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Structure of the ground-state wave function of quantum fluids
and "exact" numerical methods
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The problem of how to extract information on the structure of the exact ground-state
wave function of a Bose fluid from the results of Green's-function Monte Carlo computa-
tions is considered. Use of the criterion of maximum overlap of the exact ground state
with an extended Jastrow function leads to certain equalities for correlation functions. By
using methods borrowed from theories of classical fluids various schemes are proposed
that permit the determination of the "best" Jastrow function. The case of Fermi statis-

tics is also considered.

I. INTRODUCTION AND SUMMARY

The Green's-function —Monte Carlo (GFMC)
method is a practical tool for obtaining exact in-

formation on the ground state of a many-body sys-
tem with Bose statistics. The development of simi-
lar, exact methods in the case of Fermi statistics is
now under active investigation. Such an approach
is based on statistical sampling of the configura-
tion space and gives a set of configurations drawn
from the exact ground-state wave function Pp or
from some related functions. This sampling is
enough to compute exactly the expectation value of
interesting observables such as energy, correlation
functions, and the momentum distribution. How-
ever, one would also like to have information on
the strucuture of Pp. For instance, one would like
to know the role played in Pp by Jastrow correla-
tions, i.e., correlations between pairs of particles,
by three-particle correlations, etc. In order to
answer this question one has to introduce a cri-
terion that selects in a suitable subspace of the Hil-
bert space of the system (for instance, the subspace
of the Jastrow functions) the function that best

reproduces some aspect of the system. An obvious
requirement to the criterion is that one recovers
the exact gp as the only answer when the subspace
coincides with the full Hilbert space.

The first choice, of course, is to use the varia-

tional principle for the expectation value of the
Hamiltonian, but in this way one is not making
direct use of the configurations generated by the
GFMC computation. Moreover, it is well known'

that the energy is rather insensitive to the inter-
mediate and long-range part of the correlations
contained in the wave function, with only the
short-range part being really important. The cri-
terion we use is the maximum overlap, i.e., we ask
for the maximum of the overlap integral

(i)j Os ~
t/tp) between the exact ground state and a

model wave function g ~ that spans a certain sub-

space M of the full Hilbert space. This criterion
selects the state in M that is closer to i/p in a
geometrical sense, and we call it P,~. Clearly the
larger the subspace M, the closer is g,q to i/p.

The maximum-overlap criterion offers various
advantages over other criteria that one can think
of, and it appears to be useful. In the first place it
makes direct use of the properties of Pp, and not
only indirectly through the Hamiltonian. Second-

ly, the extremum of (P ~ ~
fp) is obtained when

certain equalities for correlation functions are satis-
fied. The larger the subspace M the more complex
are the correlation functions involved, so one has a
systematic way of improving our knowledge of Pp
starting from the simplest case where M is the sub-

space of the Jastrow functions. An additional
bonus of this criterion is that the present GFMC
computations that use the so-called importance
sampling' already generate all the information
needed to extract these correlation functions. Fi-
nally, the method is also sensitive to the intermedi-
ate and long-range part of the correlations con-
tained in gp. For instance, we find immediately
that t/i ~ must contain the long-range r 2 correla-
tions present in i/p.
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At first sight the equations that we obtain do
not appear very practical because they require a
GFMC computation that uses the unknown g ~
as the importance-sampling function. We show,
however, that by borrowing methods developed in
the theory of classical liquids, one can set up
methods to obtain f ~ using only the result of a
GFMC computation that has used a nonoptimum
importance-sampling function. The case of Fermi
statistics is, in general, much more complex but we
find some simple results if we limit ourselves to
extract the symmetric part of correlations con-
tained in 1(0.

The contents of the paper are the following. In
Sec. II we present the basic results in the case of
Bose statistics. In Sec. III we consider some
methods to solve the equations of Sec. II with
standard numerical algorithms. Finally the case of
Fermi statistics is discussed in Sec. IV.

II. MAXIMUM-OVERLAP CRITERION

Let a system of N identical bosons have

$0(r i, . . . , r~) as the ground-state wave function.
We consider the subspace of the Hilbert space of
the system spanned by the extended Jastrow wave

function, or Feenberg functions, which we write in

the form

where P is the unnormalized function

M
=exp —

2 ggu~(R~ ) . (2)
a=la a

a~ indicates a set of a particles chosen between

1,2, . . . , N, R, stands for the ensemble of the~a

coordinates of these a particles, and g, is the~a

sum over all distinct sets a~. The wave function

f ~ is characterized by the M functions
u l,u2, . . . , uM that we call pseudopotentials, and
M is the maximum order of correlations that we
allow in g ~. For M =1 one has a Hartree func-
tion, for M =2 one has a so-called Jastrow func-
tion, with M =3 one allows also three-particle
correlations, etc. The one-particle term u l is zero
unless the system is nonuniform because there is an
external potential or because the system is in the
solid phase. Since $0 is real and symmetric, u

also has these same properties. (pm~ I
tlim, q) is

the normalization integral

M
= fd ri d rnexp —ggu (R, ) . (3)

The extremum of the overlap integral (P ~ I $0)
with respect to the pseudopotentials gives the con-
ditions

(R )
( ( Pmod I Smod 5u (R )

L

= —fd r&
. d rz+5(Rp R, )P,d(t r; I

—
I I u I)

Cp

, fd'rp+i

The computation of the functional derivatives is simple, for instance

5u p(R p)

=0. (4)

~ A2
and a similar expression holds for the derivatives of (1(t ~ I

go) with 1( ~$0 replacing f ~. One recognizes
in (5) a reduced distribution function, a part from a constant. Given a probability distribution in configura-
tion space one defines the reduced distribution function n (r i, . . . , r p) of order P as the probability densi-

ty of finding the given number P of distinct particles at coordinates Rp ——(ri, . . . , rp). If the probability
distribution is taken as @,d/(1( ~ I g,d), then

nm~(ri, . . . , rpl I u~ J)=,fd rp+& d rzgmod(I r; J I I u I)l(pm~I 1(tmod),

where for future use we have explicitly written the functional dependence of n poq on the set of pseudopoten-

tials u .
In a similar way we can consider P,ding(g ~ I Pp) as a probability distribution; this gives rise to the
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so-called mixed reduced distribution functions'.

t

nm'd(ri, ~ rpl t u~ j)= ', "'rp+] ' ' "'r]v4m~(t r j I I un j)fo(I r] j)~&Pm~ I fo& .

=
2 &fmw I fo&Inlaw(ri rpl I ua j } nmxd(r» rp I l u~ j)1=0

Taking into account (5)—(7) the extremum conditions (4) can be written as

5&0 ~ I fo&

5u p(R p)

i.e., the mixed distribution functions must be equal
to those for the model wave function up to an or-
der equal to the maximum order of the pseudopo-
tentials included in P ~. These M functional
equations represent the basic result of our paper.
The correlation functions n p~ are those that can
be obtained from a standard variational computa-
tion of the energy when g ~ is used as trial wave
function. Moreover, the mixed correlation func-
tions n' „'d can be obtained from a GFMC compu-
tation. In fact, such computation makes use of
importance sampling, ' i.e., one generates a se-

quence of configurations drawn from the product
of go and of an importance-sampling function,
usually chosen as a Jastrow function. If this
importance-sampling function is chosen as p, d

then the configurations that are generated are ex-

actly those required to construct n' „'d, and the ac-
tual computation of n' „'d from a set of configura-
tions is a standard part of the data analysis in

Monte Carlo computations. However, Eqs. (9) as

written are not very useful because by trial and er-

ror one should try to satisfy these equations by
varying I u~ j; for any change of the pseudopoten-
tial one should perform a new GFMC computa-
tion. In the next section we present methods to
overcome this difficulty.

If pm~ represents a good approximation to Pp so
that one can treat the difference gp —1( ~ as a per-
turbation, then to first order in this difference one
finds' a linear relation between exact and mixed
averages. In our case it reads

(p) ~ (p) (p)
no =2nmxd —nmod ~ (10)

where n pp' is the exact distribution function.
From GFMC computations it is found' that

such relations are reasonably well satisfied, and if

We conclude that the maximum overlap is ob-

tained for that set of pseudopotentials I u j for
which

n' ~(r], . . . , rpl t u~ j)=nm„'d(r], . . . , rpl I u j),

1p ~ ~ ~ p M

we use (10) in (9), then the approximate form of
the maximum-overlap conditions reads

n]P~(r], . . . , rpl I u j}=nI]P'(r„,rp},

1p ~ ~ ~ pM e

If the system is in a fiuid state and there is no
external potential, then the density is constant,
n p ( r) =p =IV/V so that u ] ——0. From variational
computations of the energy' it is known that a Jas-
trow wave function, i.e., expression (2} with M =2,
already represents a reasonable approximation to
gp, and inclusion of the three-particle term u3
gives an excellent approximation. In the case of a
Jastrow function the maximum-overlap conditions
(9}become a single equation:

gJ(r I
u2) g d(r

I
u2} (12)

g, (r lu2)=go(r) . (13)

If we allow also three-particle terms in ]tj,d then
the exact relations (9) can be written as

gmod(r I
u 2~ u 3 ) ——gmxd(r

(14}
(3) ~ ~ -+ — — (3) -+ ~ -+

gmod(rl~r2~r31u2, u3) —gmxd(r] 12' r31u2 u3),

where we have introduced the usual triplet distri-
bution function n' '=p g' '.

We are not able to make rigorous statements
concerning the existence and uniqueness of a solu-
tion to Eqs. (9) or (11). This problem is related to
a similar one in classical statistical mechanics, the
uniqueness of the interatomic potential for given
correlation functions, and also in this case nothing
rigorous is known, apart from the low-density lim-
it. Let us comment, however, that Monte Carlo

where we have replaced the subscript mod by J
and the two-particle distribution functions by the
radial distribution functions (RDF):

nJ (rl r21u2)=A~(
I
ri —r21 I u2)

and similarly for n' „'d. The approximate relations
(11) in this case become
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computations with Jastrow functions indicate that
an equation such as (13) can be solved. In addi-
tion, the perturbation scheme developed in the next
section gives a single solution.

The condition of maximum overlap should allow

the determination of the pseudopotentials at inter-
mediate or large distances with a precision that is
better than that obtained with the energy criterion,
because the value of the energy is rather insensitive

to the precise form of the pseudopotentials outside
the region of the core of the potential, whereas

correlations are more sensitive. For instance, from
a variational computation with Jastrow functions it
is well known that pseudopotentials not giving a
very good or even giving a poor radial distribu-

tion function, give a good energy value. On the

other hand, complex pseudopotentials ' that give

an excellent g(r) improve only marginally the ener-

gy value. Another indication in this respect comes

from the GFMC computation for the Lennard-

Jones fluid, which shows that the fluctuations of
the computation are drastically reduced if the
pseudopotential u2, used as the importance-

sampling function, contains that intermediate-

range structure that was shown' ' to give an im

proved gq, thus coming close to satisfy (12). This
implies that in this case the configurations sampled

by 1(z1(0 are closer to those configurations that
would be sampled by tg.

A significant element of the ground state of a
neutral quantum Bose fiuid is the presence of
long-range correlations due to the zero-point
motion of phonon excitations. In a three-dimen-

sional system fv contains a Jastrow component
with

These behaviors are obtained correctly by the
random-phase approximation, and it is a simple
matter to check that if we write

u2(r) —3 lr',

Eq. (15) to leading order in k implies a =2 and
A =mc(n pfi}

III. METHODS OF SOLUTION

We suppose that for a certain quantum Bose
fiuid we have available three radial distribution
functions: the exact ge(r), the mixed g „z(r

~

u)
from a GFMC computation that has used a gener-
ic pseudopotential u (r) as the importance-sampling
function, and the Jastrow gj(r

~
u) for this same

pseudopotential. In addition the three correspond-
ing structure factors are assumed to be known. " In
this section we drop the index 2 in the Jastrow
pseudopotential u2. We want to determine the
pseudopotential u(r) that has maximum overlap
with $0. The GFMC computations performed for
a variety of pair interactions have shown' that the
perturbative relation (10) is accurate so that we
start with the approximate equation (13) for u.
This equation is exactly equal to the equation
found in the theory of classical fluids with the in-

verse problem, i.e., the determination of the pair
potential that gives an observed g (r), because of
the formal identity between the weight factor gz in
the quantum case and the Boltzman factor

exp —Pgv(r; rj)—

Sz(k
I
u2) =Smxa«

I
u z» (15)

where the structure factor is related to a RDF by
the usual relation

S(k)=1+pJd r e' " ' ' [g(r) —1] . (16)

The small-k behavior of S(k) is dominated by the
large-distance behavior of u2 in the case of Sq and
of u2 and X&b present in fe in the case of S „s.

where m is the atomic mass and c the sound velo-

city. We find that the model wave function, in or-
der to have maximum overlap with Pv, must have
this behavior. In fact, by taking a Fourier trans-

form Eq. (12) becomes a relation for structure fac-
tors,

in the classical case when Pv(r) =u (r). In the case
of classical fluids this inverse problem' has been
attacked by using the integral-equation approach,
for instance, the Born-Green equation with super-
position closure or the hypernetted chain equation.
However, it is well established that none of these
equations is accurate enough for this purpose.
Since u (r) for the physically interesting pair inter-
actions has a shape that can be considered a
respectable pair interaction for a classical system,
we foresee that application of the integral-equation
approach will not be more successful in the quan-
tum case.

A simplifying feature of our problem is that the
pseudopotential u (r) used in a GFMC computation
is obtained from a variational computation of the
energy, so we expect it to be rather close to u(r) at
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least at short distances. Therefore, we can assume
that the difference

5(r) =u(r) —u(r)

is not large, and we need only a theory that gives
the change of gj due to a limited change in the
pseudopotential. This is exactly the kind of prob-
lem that was confronted by the so-called perturba-
tion theory of classical liquids' and successfully
resolved: The properties of a system with pair in-

teraction v (r) are expressed in terms of the proper-
ties, assumed known, of a "reference" system and
of the difference u(r) —uo(r) between the interac-
tions of the two systems. In our case the pseudo-

potential u (r) plays the role of "reference" poten-
tial and 5(r) that of perturbation.

As a first scheme we introduce a method based

on the so-called modified hypernetted chain equa-

tion. ' %e start with the exact relation for any

pseudopotential,

lngj(r
I
u }=gj(r

I
u } 1 cj(r

I
u )

for the "best" pseudopotential in terms of known
quantities. Here co is the direct correlation func-
tion that corresponds to go. In (21) we have only a
first approximation to u [this is the reason for the
index (1) on u] because of the assumption (20). It
is possible to improve on this result, however, by
computing gj(r

I

u"'), for instance, by a standard
Monte Carlo computation. In general, this g~ will
not be equal to go because of the approximate na-
ture of (20), but now we can compute b (r

I
u "')

and make the weaker assumption b (r
I

u )

=b (r
I

u "'). We can now proceed in a similar
manner as done previously, and this produces a
new estimate u' ' given by (21) where u is replaced
by u'". This procedure can be repeated until

gj(r
I

u ")—go(r} is smaller than the statistical er-
rors, of gv and gj.

We note that already the first approximation
(21) gives the correct long-range behavior of u(r).
In fact, from (21) and (19}one finds that the
Fourier transform of 5"'(r)=—u"'(r) —u(r) is

u(r)+—b(r
I
u), (18)

5'"(k)=p '[So(k) —S (k u)+S '(k)

which is just a standard relation' in the case of a
classical fluid with u (r) in place of Pv. cj is the
direct correlation function corresponding to gj as

given implicitly by the Ornstein-Zernike relation

gj(r I
u) —1 =cj(r

I
u }+pfd r'cj("'

I
u)

(19)

b(r Iu)=b(r Iu) . (20)

By taking the difference between (18) and the simi-
lar relation for gj(r

I
u) and using (20) and the

equality gj(r I
u) =go(r) we arrive at the expression

u"'(r)=u(r)+go(r) gj(r I
u) —co(r)—

+cj(r
I
u) +ln[gj(r

I
u )Igo(r)]

and b is the so-called bridge function, ' whose den-

sity expansion is known. If gj is known exactly
for a certain u, then (18) and (19) can be used to
deduce b. The study' of b (r

I
u) in the case of a

classical system for a variety of u (r), from a hard
core to a Coulomb potential, has presented a re-
markable property of the bridge function: To a
good approximation the shape of b is independent
of u (r), and at most there is a change in the length

scale. In the present case we can neglect this
change in length scale because, as we said, u (r)
and u(r) should be very similar at short distances,
and we simply assume'

where

—S, '(k
I
u)]+I(k), (22)

I(k) = fd r e' " ' ' ln[gj(r
I
u )Igo(r)] . (23)

yj(r
I
u)= e"'"'gj(r

I
u), —

the approximation becomes

(24)

If u.(r) is a short-range function, then all terms of
(22) give contributions to 5"'(k) that are regular as
k~0, apart from the term Sv '(k}. This gives the
contribution 2mc/(pA'k) that brings in u'"(r), the
correct long-range behavior. This behavior does
not change under iteration of the procedure be-
cause of the cancellation of k ' terms in 5"(k) for
i &1.

It is a typical case in GFMC computations that
u (r) is a short-range function; it should already
reproduce rather well u(r} at short distances, i.e.,
in the region where go(r) rapidly goes to zero. One
is interested in finding u(r) at intermediate and
large distances. In this case a simpler scheme can
be used: the well-known optimized random-phase
approximation' (ORPA) that is widely used for
classical liquids and that we can also formulate in
our case. The approximation is built in two stages.
As a first step one approximates the reference
gj(r

I
u) with the radial distribution function of

classica/ hard spheres. Precisely, if we define the y
function by
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gJ(p I
u ) e yHS(r d) (25) Sg(0

/

u )=SHs(0, d) .

~PHs ~ e —
Hs ~ (26)

and in view of (25) this can be written in terms of
structure factors at k =0:

where yHs is the y function of classical hard
spheres of diameter d, i.e., the function appropriate
when f(r)—=exp[ —u(r)] is f(r,d)=0 for r &d and

f(r, d) =1 for r & d. The diameter d must be
chosen such that'

Let us note that the classical hard-sphere system
enters here just because of the already-mentioned
formal similarity between Jastrow pseudopotential
and pair interaction in a classical system.

As a second step one computes the effect of
5(r) =u —u on the RDF in the chain approxima-
tion (RPA) with a self-consistent condition (optim-
ization) that takes into account the effect of the
repulsive core of u (r). This gives'i

gJ(r
~

u +5)=gj(r
~

u)+ 4(r
~
5)

V(r
/
5)=—(2n ) f1 k e' " ' 'S„s(k,d)[5(k)+b(k)]/f 1+pS„s(k,d)[5(k)+b(k)] I,

(2g)

where 5(k) is the Fourier transform of 5(r} and b, (k) is a function that implements the optimization condi-

tion: h(k) is such that Ã(r
~
5)=0 for r &d and, on the other hand, h(r) =0 for r & d. From (28) and (29)

one can extract 5(k) and b,(k) by simple algebra after taking a Fourier integral. Going back in r space we

find, in the physically interesting region r & d,

SJ(k iu) —Sp(k)

SHs(k, d)[Sp(k)+SHs(k, d) —Sg(k
~

u )]
(30)

where we have taken into account that

gj(r
~

u +5)=gp(r) and that 4(r) =0 for r & d.
Equations (30) and (27) represent an easily comput-
able expression for 5(r) in terms of the variational

Sg, of the exact Sp, and of the classical hard-

sphere structure factor that is well known' in

parametrized form from simulation work. Since
this result relies on the approximation (25}, this
procedure is more appropriate in the case of sys-

tems with harsh repulsive forces such as the
Lennard-Jones potential. We note that the approx-
imation (30) also gives the correct r long-range

behavior of u(r).
Variational computations of the energy for the

Lennard-Jones potential have shown that the
three-body term u3 in the wave function has a sig-

nificant role, and therefore one would like to ob-

tain the "best" uq by solving Eqs. (14). Perturba-

tive methods similar to that previously mentioned

can be devised in this case also, but the complexity
of the full three-body correlation function g' ' will

require an expansion of g' ' and of u' ' on a suit-

able basis set. This problem will be considered on

another occasion.
Experience in dealing with the case of classical

liquids and our expectation on the shape of u2(r)
make us confident that the methods we have pro-

posed in this section will give a reliable estimate of
the best pseudopotential. The accuracy of these
methods however, depends very much on the accu-
racy with which Sp(k} and Sz(k

~

u) are known.
We have assumed that these functions are known
exactly, but in fact statistical errors are present due
to the nature of the Monte Carlo method; these er-
rors tend to be enhanced in 5(r). This indicates
the need that in a GFMC computation as much at-
tention should be given to extract the correlation
functions as that to the computation of the energy.
Another aspect that currently limits the accuracy
with which uz can be computed is the problem of
extension ' of the radial distribution functions.
None of the inethods' '7 that have been used up to
now to extend g (r) outside the length of the simu-
lation box is really satisfactory when fine details of
the structure factor are needed. In fact, one' of
the methods does not guarantee' the continuity of
g (r), and the other'" is based on an ad hoc pro-
cedure.

Our discussion up to the present has been based
on the approximate maximum-overlap equation
(13). However, similar perturbative methods can
be also developed for the exact equation (12). In
this case one has to expand both sides of
gJ(r

~

u +5) =gm„d (r
~

u +5) with respect to 5. In
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the RPA approximation, for instance, one finds
two chain functions, one like (29) and one similar,
but with —,5(k) instead because in g „z the pseudo-

potential enters through ib and not gJ. Since the

equations become more complex and the present
GFMC computations indicate that the perturbative
relations (10) are adequate, we do not pursue the
rnatter further.

IV. FERMI STATISTICS

The criterion of maximum overlap can be easily extended to the case of Fermi statistics if we consider as
a model wave function a Slater-Jastrow function fsJ as commonly usixl in variational computation of the en-

ergy. ' In the case of the unpolarized state the most general gsJ has a different pseudopotential for pairs of
particles with parallel (up) or antiparallel (u, ) spina. The configurational part of the model function is

fsJ(I r; I I up, u, )=d, d, gexP[5 . ,up(
I
r; —r

I
)+(1—5 . .)u, (

I
r; —r

I )] (31)

where 5« is the Kronecker symbol, ir; indicates the spin projection of particle i, and d, and d, are the
determinants of plane waves that fill the Fermi sphere for the N/2 particles with spin up or down, respec-
tively.

The variation of the modulus square of the overlap integral & gsJ I fo& between the exact ground state po
and the normalized model wave function, PsJ ——(&fsJ

I gsJ&)
'

gsJ, with resPect to up gives

5
I &ysJ I @o& I

'
&yo I @sJ& 5&ysJ I @o& &ysJ @o& 5&6

I @sJ& I &@sJ I @0& I' 5&qsJ I ysJ&

&ysJ I PsJ& 5"p(") &PsJ I qsJ& 5up(") &ysJ I
iltsJ&

(32)

(33)
5up(r) 2

and a similar equation holds for u, (r). As in the case of Bose statistics, these functional derivatives can be
related to radial distribution functions, and in fact we find

[gsJ("
I

up&ua ) gmxg(r
I

up~ua )]
& fsJ I fsJ &

where gsJ is the RDF for particles with parallel
spin for the model function (31) and g"„z is the
mixed average. These RDF's are given by an obvi-
ous generalization of (6) and (7) with a normaliza-
tion such that

g~ 1.

p=N/V is the total number density. Variation of
& fsJ I QQ& with respect to u, gives a similar result
that involves RDF for particles with antiparallel
spins. %e conclude that maximum overlap obtains
for the pseudopotentials up and u, such that

I

equal, the maximum-overlap criterion implies only
one equation, the equality of the mixed and of the
model total RDF, g= —,(g"+g"). This same

equality is obtained in the case of a fully polarized
state when gsJ contains a single Slater determinant.

These results can be also generalized to the case
of model wave functions that, in the symmetric

part, contain many-particle pseudopotentials. The
maximum-overlap equations again involve mixed
and model many-particle distribution functions.
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