fig. 4
we show a comparison between the exact and the
computer results (averaged over four realizations)
for R„„(I)and R,„(I)+R;„(I), the densities of
saddle points and of maxima plus minima, respec-
tively, which are at intensity greater than I. As in
the companion paper, we plot, as a function of the
scaled intensity I/Io, the number of points per
unit characteristic area I = —2G (0)/V G (0)
which is equal to o in our case.

We believe that the excess minima and saddle
points at low intensity are due to the polynomial
interpolation between the points at which the in-
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FIG. 3. A special case which must be dealt with by a
special algorithm. The curves along which I„=O and
along which I» =0 are shown, as are two consecutive tri-
al values of x: x„and x„+~. The algorithm must recog-
nize that there is a zero of VI between the two trial
values of x even though y (x„+~), the solution of
I»(x„+t„y)=0, does not exist.

FIG. 4. Scaled density of saddle points o. R„d(I)
(solid curves) and of maxima plus minima cr'[R,„(I)
+R;„(I)J (dashed curves) that are at intensity greater
than I. The heavy lines are the exact results of the
companion paper, the light lines are the computer re-
sults of this paper averaged over four realizations. No-
tice that the exact and computer results differ only for
small values of the intensity. The exact R,„(I)
+R;„(I)has a step at I=0, while in the computer re-
sult the step has been rounded for

I
I/Io
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tensity is known. At low intensity, the system ex-
hibits long chains of minima and saddle points
which are very close together (often closer than the
grid spacing). Thus, we should not expect the
polynomial fit to the grid of points to be a good
approximation to the true intensity of a continuum
CGRV in these regions. We carried out two tests
to verify that the interpolation scheme in fact in-

troduces excess minimum —saddle-point pairs.
Realizations were made with a number of different
values of 0.. As 0. is increased, so that the grid is
effectively made finer, the number of excess points
at low intensity decreases. This is to be expected if
the excess critical points are due to our interpola-
tion scheme, since the interpolation is bound to be
more accurate as the grid is made finer. In addi-
tion, we took a realization (with o =8) for which
we had determined the critical points using the
standard interpolation scheme, and found the in-
tensity on a finer mesh in the vicinity of some of
the critical points. The intensity on the finer mesh
was found by taking the inverse Fourier transform
evaluated at each point; fast-Fourier-transform
techniques could not be used to do this, so the
number of points studied was limited by computer
time to about fifty of each kind. Interpolating
from the finer mesh, we found that indeed a num-
ber of minimum —saddle-point pairs along low in-
tensity chains disappeared using this more accurate
determination of the intensity. The number of
pairs which disappeared is about the number ex-
pected if the excess densities of minima and saddle
points is due to these pairs.

In the companion paper only R,„+R;„was
calculated, but we can combine the exact results of
the companion paper and the computer results
found here to accurately determine the separate
densities. Except at low intensity, we find excel-
lent agreement with the exact results for R„d(I)
and R,„(I)+R;„(I).This close agreement gives
us confidence that the computer results for R,„(I)
and R;„(I)separately are accurate except at low

intensity, but there are very few maxima at low in-

tensity, so we expect that the computer result for
R,„(I) is correct. Figure 5 displays the separate
densities of critical points: the exact result for
R„d(I), the computer result for R,„(I),and
R;„(I)obtained by subtracting R,„ from the ex-
act R,„+R;„.As in Fig. 4, in Fig. 5 we plot
the scaled density o R (I) versus the scaled intensi-

ty I/Ip.
We now construct the equivalent network for the

system as discussed in Sec. III. Because there are
fewer maxima than minima, and the maxima are

b
~ 0.4—

0.1—

0.0
0.0 1.0

I I I

2.0 3.0 4.0 5.0
[NTENSITY, I/Ip

FIG. 5. Separate scaled densities of saddle points
o'R„d(I), maxima cr'R,„(I),and minima o. R;„(I)
that are at intensity greater than I. The arrow indicates
the bottom of the step in R;„at I =0.

more widely separated than the minima, it is con-
venient to construct the dual network of paths of
steepest ascent from saddle points to maxima, rath-
er than the network of paths of steepest descent to
minima. In any case, both networks have the same
percolation threshold I, . At each saddle point, we

step off in the direction of the eigenvector of I;~
corresponding to the positive eigenvalue, and then
follow the direction of VI(x,y) until a maximum
is reached. Then, starting at the same saddle

point, we step off in the direction opposite to the
previous one and again follow VI to reach a (gen-
erally different) maximum. We have thus con-
structed a bond connecting the two maxima. Fol-
lowing this procedure for all of the saddle points
of the system, we construct the dual network.

It is now an easy matter to find the intensity at
which the dual network first percolates. I, is the
largest value of I* for which a conducting path
spans the system, where bonds are taken conduct-
ing only if I* is less than the intensity of the corre-
sponding saddle point. First we "prune" the net-
work, removing irrelevant bonds in order to make
the determination of the percolation threshold
more efficient. If two sites are connected by more
than a single bond (a common occurrence when

there are a number of saddle points near to each
other), then only the saddle point with the highest
intensity needs to be kept since it will short circuit
all of the other bonds. In this way, the total num-
ber of bonds in the network which need to be con-
sidered to determine the percolation threshold is
reduced by about 20%%uo. Taking two opposite edges
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(a) (b)

FIG. 6. {a) Pruned equivalent {dual) network for one
realization. {b) The bonds conducting when the system
just percolates in both directions.

of the system to be conducting, so that a bond that
crosses one of the edges is connected to that edge,
and taking the other two edges to be insulating, we
search for paths of conducting bonds connecting
the two conducting edges. Starting at one of the
conducting edges, we follow conducting bonds un-
til either the other side is reached (the system per-
colates) or all of the accessible conducting bonds
have been explored (the system does not percolate).
By choosing different values of I*, we can precise-
ly determine I„the percolation threshold of the
system. In Fig. 6 we show the pruned equivalent
network constructed for one realization; Fig. 6(a)
shows the complete network, and 6(b) the bonds
conducting when the system is just percolating in
both directions.

Table I shows the results for the threshold for
percolation from left to right and from top to bot-
tom of the four realizations created. Averaging
the I, 's for the two directions and for the four
realizations we find an estimate for the intensity at
the percolation threshold of I, =0.519. This value
of I, corresponds to a critical area fraction for the
conducting regions of the original continuum sys-
tem of f, =40.5%, in excellent agreement with the
experimental result of f, =40.7% quoted by Smith
and Lobb. If we were to assume that the varia-
tions in the I, s in the two directions and for the
different realizations were all independent, we
would be led to assign an uncertainty of +0.03 to
our estimate for I,. In the third column of Table
I, I„the average of the thresholds for the two
directions, exhibits little variation over the four
realizations. This is true because the thresholds
for the two directions of a single realization are
not independent. For a given realization the two
thresholds tend to vary in opposing directions. If
there are more "easy" bonds in one direction, lead-

ing to a lower than normal threshold in that direc-
tion, then there will tend to be less "easy" bonds in

TABLE I. The percolation thresholds for the four
realizations. I," and I, are the thresholds for percola-
tion from left to right and from top to bottom, respec-
tively, and I, is the average of the thresholds in the two
directions.

Realization ILR
C

ITB
C

0.512
0.516
0.531
0.464

0.525
0.529
0.505
0.571

0.519
0.523
0.518
0.518

the other direction, leading to a higher threshold in
that direction. Thus, the uncertainty in our esti-
mate for I, must be less than the value quoted
above, and is more likely to be about the same as
the variation in I, : +0.002.

V. "EFFECTIVE-LATTICE" ESTIMATE

In this section we introduce an effective-
medium-type of argument to determine the per-
colation threshold of a continuum system. '" The
argument makes use of the equivalence between the
continuum problem and that of the network

developed in Sec. III. While we show that it is

possible to construct systems for which the result

of the argument is a poor approximation, the argu-
ment is a rather successful predictor of the ob-

served percolation threshold for the system studied
in this paper.

For uncorrelated bond percolation on a regular
lattice in d spatial dimensions there is an estimate
for the percolation threshold' which works re-

markably well':

zp, =d /(d —1),
where z is the coordination number of the lattice,
and po is the fraction of bonds conducting at the
percolation threshold. We now apply this estimate
to our equivalent network, replacing z, the coordi-
nation number of the regular lattice, by z, the aver-

age coordination number of the equivalent net-
work. We are modeling the network by an effec-
tive regular lattice with the same average coordina-
tion number. Of course, z is generally not an in-

teger, so it would be rather difficult to actually
construct the lattice; we are continuing the esti-

mate, Eq. (8), to noninteger z. The estimate for the
equivalent network becomes zp, =2. Using the
equivalence between the continuum system and the
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network, we have the fraction of saddle points
covermi at I„p,=R„d(I,)/N„d, where

N„d ——Rsaq(0) is the total density of saddle points,
and R»d(I) =N»d —R„d(I) is the density of saddle
points covered with intensity less than I. Also, the
average coordination number of the network with
vertices at the minima of I (x) is z =2N„d /N;„,
where N;„=R;„(0)is the total density of mini-
ma. Thus, the estimate becomes an implicit equa-
tion for I„

R„d(I, )=N;„.
The continuum system is predicted to percolate
when the number of saddle points covered is equal
to the total number of minima. Equivalently, us-

ing the sum rule, we may write (9a) as

the estimate agrees quite well with the experimen-

tal result.
Also, notice that the "conjugate" system, ob-

tained by interchanging the role of conductor and

insulator [i.e., the system with conductor only in

those regions where I(x) y I*],has an equivalent

network which is simply the dual of the original
system's network. The original network and the
dual network both percolate at the same value I„
so our estimate (9) which focuses on I, is as good
for the conjugate system as for the original system.
This result is in contrast with estimates which
focus solely on f, . ' Such estimates cannot be

good for both a system and its conjugate except for
the special cases for which f, =50%.

R sad(Ic ) =Nmax ~ (9b) VI. CONCLUSION

where X,„ is the total density of maxima.
This estimate cannot be a good one for all sys-

tems. Imagine, for instance, taking a system for
which the estimate is exact and deforming the sur-

face I(x) at intensity well above I, to produce new
minimum —saddle-point pairs (pairs so as to
preserve the sum rule). In the new system the per-
colation threshold and the number of saddle points
covered at the threshold would be the same as for
the original system, but the estimate for the per-
colation threshold would change, since the total
number of minima would increase with the defor-
mation. Similarly, the true threshold is unchanged

but the estimate changes when extra maxi-
mum —saddle-point pairs are added at intensity
well below I, .

We now apply the estimate derived above to the
laser speckle pattern system. As discussed in Sec.
IV, the exact calculation of the companion paper
only finds the density of maxima plus minima, but
because there is excellent agreement between the
exact results and the computer study of this paper
for R„d(I) and R,„(I)+R;„(I)except at small

values of I, we accurately determined R „and
R;„separately using a combination of the exact
and the computer results. We find that the mini-
ma make up 60% of the total number of minima
plus maxima [which is equal to the total number
of saddle points, by the sum rule, Eq. (3)]. There-
fore, we estimate that the system percolates when
60% of' the saddle points are covered, correspond-
ing to I,=0.490 and f, =38.7%. In fact, the ex-

perimental system percolates when 62.5% of the
saddle points are covered, corresponding to
I,=0.523 and f, =40.7%. Thus, for this system

We have considered a general class of two-
dimensional continuum percolation systems
described by a characteristic surface over the plane,
and have introduced an equivalent network deter-
mined by the geometry of the surface. Taking the
state of the bonds of the network to be directly re-
lated to the height of the corresponding saddle
point, we find that the network has the same per-
colation threshold as the continuum system. We
thus have formalized the intuition that the saddle
points of the random surface determine the per-
colation threshold. We have also utilized the net-
work in developing a technique to find the percola-
tion threshold of a system in which the surface is
the intensity of a laser speckle pattern, and have
found excellent agreement with experimental re-
sults for this system. In addition, we have deter-
mined the separate densities of maxima and mini-
ma for this case, which was not calculated in the
companion paper. An effective-medium-type argu-
ment, which is based on the equivalent network,
was introduced to estimate the percolation thresh-
old. The resulting estimate compares fairly well
with the experimental result.
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