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We study the simple system of a two-dimensional square lattice composed of good-
conductor and poor-conductor squares, with the use of a clustered mean-field approxima-
tion. Instead of the well-known threshold behavior predicted by the two-component site
percolation model or the effective-medium theory, we find two conductivity percolation
thresholds at which the real and imaginary parts of the effective dielectric constant exhi-
bit distinct critical behaviors. The cause of this double-threshold characteristic is shown
to be the existence of a third conductivity scale arising from the corner-corner interac-
tions between second-nearest-neighbor squares. Analogies with site percolation models
are also detailed. It is demonstrated that as |€,/€,| — w0, where € () is the complex

dielectric constant of the good (poor) conductor, the continuum system can be made
equivalent to two versions of the square-lattice site percolation model, depending on
whether |€;| — o or |€;| —0. The paper concludes with a discussion of possible impli-
cations for three-dimensional continuous-media percolating systems.

Percolation is a subject common to a wide
variety of physical problems involving the macro-
scopic properties of inhomogeneous media. In the
past decade, extensive theoretical study on discrete
percolating networks consisting of nodes and bonds
has elucidated many fundamental characteristics of
these systems.! However, it has been pointed out?
that in real composite materials with space- (area-)
filling constituents, the percolation properties can
be drastically different from the predictions of the
network models. The discrepancies occur in part
because the components of a continuous-media per-
colating system can have various geometric shapes
and correlated arrangements,’ features that are dif-
ficult to model by any simple discrete network.
The work reported herein indicates that such
geometric effects may not only shift the value of
the percolation threshold, but may also induce crit-
ical behavior at more than one threshold for a
two-component composite. In fact, our simple
model displays a distinct type of critical behavior
for the real and imaginary parts of the dielectric
constant at each of the two thresholds.

We consider a two-dimensional simple square
lattice in which each square has the probability p
of being occupied by material 1 and probability
1—p of being occupied by material 2. Since we are
interested in the electrical properties of the system,
each material is characterized by a complex dielec-
tric constant €1 (2)281 (2)—{'—i (4770'1 (2)/60), where 81 2)
is the real part of the dielectric constant for ma-
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terial 1 (2), o) is the conductivity for material 1
(2), and o is the angular frequency of the elec-
tromagnetic field. To inject an element of realism,
we will further characterize the corners of the
squares as not being perfectly sharp, but can have
a small contact of width w in units where the side
of each square is defined as 1. We are interested
in the properties of the system as w—0. There are
two simple methods in the literature that one can
employ to estimate the effective dielectric constant
€ of this model: the site percolation model, in
which the two nearest-neighbor nodes are connect-
ed by one of the two types of bonds, and the effec-
tive medium theory.? If we assume |, | << | €],
both theories predict that In|€é| would experience
one single sharp variation at the threshold value of
p. It is the purpose of this paper to point out that
the actual behavior of this simple system differs
significantly from such prediction. In fact, our
calculation demonstrates that due to the corner-
corner interaction between the second-nearest-
neighbor squares, In|€| exhibits two sharp varia-
tions of equal magnitude: one at p> 0.5 and the
other one located symmetrically below p=0.5. To
obtain a qualitative understanding of this behavior,
we note that a simple square lattice can have two
types of connected networks*: the nearest-neighbor
network and the second-nearest-neighbor network.
It is a matter of simple logic to deduce that the
two sharp variations in In|€| must be related to
the formation of these two types of networks.
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However, what might seem surprising is that the
formation of the second-nearest-neighbor conduc-
tor network, which is connected only by pointlike
contacts (between the conductor square corners),
can actually contribute to an increase in In|€| that
is equal in magnitude to the increase at the forma-
tion of the nearest-neighbor conductor network.
For example, if w—0, we would intuitively expect
a negligible amount of current to pass through the
corner contacts, and therefore no significant in-
crease in the effective conductivity should exist.
But some additional thought would indicate that
besides the current which directly passes through
the contacts, there should also be a component of
the current that goes around the corner contact,
through the poor conductor. Solution of the elec-
trostatic problem shows that due to the strong elec-
tric field and the short current path near a corner
contact, this second component of the current
(around the contact) can actually contribute to a
“corner conductance” that is equal in magnitude to
the geometric mean of |€,| and |e, | (times the
length for the side of a square, which is 1). There-
fore, unless |e; |w >V | €16 | lor w>V | €y/€|),
the width of the corner contact is immaterial, since
the dominant amount of current does not directly
pass through the contact anyway. The existence of
the corner conductance even in the limit of w=0
also implies that if one insists upon using a net-
work percolation model to calculate the behavior
of the present system, then a third type of bond,
with a conductance value that is the geometric
mean of the other two, must be included as a part
of the model to account for the second-nearest-
neighbor interactions (it should be noted, however,
that the third conductance is not an independent
element since its value is completely determined by
the other two). In fact, this third conductance
scale is what makes it imperative for the system to
have a second threshold.

This paper presents a ‘“‘clustered-mean-field” cal-
culation of the effecitve dielectric constant for the
square lattice. The key element of the schemes is
the embedding of corner-corner interaction in a
mean field, and imposing a condition of self-
consistency. In what ensues, the consideration of
the general formalism is followed by the calcula-
tion of € and the discussion of results. The paper
concludes with a deliberation on possible implica-
tions for three-dimensional percolating systems.

Consider a 2 X2 block of squares in the lattice.
In Fig. 1 we enumerate the seven distinct configu-
rations together with their probabilities of oc-
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FIG. 1. Seven distinct cluster configurations together
with their probabilities of occurrence. The direction of
the electric field is assumed to be from left to right.

currence W, (degeneracies included). For the ease
of computation, in the following the square
geometry of the cluster will be approximated by a
quartered circle. The effective dielectric constant
is determined by requiring that the mean dipole
moment of the seven configurations, when embed-
ded in a homogeneous effective medium, should
vanish. To obtain the dipole moment D,, of each
cluster in a medium of dielectric constant €, we
have solved the electrostatic problem of a quar-
tered circle of radius 1 in a unit electric field as
shown in Fig. 2. The dielectric constant in the ith
quadrant is denoted by «;, and the exterior dielec-
tric constant is denoted by k. Since the potential u
satisfies the Laplace equation, outside the circle it
must have the form

u®=rcosO+ 3, (a,cosnO+b,sinn@)r=". (1)

n=1

where r is the radial coordinate, 6 the angular
coordinate, and a,, b, the expansion coefficients.

ELECTRIC FIELD

FIG. 2. Quartered circle in a uniform field.
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Inside, we sought a basis of the form
uj=r'[A;exp(it@) + Bjexp(—it6)] in quadrant j,
where 4; and B; are constants for any given con-
figuration of «;. By requiring the potential u; and J

) 2—(p1p3+paps)

(k;0u; /00) to be continuous across all four dielec-
tic boundaries, one obtains a fourth-order eigen-
value equation for ¢ whose solutions are given by
t=n+(1—ty)sin(nw/2), where n=1,2,3, . .., and

1
to=— arccos
T

Here p; =«k;/k; 11 (pa=k4/ky). If t satisfies Eq.
(2), the constants [4;,B;] may be determined expli-
citly from [k;] by solving a set of algebraic equa-
tions. Denoting by u; the basis obtained this way,
the interior potential can be expanded as

ut=co+ > cuy . (3)
I

By matching »™™ and 4°" through the dielectric
boundary conditions at ¥=1, one obtains a set of
linear simultaneous equations for the determination
of a;, b;, and ¢;. Of these coefficients, a; is the
dipole moment D =D (k;k,,k3,k4;K) of the config-
uration. One can prove analytically that D has the
following symmetries:

D (ky,k3,k3,k43K) =D (k1 /K, K2 /K, K3 /K, K4 /K5 1)
and
D(K17K27K3’K4;1)=_D(KZ_]’K;I’KII’KI_I;I) .

For each of the seven configurations in Fig. 1, the
above procedure defines a dipole moment D,, (€).
The condition for determining € is then’

7
S W,D,(#)=0. @)

n=1

Using the symmetries of D, one verifies that this
model obeys Keller’s theorem®: &(p)e(1—p)=e¢;e,,
which is known to hold for our continuum prob-
lem.

Three of the functions D,, are known analytical-
ly: D, :(E-—Gl)/ (g+€1 ), Dy 2(5—62)/(—6_4-62)
trivially, and from the symmetries of D it can be
shown that D;=(€—1"€,6,)/(€+1V €i€;). We
have truncated ™™ and »°" to finite number of
terms (~40) and numerically solved Eq. (4). How-
ever, when | €,/€; | —0, a case of great interest,
the numerical solution of Eq. (4) requires solving a
poorly conditioned matrix equation. To obtain
greater precision and insight, we desired instead a
formal asymptotic expansion for D,_; of the form
D,,~a +b(€/€,), neglecting terms of order
|€/€,|?% |€2/€|, or higher. Expanding the basic
elements u; this way, then matching the boundary

2
o e+ (14+p3) (1 +p3)

I o

T
conditions at ¥=1 term by term in the formal ex-
pansion, we found D,= —0.5 + 2.36(¢/¢,),
D5=0.5 + 0.64&/€;), D= —0.71 + 2.49( /€,),
and D;=0.71 + 0.44(€/¢,). For p>0.5, Eq. (4)
can now be replaced by an asymptotic equation

Y K L AL S (5)
1 €E+V € €€ ’

with
A =6p*(1—p)*+1.75p(1—p)?

+9.97p%(1—p) ,

B=2.83p(1—p)(1—2p)+(1—p)*,
C=2p*1—p)*,

and
D =p*.

Once we get &(p) for p> 0.5 from Eq. (5), €(1—p)
can be obtained by using Keller’s theorem.

In Fig. 3 the values of € for the case €;=1,
€,=10"1"is plotted as a solid line. Compared
with the effective-medium theory’ (solid-circle
line), the most striking feature of the new result is
the existence of two sharp variations in €, the per-
colation thresholds, as opposed to the one thresh-
old at p=0.5 seen in the simple effective-medium
case. The value of the upper percolation thresh-
old,® p¥=0.551, can be obtained from Eq. (5) by
first letting |e; | —O0 and then setting |€/€; | —O0.
Mathematically, the necessity of having a second
percolation threshold at p=0.449 follows directly
from Keller’s theorem and the fact that p*=40.5.
Physically, the two percolation thresholds are relat-
ed to the formation of two types of connected net-
works. At p =pZF, an infinite network of €, ma-
terials is formed in which two €, squares are classi-
fied as being connected if they have either a com-
mon side or a common corner. The sharp rise in
the effective conductivity in this case is ascribable
to the leakage of the conducting current around
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FIG. 3. Normalized effective dielectric constant as a
function of p. Solid line denotes the case for €;=1,
€,=10"1°. Dashed line and dotted line denote the real
and imaginary parts of €, respectively, for the case €,=1,
€,=10"1°. Dotted-dashed line delineates the section
over which the curves for the real and imaginary parts
are coincident on the scale of the figure. Circle-dashed
line denotes Bruggeman’s effective medium theory with
6=1, = 10—,

the connecting corners, since these must be the
conductivity bottleneck of the network. On the
other hand, at p =p/ an infinite network of ¢,
squares is formed in which every €, square must
share at least one common side with another €,
square. It is clear that another jump in the effec-
tive conductivity must ensue when this happens.
An interesting case arises when |€;/€;| — . In
that limit, only one of the percolation thresholds is
observable. However, depending on whether it is

| €1 | — « (normal conductor-superconductor com-
posite) or |€, | —0 (normal metal-dielectric mix-

ture), the observed threshold can be either pZ or
pe, respectively. To further elaborate on this point,
we note that for |€, | =0, our system is equivalent
to a site percolation model with nearest-neighbor
bonds. However, if |€; | — o0, then the system
reduces to a different site percolation maodel with
both the nearest-neighbor and the next-nearest-
neighbor bonds. This nonuniqueness in the limit-
ing behavior as |€;/€, | — oo is a direct conse-
quence of the variable nature of the third dielectric
scale, 1/ €;€,.

For complex dielectric constants,
€1=|€ | expli¢;) and €;= | €, | exp(i,), analysis
shows that the magnitude of € still follows the
similar behavior as shown by the solid line. The
phase ¢, on the other hand, has three roughly con-
stant regions with sudden jumps at the two thresh-
old: ¢=¢, for 0<p <pk, p=(d,+¢,)/2 for
pLl<p <pl and p=¢, for p* <p<1. As an exam-
ple, we let €; be purely imaginary (conductor) and
€, be purely real (dielectric), and |e,/€; | =1071°,
The real and imaginary parts of € are plotted in
Fig. 3. It is seen that whereas the real part exhi-
bits a sharp peak at pZ, it is monotone in p at pL.
In view of the work by Bergman et al.’ in which
they concluded that the real part of the dielectric
constant diverges from both sides of the percola-
tion threshold, the present result shows that only
the behavior at p! conforms to that prediction.
Near p/, € can be written as

0.1v €16y u

1.861(p "‘p:)‘i‘ w2 P>Dc
(P _pc)
= 0.1 (6)
Vee | ————1|, p<pd
(pc —p)

where it is assumed that |€,/€; | —0, and
1> |p—pl|>|e/e|. Atp =pL, all divergen-
cies or approaches to zero take the form
L+l
lp—pc| =

Three implications of this work should be men-
tioned:

(i) From the physical reasoning that the two
thresholds arise from two different types of con-
nected networks, it can be inferred that a two-
dimensional hexagonal lattice must have one
threshold at p=0.5, whereas a triangular lattice is
predicted to have two thresholds.

(ii) In a three-dimensional simple cubic lattice
composed of good-conductor and poor-conductor
cubes, three conductivity thresholds are possible
since two cubes can be connected by either a com-
mon corner, edge, or face.
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(ii1) In a three-dimensional composite in which
the constituents have irregular geometric shapes,
the conductivity transtion might be smeared due to
the following scenario. If the volume fraction of
the good conductor p is increased from zero, sharp
protrusions of the conducting constituents would
establish contacts first, forming a connected net-
work. As p is increased further, there can be a
continuous series of thresholds caused by increas-
ingly more effective geometric contacts between

conducting grains in the connected network, each
causing some increase in the effective conductivity.
This geometric mechanism for broadening the con-
ductivity transition offers an alternative to
quantum-mechanical tunneling as the explanation
for the smeared transition seen in sputtered
granular-metal films.!°
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