
PHYSICAL REVIEW B VOLUME 26, NUMBER 3

Two-particle excitations in liquid He II
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It is suggested that two-particle excitations in liquid He II may be yet another source
for the observed loss in spatial order in liquid He as it is cooled through Tz.

Recent measurements of the structure factor for
liquid He at constant density above and below T~
by Robkoff et a/. ' have revealed that the max-
imum height of the main structure-factor peak in-

creases as the temperature is lowered towards T~,
but suddenly starts decreasing as the temperature is
still lowered below T&, indicating a loss in spatial
order on cooling through T~. Theoretically it has
been suggested that the observed loss in spatial or-
der may either be due to Bose-Einstein condensa-
tion2 or due to the thermal excitation of rotons. s

Recently a number of critical studies of the sugges-
tion of Hyland et al. have resulted in uncertainty
about the suggestion that the observed loss in spa-
tial order is due to Bose-Einstein condensation.
While the mechanism of thermal excitation of ro-
tons seems plausible, it seems worthwhile to inves-

tigate a third possible explanation —the production
of two-particle excitations. The aim of the present
investigation is to stress the third possibility.

Since the neutron scattering experiment of Cow-

ley and Woods, which showed the presence of a
second diffuse branch above the well-known
phonon-roton branch, a number of theoretical in-

vestigations have been carried out to interpret the
new branch as due to two-particle excitations. On
employing the Tamm-Dancoff approximation (i.e.,
by restricting the intermediate states to one- and
two-particle states only), Iwamoto obtained the
second branch as a resonance of particle-particle
scattering. Kebukawa et al. obtained the upper
branch as a second solution of their equation for
the excitation energy obtained on the basis of a
collective variable theory. Enz' obtained the net
branch corresponding to the second eigenvalue of
the equation of motion for the density response
function. Extension of a theory due to Vasudevan
et al. "based on currents and densities by
Sridhar' yields a second branch that is almost
constant for small values of momentum. Khalatni-
kov' also interprets the data of Cowley and
Woods as indicating a second branch due to two-

particle excitations. Fukushima et al. ' also obtain
a similar conclusion.

Raman scattering experiments on liquid HeII
performed by Greytak and Yan' also seem to con-
firm the possible existence of a second branch.
According to Ruvalds et al. and Zawadowski
et al. ,

' who have considered the effect of roton-
roton interactions on the scattering cross section, a
bound state of two rotons with very small relative
momentum will explain the frequency and intensi-

ty of the observed peak in the Raman scattering
experiment.

There is a view that the new branch is actually a
band and does not correspond to a well-defined
frequency. However, Soda et al. ' have satisfac-
torily explained the experimental intensity curves
by assuming that the second branch corresponds to
a well-defined frequency. The intensity function
for the dip inelastic scattering of neutrons has
been satisfactorily obtained by Wong' by approx-
imating the multiphonon background of the
dynamic-structure function with two-particle exci-
tations only. A similar attempt has been made by
Tripathi et al. '

Interest in two-particle excitations has recently
been revived because of the following develop-
ments:

(a) Cowley doubted whether the Raman
scattering experiments decisively establish the ex-
istence of a two-particle bound state while
Kleban ' arrives at a similar conclusion from a
theoretical point of view.

(b) Recent neutron scattering data obtained by
Blagoveshchenskii et al. indicate that there may
arise a second branch due to a two-roton bound
state.

These developments indicate the necessity of inves-
tigating the two-particle excitations in a greater
depth.

Miller et al. have suggested that scattering at
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low temperatures may be divided into one-phonon
and multiphonon parts in the following manner:

5(co co))— 5(co—co2)
X +

co ]—(H )p co2
—(H )k

(2)

where co~
——co~(k) and co2 ——coz(k) represent the

single-particle and two-particle energies when the
sum rules are assumed to be saturated with single-
and two-particle excitations only. (hco )k
represents the mean-square fluctuation in energy
about the mean-excitation energy
(H )p =[k /2mS(k)], S(k) being the static struc-
ture factor. Comparing (2} and (1) one can write
approximately

S»(k, co) =S»(k)5(co—co&(k)) .

S(k,co) =S~(k)5(co—coi(k))+S»(k, co),

where SF(k) gives the strength and co&(k) gives the
energy of the one-phonon excitation, while

S»(k,co) gives the multiphonon background.
The aim is to specify S»(k, co) under the as-

sumption that single- and two-particle excitations
saturate the sum rules and that these excitations
have fairly long lifetimes. To estimate an approxi-
mate form for S»(k, co) one can use the form of
S(k,co) are derived by Soda et al. [Eq. (21) of Ref.
24] in the limit where the width of the excitations
F becomes very small. %ith a little algebra one
can show that the expression of Soda et al. in the
limit of vanishing width is equivalent to

S(k m}= (0lp (k)p(k}IO& (&
N~ —N2 a K for k(ka

(flak /2m') K for k &ka

where a and ko are constants chosen such that

co2(kp)=ct =+ka/2mks .

From the experimental data (Fig. 6 of Ref. 7) a
can be varied over the range

20 K&a &25 K.

(4)

In the above k~ denotes the Boltzmann constant.
The momentum transfers in the above forms are

o

less than 2.5 A '. Following standard procedure
the first few moments of S(k,co} can be computed
easily:

An approximate form for co&(k) is derived from
the following considerations:

(i) Iwamoto obtains a second branch which is
somewhat flat with energy 20 K up to a wave
number 2.3 A

(ii) The equation of motion for the density
response function as evaluated by Enz' leads to a
second mode, which for large values of the mo-
tnentum exhibits free-particle behavior while for
small momenta has an energy approximately equal
to twice the roton gap.

(iii) Soda et al. ' also obtained a similar behavior
for coz(k).

(iv) Sridhar' also obtained a second branch that
is almost constant for small momentum values.

Consequently, the following form for coq(k) is
assumed. This form gives a constant value for the
second branch for small momentum values and
yields free-particle behavior for large values of k:

I dcoS(k, co) = (0
i
p(k)pt(k)

i
0) =NS(k),

J dcoa)S(k, co) = (0
i
p(k)Hpt(k)

i
0) =NEa(k),

J dcoco S(k,co) = (0
~
p(k)H pt(k)

~
0) =N[Ea(k)co](k)+F(k)],

(6)

where

Ea(k)=Pi k /2m,

coi(k) =[Ea(k)+2NEp(k) V(k)]'i
4

F(k)=4EO(k)(g k)+, g I V(
~
p+k

~
)[k (p+k)] —V(p)(k p) ][S(p)—1] . (11)

2@i —+
P

In the above V(k) is the two-particle interaction potential and ( g'k ) is the average kinetic energy. co~(k)
approximates the one-phonon energy for large k while it is exact for values of k &0.6 A . Equations
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(6)—(8) can be written as

I &0I p(k) I » I

'
g I «I p(k) I

n & I'
(n ln)

I (0lp(k) I
1) I'

k I &0lp(k) In& I'

&&& (k) 2(k)++(k)& i(k) I &0lp(k) I
1& I' ~ i(k) I &0lp(k) ln& I'

(12)

(13)

(14)

(15)

The state
I
1) is the one-phonon state which saturates the f-sum rule (13) in the long-wavelength limit. In

extending the sum rules to higher temperatures it is to be noted that the odd-moment sum rules remain un-

changed while Eq. (12) is to be rewritten as

S(k) 1&0lp(k) I 1& I', thy (k)/2+ g 1&01p(k) ln& I', thp (k)/2

By assuming that the single-phonon excitations

I
1) and the two-particle excitations with frequen-

cies given by Eq. (4) saturate the sum rules,
Sridhar and Vasudevan have obtained the single-
and two-particle matrix elements

I (0
I p(k) I

1 ) I
'/( 1

I
1 )

and

&0 Ip(k)l 2) I'/&2
I
2&,

respectively, in terms of V(k) and the structure

l.3—

S(k)
0.9—

0.7—

0.5—

I

factor S(k). In their approach S(k) itself is given

by a linear integral equation involving V(k). Since
V(k) is not known precisely, an exact evaluation of
the matrix elements is not possible. Furthermore,
a realistic potential such as the Lennard-Jones po-
tential that possesses a hard core cannot be used in
the integral equation obtained in Ref. 25 since such
a potential does not possess a Fourier transform.
Hence a solution of S(k) involves the use of a suit-
ably chosen "soft-core" potential.

However, one can extract the required informa-
tion from the collection of experimental data itself.
The experimentally measured single-phonon excita-
tion energies, the single and multiphonon intensi-
ties, the single and multiphonon contributions to
the f-sum rule, etc., decide the matrix elements.
Still, there is some difficulty in writing down the
matrix elements for a range of temperatures below
Ti. In this context the fact that the f-sum rule is
independent of temperature, type of interaction,
and even particle statistics plays a crucial role in
obtaining the information. Cowley and Woods
have obtained the single and multighonon contri-
butions to the first moment of S(k,co). Using this
experimental information and following the model
proposed by Sridhar and Vasudevan, one can as-
sume that the multiphonon contribution to the first

03— TABLE I. Height of the principal peak of S(k).
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k(w')

Extrapolated from
Ref. 1 for
150.3 kg/m

From the present
calculation for

145.3 kg/m

FIG. 1. Structure factor with the use of
temperature-dependent excitation spectrum. I corre-
sponds to T =1.6 K. II corresponds to T =2. 1 K.

T=1.6 K
T=2. 1 K

1.445
1.505

1.55
1.73
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moment of S(k,co) is dominated by two-particle
excitations. With co&(k) and coi(k) given by Eqs.
(4} and (10), respectively, the two-particle and
single-particle matrix elements are obtained easily.
These matrix elements when used in Eq. (15) yield
the structure factor as a function of temperature.
In this calculation, the following choice of co& is
made: a =25 K and kII ——2.0 A

The principal peak of the structure factor is
found to be increasing as the temperature is in-
creased from below Ti towards Ti, (see Fig. 1}.
The calculated increase in the peak height of 2.1 K
as compared to its height at 1.6 K is about 1.5%,
while on the basis of experimental information' it
is expected to be around 4.5%. Furthermore, in
this approach there is no appreciable change in the
width of the peak.

This defect has been rectified by taking into ac-
count the proper temperature dependence of the

excitation energies that precisely account for the
quasiparticle interactions at nonzero temperatures.
Experimental information concerning the tempera-
ture dependence of one-phonon excitation energies
is readily available for T =1.1, 1.6, and 2.1 K.7
However, one can deduce coi(k) at only one tem-
perature T =1.1 K. Thus one is forced to take
this value for coq even for the other temperatures.

The incorporation of the proper temperature
dependence of the excitation energies brings about
a considerable change in the temperature depen-
dence of S(k). The increase in the peak height at
2.1 K as compared to its height at 1.6 K is about
11% as shown in Table I. Although there is a
broadening of the peak, quantitative comparison
with the experiment cannot be made as this infor-
mation is not given in Ref. 1.

In addition to the above-mentioned moments one

may also consider the inverse-moment sum rule:

I &01((k}l1& I'
co

'
a)i(k} (I

~
I) „~I co„(k) (n

~
n)

(16)

where X(k) is the density-density fluctuation func-
tion and A is the velocity of sound. In the long-

wavelength limit

I-0.5

-06—
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I

—~ k = Q, 6

lim X(k)= —1 .
k-+0

(17)
-07—

Following the prescription previously used one can
compute the velocity of sound by the use of Eqs.
(16) and (17). This is done by suitably rewriting

Eq. (16), whose form remains the same even for
nonzero temperatures. The velocity of sound and

the density correlation function are calculated, in-
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FIG. 2. Velocity of sound vs temperature.

T E MPERA TURE (K)

FIG. 3. Density-density correlation: P(k) vs T.
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serting the proper temperature dependence of the
excitation energies; the results are shown in Figs. 2
and 3, respectively.

The velocity of sound is in qualitative agreement
with experimental observation —especially ultrason-
ic measurements (as quoted by Woods and Cow-
ley ). The quantitative agreement has to be im-
proved. Regarding the correlation function X(k) it
is a constant for zero-momentum transfers. For
nonzero-momentum transfers X(k) indicates that
the density-density correlations for momentum
transfers of the order of 2 A ' (corresponding to
roton excitations) decreases as the temperature is
increased from T =0 to Ti„.

The suggestion that the loss in spatial order may
be due to Bose-Einstein condensation has been
critically examined by several investigators. %hile
Griffin has questioned the assumption of Hyland
er al. that the single-particle correlations are negli-
gible at low temperatures, Chester and Reatto ar-
gue that the formula of Hyland et al. cannot be
derived from the Frohlich decomposition of the
two-particle density matrix. Fetter has explicitly
demonstrated that a weakly interacting Bose gas at
low temperatures (which is supposed to exhibit
Bose-Einstein condensation rather conspicuously)
itself provides a clear counter example to the form
of the pair correlation function proposed by Hy-
land et aI. Since it is well known that the tech-
nique based on the use of reduced-density matrices
may not be valid for such a strongly interacting
system as that found in liquid helium, the only
other available explanation for the decrease in spa-
tial order has been given by De Michelis et al. —
the thermal excitation of rotons. This description
is based on an explicit model of the density matrix
for liquid helium corresponding to the Landau pic-
ture of noninteracting phonons and rotons. How-
ever, in view of the suggested hybridization of
these excitations' this model alone may not yield
the full mechanism for the loss in spatial order.

Since the roton dip is essentially a quantum ef-
fect and characteristic of liquid helium, it is natur-
al to expect that the second diffuse branch of exci-
tations, so far observed only in liquid HeII, may
also contribute to the loss in spatial order below
T~. Since the phonon branch is present even in

normal liquid He (above Ti ) and is observed in
some other liquids as well, the peculiar behavior of
the spatial order in He II should be a consequence
of the special excitations this quantum liquid can
sustain. The fact that the roton excitations and
two-particle excitations are related is indicated in
the behavior of X(k}. The density-density correla-
tion function, "alculated under the assumption that
the sum rules are exhausted by single- and two-
particle excitations, shows a special behavior at the
wave vector k =2.0 A ' corresponding to the ro-
ton dip (see Fig. 3). (The rate of decrease of X(k)
for fixed k as a function of temperature is more
for values of k of the order of roton minimum. )

This indicates therefore, the role played by roton
excitations in determining the spatial order along
with the two-particle excitations.

In the present contribution the single- and two-
particle matrix elements [and hence the interparti-
cle potential V(k)] are deduced from the experi-
mentally observed contributions of the single and
multiphonon excitations to the f-sum rule. The
obtained decrease in the height of the principal
peak of S(k) as the temperature is lowered from
Ti„ is found to be larger than the one that might be
expected from experiment. (See Table j:.) This is
mainly due to the fact that the experimental infor-
mation regarding roz(k} for temperatures other
than 1.1 K is not available. '

On the basis of the rough estimates presented in
this contribution, it can be stated that the two-
particle excitations may play a significant role in
determining the spatial order in liquid HeII. The
results presented here are of a preliminary nature
since experimental information regarding two-
particle excitations is very meager. Thus, to verify
the assertions, detailed experimental investigation
in this direction is required and this is expected to
be fruitful, according to the observations of Blago-
veshchenskii et al. ' Theoretically it seems
worthwhile to have a microscopic study of the
roles played by roton and two-particle excitations
in the determination of short-range correlations.
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